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Time-to-Digital Converters in HEP

CMS

Large systems with many channels
(100k or more)

● Electronics distributed over larger area
● Time resolution and stability across whole system

Distribution of common time reference to all the channels
● Detector time resolution sets requirements for TDC

Drift time in gas based tracking detectors
● Low resolution: ~1ns
● Examples: CMS and ATLAS muon detectors

Time of flight detectors
● High resolution: 10ps – 100ps
● Example: ALICE TOF

ALICE
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Time Measurement Chain
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Special needs for high energy physics
Other Applications
 

● Frequency synthesizer (All Digital PLLs)
● Laser Ranging and Radar Applications (distance measurement ...)
● On-Chip Instrumentation (Jitter ...)
● Imaging Systems (Positron Emission Tomography,

Time Correlated Single Photon Counting ... )
● ...

In HEP often have different needs

●  hundred / thousands of channels
●  often single shot time precision
●  distributed large systems (common time reference)
●  high dynamic range (25 ns)
●  hit rates (kHz - Mhz)
●  ...  
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Time Measurements

Time Tagging

Start - Stop Measurement

● Used for measuring time interval
between two local events

● No absolute time measurements possible
● Often used for small local systems and for

low power applications

● Used for measuring the time of an event
relative to a time reference (e.g. clock)

● Absolute time measurements possible
● For large scale systems with many channels

all synchronized to the same reference
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TDC Architectures
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Time to Amplitude

● convert time difference into voltage domain
● resolution defined by T/V-converter and ADC
● move complexity to ADC domain

T/V converter
V

Start Stop

Stop/start

I

I/kC

T*I\C
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Counter Principle

● on arrival of hit, store counter state
● hit can arrive at switching point of counter

-> synchronize hit to counter / use gray counter
● timing precision limited by clock period = LSB

e.g. 1 GHz counter
-> 1ns LSB
-> ~ 300 ps-rms

TDC=
LSB

12

for uniformly distributed hits:
quantization noise



CERN PH-ESE Electronics Seminars L. Perktold - 26-March-2013 11

Time Amplification

● Dual-slope
● Metastable FF
● Cross-coupled delay line
● Pulse stretching

● Amplify time difference
-> relaxed second stage TDC (e.g. counter)

● Precision of TA defines resolution
● Dead-Time

TA concepts

● Amplify time difference
-> relaxed second stage TDC (e.g. counter)
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Delay Line Principle

● generate set of delayed signals
● on hit store the state of delay-line
● LSB size limited by the gate-

delay of the technology

e.g. 90/130 nm
-> LSB = 15 - 20 ps
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Vernier Delay Line

● 2D Vernier Line
● 3D Vernier Line
● Array of DLLs
● ...

TA concepts

● LSB defined by delay difference
● Reduce relative delay between signals

in each stage
● Long propagation delays on both paths

Array of DLLs
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Fixed Time Delay

● Change signal propagation delay 
relative to each other
● constant delay

● Capacitive scaling
● Different thresholds
● Wire Delay / RC - delay
● Buffer scaling
● SAR
● ...

Fixed time delay concepts
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Interpolation

● Intermediate signals generated out of
 two time delayed signals

● Allows generation of sub gate delay
LSB sizes

● Signal edges need to be overlapping

● Resistive Division
● Multipath Buffers
● ...

Interpolation concepts
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Multistage Approach

extended range

● high resolution 2nd stage w/ small dynamic range
● multiple copies to increase dynamic range
● dynamic range of 2nd stage fits dynamic range of one bin of 1st stage
● long delay lines for large dynamic ranges

trade off: dynamic range vs. resolution
-> multistage approach

multiple copies
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Counter Extension
extended range

measurement 
relative to reference

relate measurement to reference signal
● delay needs to fit one reference clock cycle
● analog / digital control

counter metastability
● hit is an asynchronous event 
● double counter / gray & additional bit
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Event vs. Data Driven Architecture

● potentially no dead-time
● can detect multiple transitions
● easy counter synchronization

● sample state of HIT signals

● constant data flow
● clock domain transfer
● higher power consumption

(3x registers)

● sample state of reference signal

Event Driven Data Driven

Data Driven Example
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Wave Union TDC

● multiple measurements on single channel
● need to sample the HIT (data driven structure)
● often used in FPGAs to overcome large bin sizes
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Difficulties in ps range resolution

● In sub-ps resolutions device mismatches can become dominant
-> careful simulation & dimensioning during design time
-> can have major impact on design

●  Power supply noise
-> short delays, fast edges
-> separate power domains
-> substrate isolation
-> clean PCB layout

●  Distribution of signals get critical
-> RC delay of wires
-> balanced distribution of timing critical signals

● Process-Voltage-Temperature variations
-> LSB auto calibration to compensate for slow VT variations
-> global offset calibration still required

LSB/sqrt(12) ≠ rms

DNL, INL

Noise, Jitter

Offset shifts

single-shot 
precision
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System Level

● Detector Noise
● Analog Front End
● Time Walk Correction
● Time Reference Noise
● TDC Noise
● Inter-channel Crosstalk
● PVT variation ...

Complete Measurement Chain
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Delay Element

Fast = Short Propagation Delays = More robust design

● CMOS inverter
double inverter
pseudo differential

● Fully Differential
short propagation delay w/ control
more robust against power supply noise

(depends on design)
cross-coupled load / low power

● Current starved / Voltage Controlled
large propagation delay variations
slower cell due to control
NMOS / PMOS

For fine-time TDC designs:

● Critical building block - often longest delay path / used in many architectures

In

Bias

Bias

In

Bias
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Time Capture Registers

● Critical building block - makes timing decision

● Latch
simple / small area
timing information can be overwritten

● Fully Differential Flip-Flop
static current consumption
fully differential input
no conversion if differential signaling

● Standard D Flip-Flop
hit independent readout out
single-ended

Fine resolution = good matching / high power
OR

Fine resolution = FF calibration
For fine-time TDC designs:

sense-amplifier FF



CERN PH-ESE Electronics Seminars L. Perktold - 26-March-2013 25

Outline

● Time measurements in HEP

● Time-to-Digital Converter Concepts

● Challenges in Fine-Time Resolution TDC Design

● Demonstrator Architecture

● Measurement Results

● Conclusion



CERN PH-ESE Electronics Seminars L. Perktold - 26-March-2013 26

TDC development trends in HEP

LSB ≠ rms
new detectors and sensors 

require TDC < 10 ps resolution

integrationresolution
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Demonstrator ASIC

● achieve sub 10 ps LSB sizes
-> with rms better than bin-size

● multiple channels (architecture easy extendable)

● large dynamic range
-> allow to use one common reference

● robust against power supply noise

● flexible in terms of power consumption / time resolution

Requirements

not a complete TDC -> demonstrates resolution of TDC
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TDC Architecture
● central interpolator with counter 
to extend dynamic range

● measurements are referenced to 
common reference to allow to 
synchronize multiple TDCs

● DLL for PVT auto calibration
and power consumption trade-off

●  short propagation delays and fast 
signal slopes of timing critical 
signals to reduce jitter

● calibration applied on a group of 
channels to reduce circuit overhead 
and calibration time

● relatively constant power 
consumption make it less sensitive 
to change in hit rate© IEEE
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Fine-Time Interpolator

● DLL to control LSB size
-> 32 fast delay elements in first stage - 20 ps
-> total delay of DLL 640 ps at 1.56 GHz

● Resistive Interpolation to achieve sub - gate delay resolutions
-> LSB size of 2nd stage controlled by DLL

20 ps
delays

5 ps
delays

1.56 GHz
N=32

© IEEE
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Voltage Controlled Delay Cell

additional zero in signal path

∝
C eff⋅V Osc

IBias

z=−
1

RC

approximate propagation delay

zero location

● fully differential cell
● voltage controlled
● single ended output

post layout extracted simulation

12 ps < 16 ps < 23 ps

© IEEE

@VDD = 1.2 V
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Resistive Interpolation

● resistive voltage divider
-> signal slopes bigger than delay

● RC delay (capacitive loading)
- > use small resistances, small loads

© IEEE

© IEEE
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Device Mismatch

● Calibration can correct for Fine-Time Interpolator and Distribution Buffer mismatch
● Don't want to calibrate each single register

-> time capture registers require good matching

standard deviation of LSB
across all bins

(simulation)

(simulation)

problematic

not so
critical
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Time Capture Register

1-Latch optimized for timing
(3x size of standard cell FF)

σTDC = 1.31 ps-rms

© IEEE

no calibration in FF:

Just about good enough
for 5 ps TDC

Trade off: power & resolution



CERN PH-ESE Electronics Seminars L. Perktold - 26-March-2013 34

Outline

● Time measurements in HEP

● Time-to-Digital Converter Concepts

● Challenges in Fine-Time Resolution TDC Design

● Demonstrator Architecture

● Measurement Results

● Conclusion



CERN PH-ESE Electronics Seminars L. Perktold - 26-March-2013 35

Demonstrator Photograph
130 nm technology
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Channel Configurations

Channel Input Buffer Time Capture Register Capturing Concept

1 & 2 GBT RX direct drive FF (custom) data driven

3 & 4 E-Link standard FF (custom) event driven

5 & 6 GBT RX standard FF (custom) event driven

7 & 8 GBT RX standard FF (cell lib) event driven

compare different time-
capture-register sizes

(not yet characterized)

compare input
buffer architectures

compare different time 
capturing schemes

● for easing test always two 
channels of a kind
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Test Setup
1562.5 MHz = 5 ps @VDD = 1.3 V
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Code Density Test

● Before Global Calibration

● Uniformly distributed events across clock cycle
- asynchronous clock domains

● Number of collected hits => bin size

T

average LSB = 5ps

σLSB = 2.1 ps

© IEEE
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Interpolator Linearity

● After Global Calibration LSB = 5ps

σLSB = 1.3 ps

no missing codes

Integral- 
Non-Linearity

Differential-
Non-Linearity

© IEEE

σLSB = 2.1 ps
before calibration:

after calibration:
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DNL
after global calibration

DNL = ± 0.9 LSB

 RMS < 0.28 LSB (1.4 ps-rms)

© IEEE

no missing codes
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INL
after global calibration

expected rms resolution w/ custom FF:
including quantization noise, INL & DNL 

INL = ± 1.3 LSB

 RMS = < 0.43 LSB (2.2 ps-rms)

2.3 ps-rms < σqDNL/wINL <  2.9 ps-rms

ideal 5 ps LSB TDC: 1.44 ps-rms

© IEEE

(could correct for INL offline)
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Standard Cell FF - Weak Matching
Integral- Non-LinearityDifferential-Non-Linearity

DNL = +2 LSB / -1 LSB

 RMS = < 0.69 LSB (3.45 ps-rms)

INL = ±2.5 LSB

 RMS = < 0.87 LSB (4.35 ps-rms)

expected time resolution:  <  5.9 ps-rms (w/ standard cell FF)
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Double Shot Measurement Principle
● Uniformly distributed events across 1 clock cycle

- asynchronous clock domains

● Send same hit to two distinct channels

● Delay fixed by wire length differences

● Jitter contribution of hit not canceled out

Sigma

Single Shot Resolution in ps

Sigma*5ps/sqrt(2)

bin difference
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Measured Single Shot Precision
● Three measurement series

- both hits arriving within one reference clock cycle
- second hit arrives one clock cycle later 
- second hit arrives multiple clock cycles later (~5ns)

● limited by non-linearities of TDC
-> very silent setup
-> robust architecture

σTDC <  2.44 ps-rms

bin difference

© IEEE
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Inter Channel Crosstalk

● sweep hit B over hit A

● monitor change in delay of hit A

Pattern Generator artifacts smaller ± 1 LSB
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PVT variations

-0.2 ps / mV
0.4 ps / deg

● constant delay path changes wrt VT

● different characteristic for different i/o

© IEEE
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Power consumption

5ps10ps 8.1ps 6.1ps

268 - 335 mW

8 channels

169 - 204 mW
(21 - 26 mW/ch.) (34 - 43 mW/ch.)
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Full TDC ASIC

● < 3 ps-rms resolution

● < 50 mW/channel

● missing counter, PLL and
     digital logic

64 - 128 Channels

Timing Generator
(5 ps)PLL40 MHz

Demonstrator ASIC

● based on HPTDC

● 64 - 128 channels per ASIC
● 40 MHz input clock
● < 5 ps-rms timing precision
● radiation tolerant
● flexible readout architecture

Full TDC

TDC Architecture:
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Conclusion

● A demonstrator ASIC has been designed, constructed and 
successfully tested.

● Time resolutions as low as 3 ps-rms have been demonstrated

● Device mismatches considerably affect design in the ps-domain
-> trade off power & resolution & calibration effort

● Macro suitable for a full fine-time resolution general purpose TDC
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The end

Thank you for 
your attention!

Demonstrator Performance Summary

Technology 130 nm

Supply Voltage 1.3 V

Area 1.2 mm2

Power Consumption 34 - 42 mW/channel

# of Channels 8

LSB size 5 ps

DNL ± 0.9 ps

INL ± 1.3 ps

Single Shot Precision < 3 ps-rms

Dynamic Range 640 ps (on chip)
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BACKUP
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Functional Test (uncal/ DLL)

Δtosc-ch7 = 445 ps

ch7
0 ps

osc. = 12 ps+

binrise = 2*

tTDC = 12 ps

ch7
100 ps

osc. = 125 ps
binrise = 21
tTDC = 128 ps

osc. = 215 ps
binrise = 36
tTDC = 220 ps

ch7
200 ps XX

X

X

+ reference calibration point
* 00-11 transitions represents falling edge. DLL sends inverted signal to profit from stronger NMOS devices.

5-10 measurements

Duty-Cycle = 37 %
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I/O Buffer Influence

9

● E-Link ● GBT RX

● attention on Vcm level and VDD

~ 1mA ~ 10mA

bin difference

0.61 LSB

2.45 LSB

VDD = 1.2 V, Vcm = 1.2 V

0.61 LSB

VDD = 1.35 V, Vcm = 1.2 V

1.14 LSB
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Bin Assignment
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Reference Clock Frequency

● How fast the delay line can go depends on process variations 
and operating conditions

LSB: 12/4 ps - 23/4 ps

REFCLK: 1.38 - 2.60 GHz

Post Layout Extracted

measured max. freq @ 1.2 V 

VDD = 1.3 V

REFCLK: 1.48 GHz
-> 21/4 ps

5 ps = 1562.5 MHz

© IEEE

little bit on the slow side
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Simulated Bin-Widths

rms = 2.2 ps

rms = 0.1 ps
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Delay Buffer Biasing

main control on PMOS:
-> no strong arguments to control PMOS

instead of NMOS but ...
-> big intrinsic capacitive nodes on both controls
-> smaller gain at slower operation

(Delay Buffer gate capacitance)

(loop filter capacitance)
use simple bias to make use of big loop filter capacitance

-> most stable voltage in chip
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Distribution Buffer w/ Calibration

● binary weighted calibration (5 bits)

● delay can be varied from -16 ps to +15 ps in 1 ps steps
(2fF per step)

● can correct INL errors up to 6.4 LSB 
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