AEgIS/AD-6 Antihydrogen experiment: Gravity, Interferometry and Spectroscopy

Status report for 2012 and outlook for 2013/14

Michael Doser / CERN on behalf of the AEGIS collaboration

AEgIS collaboration

Topics

Schematic overview

Work in 2012 on apparatus

Results of measurements with antiprotons and positrons

R&D

proton source, Ps formation studies

Outlook for 2013 and 2014

Schematic overview

Physics goals: measurement of the gravitational interaction between matter and antimatter, \overline{H} spectroscopy, ...

Central apparatus design

Zone layout early 2011

Zone layout late 2012

5T magnet and traps

IT magnet traps: conceptual design

IT magnet traps: the reality

Central antihydrogen detector (@ 4K)

hit pattern (0,1) vs. time [200 MHz] (deadtime-free readout)

Positron system

Completed and commissioned in October

Ongoing work to increase the rates and efficiencies

Ps excitation laser system

Transported to CERN and installed in October

Assembly

Assembly completed end of November; immediate pumpdown and cool-down (10 days) during which commissioning with antiprotons and positrons could take place

Beam in 2012: first run (May/June)

Commissioning run of 5T magnet: trapping, debugging, ...

Beam in 2012: second run (November/December)

Commissioning run of full apparatus: trapping, cooling, manipulations, positron transfers, detector tests, ...

Beam in 2012: second run (November/December)

Commissioning run of full apparatus: trapping, cooling,

manipulations, positron transfers, detector tests, ...

stacking of AD shots

further tests carried out: trapping vs. B-field, transfers, calibrations, measurements of the antiproton energy distributions before/during/after cooling, mixing of antiprotons with positrons, vacuum tests, internal diagnostics, ...

Beam in 2012: second run (November/December)

Commissioning run of full apparatus: trapping, cooling, manipulations, positron transfers, detector tests, ...

positron transfers from accumulator through transfer section and 5T magnet into IT magnet

extraction pulse from accumulator

scintillator pulse from positron annihilation in IT

antiproton annihilations in IT magnet as seen by the scintillating fiber tracker around the H formation region

Beam in 2012: both runs

Parasitic tests:

explore/validate different candidate technologies for the (downstream) antihydrogen detector by annihilating (low energy) antiprotons in the detectors

Silicon detectors (strip, pixel)

MCP

emulsions

Silicon detectors (MIMOTERA, pixel detector, strip detector)

Emulsion: annihilation in emulsion & in thin foils of different composition

Test of moiré deflectometer with antiprotons

First demonstration of the moiré deflectometer technique with antiprotons!

ongoing work: Proton source

 $\overline{p} + Ps \rightarrow \overline{H} + e^+$

protons

ongoing work: Proton source

 $p + Ps \rightarrow H + e^-$

under construction; to be installed in spring 2013

ongoing work: Positronium test station

ready for installation

<u>Outlook for 2013/2014</u>

next months:

- continue testing/commissioning apparatus with electrons, positrons
- commission laser system
- install positronium test station

spring:

- install minor improvements to diagnostics
- install Hydrogen detector
- install proton source

remainder of year:

- work toward formation and characterization of Ps, Ps*, hydrogen
- validate Ps characteristics (test station & in IT magnet)
- Ps spectroscopy (test station)
- design work on downstream interface (beyond IT magnet)
- R&D work on downstream antihydrogen detector
- R&D work on cooling of antiprotons

goal for summer 2014: be in a position to form antihydrogen beam

Installation of apparatus largely completed and commissioned with antiprotons

Beam times were extremely valuable in understanding apparatus

Parasitic measurements were very successful - essential information obtained to design optimal deflectometer+detector layout

We have had a very busy year 2012, and 2013 / 2014 will not be much easier, requiring a sustained effort with the now-existing infrastructure.

<u>request</u>: essentially uninterrupted access to cryogens (IHe), power & cooling water