ASACUSA Status

Atomic Spectroscopy And Collisions Using Slow Antiprotons

108th Meeting of the SPSC January 15, 2013

Ryugo S. Hayano, University of Tokyo Spokesperson, ASACUSA pHe & H spectroscopy →CPT, fundamental const.

100 keV ps (RFQD) 100 eV ps ("MUSASHI" trap)

<u>Atomic Spectroscopy And Collisions</u> <u>Using Slow Antiprotons</u>

ASACUSA

Aghai Khozani, H.¹, Barna, D.^{2,6}, Caradonna, P.³, Corradini, M.⁴, Dax, A.², Diermaier, M.³, Federmann, S.³, Friedreich, S.³, Hayano, RS.², Higaki, H.⁵, Hori, M.¹, Horvath, D.⁶, Kanai, Y.⁵, Knudsen, H.⁷, Kobayashi, T.², Kuroda, N.⁵, Leali, M.⁴, Lodi-Rizzini, E.⁴, Malbrunot, C.³, Mascagna, V.⁴, Massiczek, O.³, Matsuda, Y.⁵, Michishio, K.⁵, Mizutani, T.⁵, Murakami, Y.², Murtagh, D.⁵, Nagahama, H.⁵, Nagata, Y.⁵, Otsuka, M.⁵, Sauerzopf, C.³, Soter, A.¹, Suzuki, K.³, Tajima, M.⁵, Todoroki, K.², Torii, H.⁵, Uggerhoj, U.⁷, Ulmer, S.⁵, Van Gorp, S.⁵, Venturelli, L.⁴, Widmann, E.³, Wunscheck, B.³, Yamada, H.², Yamazaki, Y.⁵, Zmeskal, J.³, Zurlo, N.⁴

Max-Planck-Institut f
ür Quantenoptik (DE), 2. The University of Tokyo (JP), 3. Stefan Meyer Institute (AT),
 Universita' di Brescia, and INFN, Gruppo Collegato di Brescia, (IT),

5. RIKEN, and The University of Tokyo, Komaba (JP), 6. KFKI (HU), 7. University of Aarhus (DK)

2012 Beam Usage

		Wk	Mon		Tue Wed			Thu		F	ri	Sat		Sun		
		time	07-19	19-07								<u>19-10</u>		<u>10-01</u>	<u>01-16</u>	<u>16-07</u>
	Apr 23 - Apr 29	17				AD Setting Up						AD3	AD6	AD3	AD6	AD3
	Apr 30 - May 6	18	AD6	AD3	AD6	AD3	AD6 A	D3	AD6	AD3	AD6	<u>AD3</u>		<u>AD6</u>	<u>AD3</u>	<u>AD6</u>
		time	07-19	19-07				0	7-19 19	-23 23-07	07-15 15-	23 23-07				
3 D Complication	May 7 - May 13	19	AD3	AD6	AD3	AD6	AD3 A	D6 A	AD3 AI	D6 AD2	AD3 AD	06 AD2	AD3 A	D6 AD2	AD3 AD	06 AD2
	Mav 14 - Mav 20	20	AD6 AD	05 AD3	AD6 A	D5 AD3	AD6 AD5	AD3 A	AD6 A	D5 AD3	AD6 A	05 AD3	AD6 A	D5 AD3	AD6 AD	05 AD3
May 21 - May 2				AD6 AD6 AD6												
	,, _/	time	07-19	19-07												
	May 28 - Jun 3	22	AD3	AD6	AD3	AD6		D6	AD3	AD6	AD3	AD6	AD3	AD6	AD3	AD6
\mathbf{T}	Huy 20 Sull S	timo	07-10	10-07	07 15 11	5 22 22 07			100	ABU	ADO	ABU	100	ABU	ABS	AB0
	lun 4 - lun 10	23	VD3													
	Jun 11 - Jun 17	23														
	Jun 19 - Jun 24	24	ADU AL	JJ ADJ	ADU A	NDJ ADJ	ADO ADJ	ADJ			ADU AL	JJ ADJ	ADU A	NDJ ADJ	ADU AL	JJ ADJ
	Juli 18 - Juli 24	25						F.	AL							
	1	time	07-19	19-07	07-19	19-07	07-19 19	9-07 0	07-14 ADE	14-07	07-09 09-	-12 12-23	23-10	10-01	01-16	<u>16-07</u>
	Jun 25 - Jul 1	20	AD5	AD3	AD5	AD3	ADS A	ND3 /	405	ADS	AD5 A	AD5	AD3	<u>AD5</u>	<u>AD3</u>	<u>AD5</u>
		time	07-15 15-	19 19-07	07-15 15	5-19 19-07	07-19 19	9-07	07-19	19-07	07-19	19-07	07-19	19-07	07-19	19-07
	Jul 2 - Jul 8	27	AD3 AD	02 AD5	AD3 A	D2 AD5	AD3 A	AD5	AD3	AD5	AD3	AD5	AD3	AD5	AD3	AD5
		time	07-19	19-07	07-19	19-07	07-08 08-20	20-08	08-20)		Thu	1 20h - M	lon 09h		
	Jul 9 - Jul 15	28	AD3	AD5	AD3	AD5	AD3 AD3	AD3	AD3				AD3	3		
		time	09-13	13-09	09-13	13-09	09-13 13-	-09 0	9-13	13-09	09-13 13-	23 23-09	09-17	17-01	01-11 11-	23 23-07
	Jul 16 - Jul 22	29	AD2	AD3	AD2	AD3	AD2 AD	D3 A	AD2	AD3	AD2 AD	D5 AD3	AD5	AD3	AD5 AD	D3 AD5
		time	07-15 15-	23 23-07	07-15 15	5-23 23-07	07-15 15-23	23-07 0	7-15 15	-23 23-07	07-15 15-	23 23-07	07-17	17-01	01-11 11-	21 21-07
	Jul 23 - Jul 29	30	AD3 AD	2 AD5	AD3 A	D2 AD5	AD3 AD2	AD5 A	AD3 AI	D2 AD5	AD3 AD	D2 AD5	AD3	AD2	AD5 AD	03 AD2
	Jul 30 - Aug 5	31	AD5 AD	D3 AD2	AD5 A	D3 AD2	AD5 AD3	AD2 A	AD5 AI	D3 AD2	AD5 AD	D3 AD2	AD5	AD3	AD2 AD	05 AD3
	Aug 6 - Aug 12	32	AD2 AD	05 AD3	AD2 A	D5 AD3	AD2 AD5	AD3	AD2 AI	D5 AD3	AD2 AD	D5 AD3	AD2	AD5	AD3 AD	02 AD5
	Aug 13 - Aug 19	33	AD3 AD	2 AD5	AD3 A	D2 AD5	AD3 AD2	AD5 A	AD3 A	D2 AD5	AD3 AD	D2 AD5	AD3	AD2	AD5 AD	3 AD2
		time	07-19	19-07	07-23	23-15	15-07		07-19	19-07	07-15 15-	23 23-07	07-17	17-01	01-11 11-	21 21-07
	Διια 20 - Διια 26	34	AD3	AD5	AD3	AD5			AD5	AD3	AD5 A		AD5	AD3		15 AD3
	Aug 10 Aug 10	51	07-15 15-	23 23-07	07-15 15	5-23 23-07	07-15 15-23	23-07 0	7-15 15	-23 23-07	07-15 15	23 23-07	07-17	17-01	01-11 11-	21 21-07
	Aug 27 - Sen 2	35												405		
	Sen 3 - Sen 9	36		2 AD5	AD3 A	D2 AD5	AD3 AD2	AD5 A		D2 AD5		02 AD5	AD2	AD2	AD5 AD	03 AD2
	Son 10 - Son 16	37									1105 111		(Fr 8)	00-Mo 8	00)	5 1102
	Sep 10 - Sep 10	time		22 22 07				22 07 0		22 22 07	07 15 15	22 22 07	07.17	17.01	01 11 11	21 21 07
\mathbf{T}	Com 17 Com 22	20	07-15 15-		ADE A		07-15 15-23	23-07 0			07-15 15-		405	17-01		
	Sep 17 - Sep 23	30	ADD AD	DS ADZ	ADS A	DE ADZ		ADZ /	ADS AL	DS ADZ	ADD AL	DS ADZ	ADD	AD5	ADZ AL	DO ADO
	Sep 24 - Sep 30	39	ADZ AL	DS ADS	ADZ A	DO ADE	ADZ ALDS	ADS A		DS ADS	AD2 AL	DS ADS	AD2	AD2	ADS AL	DZ AD3
	0ct 1 - 0ct 7	40	AD3 AL	JZ ADS	AD3 A	DZ ADS	AD3 AL <mark>J</mark> Z	AD5 P	AD3 AL	DZ ADS	AD3 AL	JZ ADS	AD3	ADZ	AD5 AL	J3 ADZ
		time	07-15 15-	23 23-07	07-19	19-07	07-19 19	9-07	07-19	19-07	07-19	19-07	07-19	19-07	07-19	19-07
	Oct 8 - Oct 14	41	AD5 AL	J3 ADZ	AD3	ADZ	AD3 A	ADZ	AD3	ADZ	AD3	ADZ	AD3	ADZ	AD3	AD2
		time	07-19	19-07	07-15 15	5-23 23-07	07-15 15-23	23-07 0	7-15 15	-23 23-07	07-15 15	23 23-07	07-17	17-01	01-11 11-	21 21-07
	Oct 15 - Oct 21	42	AD3	AD2	AD5 A	D3 AD2	AD5 AD3	AD2 /	AD5 AD	D3 AD2	AD5 AD	D3 AD2	AD5	AD3	AD2 AD	05 AD3
		time	07-15 15-	23 23-07	07-15 15	5-23 23-07	07-15 15-23	23-07 0	7-15 15	-23 23-07	07-15 15-	23 23-07	07-17	17-01	01-11 11-	21 21-07
	Oct 22 - Oct 28	43	AD2 AD	D5 AD3	AD2 A	D5 AD3	AD2 AD5	AD3 A	AD2 AI	D5 AD3	AD2 AD	D5 AD3	AD2	AD5	AD3 AD	D2 AD5
	Oct 29 - Nov 4	44	AD3 AD	02 AD5	AD3 A	D2 AD5	ad3 ad <mark>2</mark>	AD5 A	AD3 AI	D2 AD5	AD3 A	D2 AD5	AD3	AD2	AD5 AD	03 AD2
		time	07-15 15-	23 23-07	07-15 15	5-23 23-07	07-15 15-23	23-07 0	7-15 15	-23 23-07	07-15 15-	23 23-07	07-15 15	5-23 23-07	07-15 15-	23 23-07
	Nov 5 - Nov 11	45	AD5 AD	D3 AD2	AD5 A	D3 AD2	AD5 AD3	AD2 /	AD5 AD	D3 AD2	AD5 AD	D3 AD2	AD5 A	D3 AD2	AD5 AD	03 AD2
	Nov 12 - Nov 18	46	AD5 AD	03 AD6	AD5 A	D3 AD6	AD5 AD <mark>3</mark>	AD6	AD5 A	D3 AD6	AD5 AD	D3 AD6	AD5 A	D3 AD6	AD5 AD	AD6
	Nov 19 - Nov 25	47	AD2 AD	05 AD3	AD2 A	D5 AD3	AD2 AD5	AD3 A	AD2 A	D5 AD3	AD2 A	D5 AD3	AD2 A	D5 AD3	AD2 AD	05 AD3
	Nov 26 - Dec 2	48	AD6 AD	2 AD5	AD <u>6 A</u>	D2 AD5	AD6 AD2	AD5 A	AD6 A	D2 AD5	AD6 AD	D2 AD5	AD6 A	D2 AD5	AD6 AD	02 AD5
	Dec 3 - Dec 9	49	AD3 AD	06 AD2	AD3 A	D6 AD2	AD3 AD6	AD2	AD3 AI	D6 AD2	AD3 AI	D6 AD2	AD3 A	D6 AD2	AD3 AD	06 AD2
	Dec 10 - Dec 16	50	AD5 AD	03 AD6	AD5 A	D3 AD6	AD5 AD3	AD6	AD5 AI	D3 AD6	AD5 A	D3 AD6	AD5 A	D3 AD6	AD5 AD	03 AD6
	Dec 17 - Dec 23	51	AD Phys	ics Ston	Dec 17	7, 8:00										
				P												
ASACUSA												J	lan 1	5, 2013	8, R.S.	Haya

1. pHe laser spectroscopy

CODATA recommended values of the fundamental physical constants: 2010^{*}

Peter J. Mohr,[†] Barry N. Taylor,[‡] and David B. Newell[§]

National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA

(published 13 November 2012)

This paper gives the 2010 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. The 2010 adjustment takes into account the data considered in the 2006 adjustment as well as the data that became available from 1 January 2007, after the closing date of that adjustment, until 31 December 2010, the closing date of the new adjustment. Further, it describes in detail the adjustment of the values of the constants, including the selection of the final set of input data based on the results of least-squares analyses. The 2010 set replaces the previously recommended 2006 CODATA set and may also be found on the World Wide Web at physics.nist.gov/constants.

DOI: 10.1103/RevModPhys.84.1527

PACS numbers: 06.20.Jr, 12.20.-m

IV. ATOMIC TRANSITION FREQUENCIES

Measurements and theory of transition frequencies in hydrogen, deuterium, antiprotonic helium, and muonic hydrogen provide information on the Rydberg constant, the proton and deuteron charge radii, and the relative atomic mass of the electron.

This \downarrow contributed to CODATA

M. Hori et al., Nature 475, 484 (2011).

CERN experiment weighs antimatter with unprecedented ^{PR10.11} accuracy

Geneva, 28 July 2011. In a paper published today in the journal Nature, the Japanese-European ASACUSA experiment at CERN¹ reported a new measurement of the antiproton's mass accurate to about one part in a billion. Precision measurements of the antiproton mass provide an important way to investigate nature's apparent preference for matter over antimatter.

"This is a very satisfying result," said Masaki Hori, a project leader in the ASACUSA collaboration. "It means that our measurement of the antiproton's mass relative to the electron is now almost as accurate as that of the proton."

Ordinary protons constitute about half of the world around us, ourselves included. With so many protons around it would be natural

The ASACUSA experiment. More photos: $\frac{1}{2}$.

to assume that the proton mass should be measurable to greater accuracy than that of antiprotons. After today's result, this remains true but only just. In future experiments, ASACUSA expects to improve the accuracy of the antiproton mass measurement to far better than that for the proton. Any difference between the mass of protons and antiprotons would be a signal for new physics, indicating that the laws of nature could be different for matter and antimatter.

To make these measurements antiprotons are first trapped inside helium atoms, where they can be 'tickled' with a laser beam. The laser frequency is then tuned until it causes the antiprotons to make a quantum jump within the atoms, and from this frequency the antiproton mass can be calculated. However, an important

Vtheory VS Vexperiment

1-photon spectroscopy of "cold" pHe in 2011-2012

T~15K→T=1.5K

"cold" p

(1) less Doppler
(2) improve S/N
(3) less collisional broadening

Improvements

- (1) laser
- (2) p beam (electrostatic quad)
- (3) detector (Cherenkov)
- (4) collisional shift corrections
- (5) AC stark shift corrections

measurements at different target densities, and with various laser powers (time consuming)

electrostatic quadrupole triplet lenses

b):

between the RFQD and the "cold" helium target reduce \bar{p} beam halo, improve focus part of an R&D for ELENA

Đ

2-photon spectroscopy of "cold" pHe in 2012

2. "CUSP" experiment for H Spectroscopy

H production demonstrated in 2010
 H beam development started in 2011
 H production rate optimization
 & full setup development in 2012

PRL 105, 243401 (2010)

PHYSICAL REVIEW LETTERS

week ending 10 DECEMBER 2010

Synthesis of Cold Antihydrogen in a Cusp Trap

Y. Enomoto,¹ N. Kuroda,² K. Michishio,³ C. H. Kim,² H. Higaki,⁴ Y. Nagata,¹ Y. Kanai,¹ H. A. Torii,² M. Corradini,⁵ M. Leali,⁵ E. Lodi-Rizzini,⁵ V. Mascagna,⁵ L. Venturelli,⁵ N. Zurlo,⁵ K. Fujii,² M. Ohtsuka,² K. Tanaka,² H. Imao,⁶ Y. Nagashima,³ Y. Matsuda,² B. Juhász,⁷ A. Mohri,¹ and Y. Yamazaki^{1,2}

Method

- (anti)atomic beam
- measure σ₁ at several B's, extrapolate to B = 0
- achievable precision ≤10⁻⁶
 for T ≤ 100 K
- ► > 100 \overline{H} /s in 1S state needed

Method

- (anti)atomic beam
- measure σ_1 at several B's, extrapolate to B = 0
- achievable precision $\leq 10^{-6}$ for T \leq 100 K

Simulated T=5K, B=1G

胃

Positron trap (x 20 improvement)

Full setup (ready to be deployed in 2014)

Sextupole

Cavity

Sextupole

 $B_{max} = 3.5T$

CPT detector: hodoscope + segmented scintillator array

superconduting magnet B_{max}=3.5T, I_{max}= 400A effective length: 22 cm

H detector

Sextupole $B_{max} = 3.5T$ **CPT** detector: hodoscope + segmented scintillator array A cosmic event 30000 25000 Deposited charge 20000 15000 10000 5000 0

hodoscope read-out by SiPM

3. Collision experiments

Nuclear collisions with antiprotons

 π

A-1 (a)

ь

At 5.3 MeV Medium-heavy and heavy nuclear targets

Results consistent with theoretical expectations

(Bianconi et al. Phys. Lett.B 2011)

antiproton reaction/annihilation cross sections on nuclei

Jan 15, 2013, R.S. Hayano

PE

2012: Annihilations cross-sections @ 130 keV

ASACUSA

2012: Annihilations cross-sections @ 130 keV

問

ASACUSA

Summary

ASACUSA

Ē

Funding

- ERC Advanced Grant to Eberhard Widmann, Vienna
- JSPS Grant-in-Aid for Specially Promoted Research to Yasunori Yamazaki, Japan,
- University of Tokyo funding for ELENA to Ryugo Hayano, Tokyo.
- All last for five years.

ĒĒ