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2012 Beam Usage

2. CUSP (H̅)

1. p̅He

3. p̅ σannhilation
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1. p̅He laser spectroscopy
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ArðHþ#
2 Þ ¼ 2ArðpÞ þ ArðeÞ & EBðHþ#

2 Þ=muc
2; (7)

where

EBðHþ#
2 Þ ¼ 2EIðHÞ þ EBðH2Þ & EIðH2Þ & Eav (8)

is the binding energy of the Hþ#
2 excited molecule. Here

EIðHÞ is the ionization energy of hydrogen, EBðH2Þ is the
disassociation energy of the H2 molecule, EIðH2Þ is the single
electron ionization energy of H2, and Eav is the average
vibrational excitation energy of an Hþ

2 molecule as a result
of the ionization of H2 by 3.4 keV electron impact.

The observational equation for the frequency ratio is thus

fcðHþ#
2 Þ

fcðdÞ
¼ ArðdÞ

2ArðpÞ þ ArðeÞ & EBðHþ#
2 Þ=muc

2 : (9)

We treat Eav as an adjusted constant in addition to ArðeÞ,
ArðpÞ, and ArðdÞ in order to take its uncertainty into account in
a consistent way, especially since it enters into the observa-
tional equations for the frequency ratios to be discussed
below.

The required ionization and binding energies as well as Eav

that we use are as given by Solders et al. (2008) and except
for Eav, have negligible uncertainties:

EIðHÞ ¼ 13:5984 eV ¼ 14:5985' 10&9muc
2; (10)

EBðH2Þ ¼ 4:4781 eV ¼ 4:8074' 10&9muc
2; (11)

EIðH2Þ ¼ 15:4258 eV ¼ 16:5602' 10&9muc
2; (12)

Eav ¼ 0:740ð74Þ eV ¼ 0:794ð79Þ ' 10&9muc
2: (13)

We now consider the SMILETRAP results of Nagy et al.
(2006) for the ratio of the cyclotron frequency of the triton t
and of the 3Heþ ion to that of the H2

þ# molecular ion. They
report for the triton

fcðtÞ
fcðHþ#

2 Þ¼0:66824772686ð55Þ ½8:2'10&10) (14)

and for the 3Heþ ion

fcð3HeþÞ
fcðHþ#

2 Þ ¼0:66825214682ð55Þ ½8:2'10&10): (15)

The relative uncertainty of the triton ratio consists of the
following uncertainty components in parts in 109: 0:22 sta-
tistical, and 0.1, 0.1, 0.77, and 0.1 due to relativistic mass
shift, ion number dependence, q=A asymmetry, and contami-
nant ions, respectively. The components for the 3Heþ ion
ratio are the same except the statistical uncertainty is 0.24. All
of these components are independent except the 0:77' 10&9

component due to q=A asymmetry; it leads to a correlation
coefficient between the two frequency ratios of 0.876.

Observational equations for these frequency ratios are

fcðtÞ
fcðHþ#

2 Þ ¼
2ArðpÞ þ ArðeÞ & EBðHþ#

2 Þ=muc
2

ArðtÞ
(16)

and

fcð3HeþÞ
fcðHþ#

2 Þ ¼ 2ArðpÞ þ ArðeÞ & EBðHþ#
2 Þ=muc

2

ArðhÞ þ ArðeÞ & EIð3HeþÞ=muc
2 ; (17)

where

Arð3HeþÞ ¼ ArðhÞ þ ArðeÞ & EIð3HeþÞ=muc
2 (18)

and

EIð3HeþÞ ¼ 51:4153 eV ¼ 58:4173' 10&9muc
2 (19)

is the ionization energy of the 3Heþ ion, based on Table IVof
CODATA-02.

The energy Eav and the three frequency ratios given in
Eqs. (2), (14), and (15), are items B3 to B6 in Table XX.

D. Cyclotron resonance measurement of the electron relative
atomic mass

As in the 2002 and 2006 CODATA adjustments, we
take as an input datum the Penning-trap result for the
electron relative atomic mass ArðeÞ obtained by the
University of Washington group (Farnham, Van Dyck, Jr.,
and Schwinberg, 1995):

ArðeÞ¼0:000 548 579 9111ð12Þ ½2:1'10&9): (20)

This is item B11 of Table XX.

IV. ATOMIC TRANSITION FREQUENCIES

Measurements and theory of transition frequencies in hy-
drogen, deuterium, antiprotonic helium, and muonic hydro-
gen provide information on the Rydberg constant, the proton
and deuteron charge radii, and the relative atomic mass of the
electron. These topics as well as hyperfine and fine-structure
splittings are considered in this section.

A. Hydrogen and deuterium transition frequencies, the Rydberg
constant R1, and the proton and deuteron charge radii rp, rd

Transition frequencies between states a and b in hydrogen
and deuterium are given by

!ab ¼
Eb & Ea

h
; (21)

where Ea and Eb are the energy levels of the states. The
energy levels divided by h are given by

Ea

h
¼ &"2mec

2

2n2ah
ð1þ #aÞ ¼ &R1c

n2a
ð1þ #aÞ; (22)

where R1c is the Rydberg constant in frequency units, na is
the principle quantum number of state a, and #a is a small
correction factor (j#aj * 1) that contains the details of the
theory of the energy level, including the effect of the finite
size of the nucleus as a function of the rms charge radius rp
for hydrogen or rd for deuterium. In the following summary,
corrections are given in terms of the contribution to the
energy level, but in the numerical evaluation for the least-
squares adjustment, R1 is factored out of the expressions and
is an adjusted constant.

Peter J. Mohr, Barry N. Taylor, and David B. Newell: CODATA recommended values of the fundamental . . . 1533
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The ASACUSA experiment. 
More photos: 1 - 2.

CERN experiment weighs antimatter with unprecedented
accuracy
Geneva, 28 July 2011. In a paper published today in the journal
Nature, the Japanese-European ASACUSA experiment at CERN1

reported a new measurement of the antiproton’s mass accurate to
about one part in a billion. Precision measurements of the antiproton
mass provide an important way to investigate nature’s apparent
preference for matter over antimatter.

“This is a very satisfying result,” said Masaki Hori, a project leader in
the ASACUSA collaboration. “It means that our measurement of the
antiproton’s mass relative to the electron is now almost as accurate
as that of the proton.”

Ordinary protons constitute about half of the world around us,
ourselves included. With so many protons around it would be natural
to assume that the proton mass should be measurable to greater accuracy than that of antiprotons. After
today’s result, this remains true but only just. In future experiments, ASACUSA expects to improve the
accuracy of the antiproton mass measurement to far better than that for the proton. Any difference between
the mass of protons and antiprotons would be a signal for new physics, indicating that the laws of nature
could be different for matter and antimatter.

To make these measurements antiprotons are first trapped inside helium atoms, where they can be ‘tickled’
with a laser beam. The laser frequency is then tuned until it causes the antiprotons to make a quantum jump
within the atoms, and from this frequency the antiproton mass can be calculated.  However, an important
source of imprecision comes from the fact that the atoms jiggle around, so that those moving towards and
away from the beam experience slightly different frequencies.  A similar effect is what causes the siren of an
approaching ambulance to apparently change pitch as it passes you in the street. In their previous
measurement in 2006, the ASACUSA team used just one laser beam, and the achievable accuracy was
dominated by this effect. This time they used two beams moving in opposite directions, with the result that
the jiggle for the two beams partly cancelled out, resulting in a four times better accuracy.

“Imagine measuring the weight of the Eiffel tower” said Hori. “The accuracy we’ve achieved here is roughly
equivalent to making that measurement to within less than the weight of a sparrow perched on top. Next
time it will be a feather.”

 

Further information

Video: ASACUSA Experiment - Antiprotons weighed with unprecedented precision
Video: CERN News ASACUSA Experiment

Contact

CERN Press Office, press.office@cern.ch
+41 22 767 34 32
+41 22 767 21 41

Follow CERN at:

M. Hori et al., Nature 475, 484 (2011).
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p̅He sub-Doppler 2-photon spectroscopy
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M. Hori et al., Nature 475, 484 (2011).
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νtheory vs νexperiment

(36, 34) →  (34, 32)

–4 –2

p3He+

p4He+

0
( th – exp)/ exp (p.p.b.)

2 4

(33, 32) →  (31, 30)

(35, 33) →  (33, 31)

 (parts per billion)
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mp (mp̅) / me

}

p̅  ASACUSA 2006

} CODATA 2006
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mp (mp̅) / me

} } CODATA 2010
1836.15267245(75)

1836.1526736(23)
Nature  475, 484



1-photon spectroscopy of “cold” p̅He
in 2011-2012

↓ this was the problem in 2006

4He+p (40,35)⇒(39,34)
(39,35)⇒(38,34)
(37,35)⇒(38,34)
(37,34)⇒(36,33)
(36,34)⇒(35,33)
(35,33)⇒(34,32)
(32,31)⇒(31,30)

( ν     − ν       ) / ν        (ppb)th exp exp
-50 0 50

3He+p
(38,34)⇒(37,33)
(36,34)⇒(37,33)
(36,33)⇒(35,32)
(34,32)⇒(33,31)
(32,31)⇒(31,30)

( ν     − ν       ) / ν        (ppb)th exp exp
-50 0 50

10-30 ppb differences

M. Hori et al., Phys. Rev. Lett. 96, 243401 (2006).
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‣ “cold” p̅He :
(1) less Doppler
(2) improve S/N
(3) less collisional broadening

‣ Improvements
(1) laser
(2) p̅ beam (electrostatic quad)
(3) detector (Cherenkov)
(4) collisional shift corrections
(5) AC stark shift corrections

Thermal baffle 6 K

1.5 K heat exchanger
(coil type)

Thermal baffle 77 K

To 2000 m3 

roots blower

0.5 Torr 3He or 4He inlet line

1.5 K needle valve

4 K needle valve

To flow controller
for 4.2 K cooling

cool p̅He+ to T = 1.5 K

measurements at different 
target densities, and with 
various laser powers
(time consuming)

T~15K→T=1.5K
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electrostatic quadrupole triplet lenses

700 mm
a):

b):

between the RFQD and the “cold” helium target
reduce p̅ beam halo, improve focus
part of an R&D for ELENA
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12 transitions were measured

4
He

+p‒

n=31

32

33

34

35

3636
37
38
39
40

264.7

296.1

372.6

726.1

470.7

597.3

672.8

l=30 31 32 33 34 35

metastable states

3
He

+p‒

short-lived states

n=31

32

33

34

35
3636
37
38

287.4

525.5

364.4

723.9

463.9

593.4

in three dye cells pumped by a pulsed Nd:YAG laser
(Coherent Infinity, C) of ! ! 532 nm, energy E !
200 mJ, and length 3 ns. To decrease the Fourier-limited
linewidth of the pulsed dye laser, the pump beam was split
into seven beams, to which incremental delays were added.
These were then merged to produce the stretched (20-ns-
long) pulse that irradiated each cell. The cells emitted laser
pulses with !" 60 MHz and E ! 5–20 mJ. The wave-
lengths ! ! 264:7–470:7 nm were obtained by
(i) frequency doubling the outputs at 574.8 nm and
728.8–941.4 nm in, respectively, beta-barium borate
(BBO) and lithium triborate (LBO) crystals, or
(ii) frequency tripling the 794.1-nm light using both
crystals.

The comb (Menlo Systems FC-8004) [2,3] constituted a
mode-locked Ti:sapphire laser (Femtolasers Femtosource
Scientific) pumped by a cw Nd:YVO4 laser (A in Fig. 1),
which produced 15-fs-long laser pulses of repetition rate
frep ! 200 MHz and average power P ! 0:7 W. The
spectral width ! ! 750–850 nm of these pulses was first
broadened to 500–1100 nm by propagating it through a
microstructure fiber. This beam was then used to stabilize
(i) the frequency offset foff ! 20 MHz common to all the
modes of the comb [2,3] and (ii) the cw seed laser to
frequency "cw ! ncfrep # foff # fdif which was fdif !
20 MHz above the ncth mode of the comb. The value nc !
1 592 190–2 607 811 was measured using a Fizeau wave-
length meter. All frequencies frep, foff , and fdif were
synchronized to a quartz oscillator, which was stabilized
to a timing signal provided by global positioning satellites.
The seed (and consequently the pulsed dye) laser was
scanned over a region $4 GHz around the "pHe# lines
by changing the above repetition rate from frep !
200:000 to 200.004 MHz. Doppler-free spectroscopy of
Rb and I2 in the seed beam indicated that its frequency
precision was <4% 10&10. A thermally stabilized, sealed
housing permitted 24-h operation during these months-
long experiments, and motorized stages optimized the
coupling of the beam into the fiber during the 100-s inter-
vals between antiproton pulses.

The frequency "pl of the dye laser pulse can deviate from
the seed value "cw due to sudden changes in the refractive

index of the dye during the amplification [6,9]. This so-
called chirp effect of magnitude #"c't( ! "pl't( & "cw can
shift the measured "pHe# frequencies "exp from their true
values, so it had to be corrected. The time evolution of
#"c't( was measured by (i) diverting part of the seed laser
and shifting its frequency by 400 MHz using an acousto-
optic modulator (AOM), (ii) superimposing this beam of
frequency "cw # 400 MHz and the dye laser pulse on a
photodiode, and recording their heterodyne beat signal
[Fig. 2(b)] with a digital oscilloscope of bandwidth f !
1:5 GHz and sampling rate 8 GHz, and (iii) using Fourier
analysis [6,8] to isolate any frequency deviation of this
signal from 400 MHz caused by a chirp of value #"c't(. In
Fig. 2(c), the chirp in a 597.3-nm laser pulse which
changed from #"c't( ! 50 to &70 MHz over its 20-ns
duration is shown by the solid line. We minimized
#"c't( (dashed line) using an electro-optic modulator
(EOM) to apply a frequency shift of opposite sign to the
seed laser, which canceled the chirp induced in the dye
cells [6,9,10]. Theoretical calculations [11] show that any
further shift in "exp caused by chirps induced in the BBO or
LBO crystals is <1–2 MHz.

The profile of the 'n; ‘( ! '36; 34( ! '37; 33( resonance
in "p3He# (i.e., the area under the DATS peak plotted
against the "pl value) is shown in Fig. 3(a). It contains
(i) eight intense lines (indicated by arrows) corresponding
to E1 transitions involving no spin-flip between the eight
hyperfine substates [12] of states '36; 34( and '37; 33(, and
(ii) 12 weak lines wherein one of the constituent particles
flips its spin. Only the two peaks separated by 1.8 GHz that
arise from the interaction between the orbital angular
momentum of the antiproton and electron spin could be
resolved, however, due to the 400-MHz Doppler broad-
ening caused by the motion of the "p3He# thermalized to
T ! 10 K. The spin-averaged transition frequency "exp

was determined by fitting this profile with the theoretical
line shape (solid line) obtained from the optical Bloch
equations which describe the evolution of the "pHe# state
populations during laser irradiation. The small remaining
chirp introduced a time dependence to "pl't( when per-
forming the Bloch equation integration. In this we took
transitions between all hyperfine and magnetic substates
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FIG. 3. Frequency profiles of the transition
(a) '36; 34( ! '37; 33( in "p3He#, and (b) '37; 35( ! '38; 34(
and (c) '36; 34( ! '35; 33( in "p4He# (see text).
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FIG. 2. (a) DATS of "p4He# with laser-induced transition
'n; ‘( ! '39; 35( ! '38; 34(. (b) Heterodyne beat signal of the
pulsed dye laser. (c) Time evolution of frequency chirp with
(dashed line) and without (solid line) chirp compensation.
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in three dye cells pumped by a pulsed Nd:YAG laser
(Coherent Infinity, C) of ! ! 532 nm, energy E !
200 mJ, and length 3 ns. To decrease the Fourier-limited
linewidth of the pulsed dye laser, the pump beam was split
into seven beams, to which incremental delays were added.
These were then merged to produce the stretched (20-ns-
long) pulse that irradiated each cell. The cells emitted laser
pulses with !" 60 MHz and E ! 5–20 mJ. The wave-
lengths ! ! 264:7–470:7 nm were obtained by
(i) frequency doubling the outputs at 574.8 nm and
728.8–941.4 nm in, respectively, beta-barium borate
(BBO) and lithium triborate (LBO) crystals, or
(ii) frequency tripling the 794.1-nm light using both
crystals.

The comb (Menlo Systems FC-8004) [2,3] constituted a
mode-locked Ti:sapphire laser (Femtolasers Femtosource
Scientific) pumped by a cw Nd:YVO4 laser (A in Fig. 1),
which produced 15-fs-long laser pulses of repetition rate
frep ! 200 MHz and average power P ! 0:7 W. The
spectral width ! ! 750–850 nm of these pulses was first
broadened to 500–1100 nm by propagating it through a
microstructure fiber. This beam was then used to stabilize
(i) the frequency offset foff ! 20 MHz common to all the
modes of the comb [2,3] and (ii) the cw seed laser to
frequency "cw ! ncfrep # foff # fdif which was fdif !
20 MHz above the ncth mode of the comb. The value nc !
1 592 190–2 607 811 was measured using a Fizeau wave-
length meter. All frequencies frep, foff , and fdif were
synchronized to a quartz oscillator, which was stabilized
to a timing signal provided by global positioning satellites.
The seed (and consequently the pulsed dye) laser was
scanned over a region $4 GHz around the "pHe# lines
by changing the above repetition rate from frep !
200:000 to 200.004 MHz. Doppler-free spectroscopy of
Rb and I2 in the seed beam indicated that its frequency
precision was <4% 10&10. A thermally stabilized, sealed
housing permitted 24-h operation during these months-
long experiments, and motorized stages optimized the
coupling of the beam into the fiber during the 100-s inter-
vals between antiproton pulses.

The frequency "pl of the dye laser pulse can deviate from
the seed value "cw due to sudden changes in the refractive

index of the dye during the amplification [6,9]. This so-
called chirp effect of magnitude #"c't( ! "pl't( & "cw can
shift the measured "pHe# frequencies "exp from their true
values, so it had to be corrected. The time evolution of
#"c't( was measured by (i) diverting part of the seed laser
and shifting its frequency by 400 MHz using an acousto-
optic modulator (AOM), (ii) superimposing this beam of
frequency "cw # 400 MHz and the dye laser pulse on a
photodiode, and recording their heterodyne beat signal
[Fig. 2(b)] with a digital oscilloscope of bandwidth f !
1:5 GHz and sampling rate 8 GHz, and (iii) using Fourier
analysis [6,8] to isolate any frequency deviation of this
signal from 400 MHz caused by a chirp of value #"c't(. In
Fig. 2(c), the chirp in a 597.3-nm laser pulse which
changed from #"c't( ! 50 to &70 MHz over its 20-ns
duration is shown by the solid line. We minimized
#"c't( (dashed line) using an electro-optic modulator
(EOM) to apply a frequency shift of opposite sign to the
seed laser, which canceled the chirp induced in the dye
cells [6,9,10]. Theoretical calculations [11] show that any
further shift in "exp caused by chirps induced in the BBO or
LBO crystals is <1–2 MHz.

The profile of the 'n; ‘( ! '36; 34( ! '37; 33( resonance
in "p3He# (i.e., the area under the DATS peak plotted
against the "pl value) is shown in Fig. 3(a). It contains
(i) eight intense lines (indicated by arrows) corresponding
to E1 transitions involving no spin-flip between the eight
hyperfine substates [12] of states '36; 34( and '37; 33(, and
(ii) 12 weak lines wherein one of the constituent particles
flips its spin. Only the two peaks separated by 1.8 GHz that
arise from the interaction between the orbital angular
momentum of the antiproton and electron spin could be
resolved, however, due to the 400-MHz Doppler broad-
ening caused by the motion of the "p3He# thermalized to
T ! 10 K. The spin-averaged transition frequency "exp

was determined by fitting this profile with the theoretical
line shape (solid line) obtained from the optical Bloch
equations which describe the evolution of the "pHe# state
populations during laser irradiation. The small remaining
chirp introduced a time dependence to "pl't( when per-
forming the Bloch equation integration. In this we took
transitions between all hyperfine and magnetic substates
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(a) '36; 34( ! '37; 33( in "p3He#, and (b) '37; 35( ! '38; 34(
and (c) '36; 34( ! '35; 33( in "p4He# (see text).
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Accessible 1-photon transitions (spectra from 2006)
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example  (36,34)→(37,33) in p3̅He+ (wavelength ~ 723 nm)

First RFQD (2003)  Comb (2006)
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2-photon spectroscopy of “cold” p̅He
in 2012
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“warm” vs “cold” 2-photon
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2. “CUSP” experiment for 
H̅  Spectroscopy

Synthesis of Cold Antihydrogen in a Cusp Trap
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We report here the first successful synthesis of cold antihydrogen atoms employing a cusp trap, which

consists of a superconducting anti-Helmholtz coil and a stack of multiple ring electrodes. This success

opens a new path to make a stringent test of the CPT symmetry via high precision microwave

spectroscopy of ground-state hyperfine transitions of antihydrogen atoms.

DOI: 10.1103/PhysRevLett.105.243401 PACS numbers: 36.10.!k, 11.30.Er, 32.80.Ee, 52.27.Jt

Synthesis of antihydrogen ( !H) atoms has been inten-
sively studied in the last decades [1,2]. The primary phys-
ics goal is to make stringent tests of the CPT symmetry
either via high precision laser spectroscopy of 1S–2S
transition [3,4] or via high precision microwave spectros-
copy of ground-state hyperfine transitions [5,6]. Recently,
studies on the gravitational interaction of antimatter ( !H)
and matter (the Earth), the so-called weak-equivalence
principle, are proposed [7] or under preparation [8]. The
cold antimatter research celebrated an important milestone
in 2002, when successful syntheses of cold !H atoms in a
uniform magnetic field were demonstrated by two research
groups [9,10]. Both groups aim for 1S–2S high precision
laser spectroscopy, and accordingly the next critical step
is to prepare ultracold !H atoms (& 1 K) in the low-field-
seeking states and to trap them in the Ioffe-Pritchard trap or
a variant of it having minimum B field configurations
[11,12].

The present Letter reports successful synthesis of
!H atoms with a cusp trap scheme, which opens for the first
time a path to realize high precision microwave spectros-
copy of ground-state hyperfine transitions. In this case, the
trapping of !H atoms is not essential but an efficient ex-
traction of a spin-polarized !H beam is the key of the
experiment [6]. Figure 1 is a conceptual drawing of
an experimental setup for the microwave spectroscopy of
!H atoms, which consists of a cusp trap [the combination
of a superconducting anti-Helmholtz coil and a stack of
multiple ring electrodes (MRE)], a microwave cavity, a
sextupole magnet, and a !H detector. The cusp trap provides
the minimum B field configuration still maintaining axially
symmetric magnetic and electric fields. Because of this

axial symmetry, the cusp trap realizes stable handlings of
both antiprotons and positrons such as trapping, cooling,
compression, and mixing [13,14]. It is expected that
!H atoms in the low-field-seeking (LFS) states are prefer-
entially focused along the cusp trap axis whereas those in
the high-field-seeking (HFS) states are strongly defocused,
resulting in the formation of an intensity enhanced highly
spin-polarized !H beam [6]. Our preliminary simulation
revealed that the polarization of 50 K !H beam amounts to
about 30% when they are synthesized near the maximum
magnetic field in the cusp trap [15]. The microwave cavity
induces hyperfine transitions from LFS to HFS states when
the microwave frequency is in resonance. The sextupole
magnet sorts out !H atoms in HFS states from those in LFS
states. Another advantage of the cusp trap scheme is the
fact that the microwave cavity can be installed in a weak
uniform magnetic field away from the !H formation trap,
which enables high precision spectroscopy of !H atoms.

FIG. 1 (color online). A conceptual experimental setup for the
ground-state hyperfine transition measurements of !H atoms with
the cusp trap (see the text for more details).
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Gruppo Collegato di Brescia, 25133 Brescia, Italy

6RIKEN Nishina Center for Accelerator Based Science, Hirosawa, Wako, Saitama 351-0198, Japan
7Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Wien, Austria

(Received 13 October 2010; published 7 December 2010)

We report here the first successful synthesis of cold antihydrogen atoms employing a cusp trap, which

consists of a superconducting anti-Helmholtz coil and a stack of multiple ring electrodes. This success

opens a new path to make a stringent test of the CPT symmetry via high precision microwave

spectroscopy of ground-state hyperfine transitions of antihydrogen atoms.

DOI: 10.1103/PhysRevLett.105.243401 PACS numbers: 36.10.!k, 11.30.Er, 32.80.Ee, 52.27.Jt

Synthesis of antihydrogen ( !H) atoms has been inten-
sively studied in the last decades [1,2]. The primary phys-
ics goal is to make stringent tests of the CPT symmetry
either via high precision laser spectroscopy of 1S–2S
transition [3,4] or via high precision microwave spectros-
copy of ground-state hyperfine transitions [5,6]. Recently,
studies on the gravitational interaction of antimatter ( !H)
and matter (the Earth), the so-called weak-equivalence
principle, are proposed [7] or under preparation [8]. The
cold antimatter research celebrated an important milestone
in 2002, when successful syntheses of cold !H atoms in a
uniform magnetic field were demonstrated by two research
groups [9,10]. Both groups aim for 1S–2S high precision
laser spectroscopy, and accordingly the next critical step
is to prepare ultracold !H atoms (& 1 K) in the low-field-
seeking states and to trap them in the Ioffe-Pritchard trap or
a variant of it having minimum B field configurations
[11,12].

The present Letter reports successful synthesis of
!H atoms with a cusp trap scheme, which opens for the first
time a path to realize high precision microwave spectros-
copy of ground-state hyperfine transitions. In this case, the
trapping of !H atoms is not essential but an efficient ex-
traction of a spin-polarized !H beam is the key of the
experiment [6]. Figure 1 is a conceptual drawing of
an experimental setup for the microwave spectroscopy of
!H atoms, which consists of a cusp trap [the combination
of a superconducting anti-Helmholtz coil and a stack of
multiple ring electrodes (MRE)], a microwave cavity, a
sextupole magnet, and a !H detector. The cusp trap provides
the minimum B field configuration still maintaining axially
symmetric magnetic and electric fields. Because of this

axial symmetry, the cusp trap realizes stable handlings of
both antiprotons and positrons such as trapping, cooling,
compression, and mixing [13,14]. It is expected that
!H atoms in the low-field-seeking (LFS) states are prefer-
entially focused along the cusp trap axis whereas those in
the high-field-seeking (HFS) states are strongly defocused,
resulting in the formation of an intensity enhanced highly
spin-polarized !H beam [6]. Our preliminary simulation
revealed that the polarization of 50 K !H beam amounts to
about 30% when they are synthesized near the maximum
magnetic field in the cusp trap [15]. The microwave cavity
induces hyperfine transitions from LFS to HFS states when
the microwave frequency is in resonance. The sextupole
magnet sorts out !H atoms in HFS states from those in LFS
states. Another advantage of the cusp trap scheme is the
fact that the microwave cavity can be installed in a weak
uniform magnetic field away from the !H formation trap,
which enables high precision spectroscopy of !H atoms.

FIG. 1 (color online). A conceptual experimental setup for the
ground-state hyperfine transition measurements of !H atoms with
the cusp trap (see the text for more details).
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Method
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‣ > 100 H̅/s in 1S state needed
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Method

Simulated T=5K, B=1G

σ1

↓

π1

↓

‣ (anti)atomic beam

‣ measure σ1 at several B’s,
extrapolate to B = 0

‣ achievable precision ≲10–6 
for T ≤ 100 K
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H̅ setup in 2012
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Autoresonance scheme developed
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22 Na
Gas CellMRE Trap

RGS
Moderator

Superconducting
Magnet

Low Magnetic Field
Beam Transfer Line

CUSP Trap
Transfer Line

Magnetic Field
Coil

Key

Gate Valve

Positron trap (x 20 improvement)

‣ Solid-neon moderator & 
longer N2 gas cell

‣ ~3 × 107 e+ in the CUSP in 
~30 transfer cycles(15 s each)

‣ x 20 better than in 2011
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microwave
cavity sextupole antihydrogen

detector

efficiency ~10−4

Full setup (ready to be deployed in 2014)

4m 

CUSP trap Cavity
Sextupole

CPT detector:

Bmax =3.5T

hodoscope
+ segmented scintillator array
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4m 

CUSP trap Cavity
Sextupole

CPT detector:

Bmax =3.5T

hodoscope
+ segmented scintillator array

Cavity

homogeneity : 10-2
relative precision : 10-4

‣ 1.4 GHz cavity surrounded by 
Helmholtz coils

‣ 3 layers of mu-metal 
‣ Highly sensitive flux gate sensors 

monitor field inside the cavity
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4m 

CUSP trap Cavity
Sextupole

CPT detector:

Bmax =3.5T

hodoscope
+ segmented scintillator array

Sextupole

superconduting magnet 
Bmax=3.5T, Imax= 400A 
effective length: 22 cm
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Sextuple acceptance vs H̅ temperature
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4m 

CUSP trap Cavity
Sextupole

CPT detector:

Bmax =3.5T
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3. Collision experiments
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Nuclear collisions with antiprotons

?

ASACUSA 
PLB 2011At 5.3 MeV

Medium-heavy and heavy 
nuclear targets

Results consistent with 
theoretical expectations
  (Bianconi et al. Phys. Lett.B 2011)
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2012: Annihilations cross-sections @ 130 keV
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Aghai-Khozani et al.    
Eur. Phys. J. Plus  

2012
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2012: Annihilations cross-sections @ 130 keV
Aghai-Khozani et al.    

Eur. Phys. J. Plus  
2012
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‣ First measurement 
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Summary
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2012 Accomplishments

p̅He

‣mp/̅me in CODATA 2010
‣ 1-photon spectroscopy of “cold” p̅He+ completed 

(x5-10 better than the 2006 results)
‣ First attempt at 2-photon spectroscopy of “cold” p̅He - 

higher than ever precision

CUSP (H̅)

‣ Autoresonance scheme for p̅ injection into the e+ cloud
‣ e+ intensity x20 with a solid Ne moderator and longer N2 

gas cells. 
‣H̅ beam production was tested elongating the H̅ 

formation period. Data analysis is in progress.
‣H̅  beam detectors developed

p̅ σannhilation
‣ observation of p̅-A annihilation at 130 keV 

(published in EPJ+)
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