

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Multichannel ADC for physics applications

Marek Idzik AGH-UST

Presented works done by:

M.Firlej, T. Fiutowski, Sz. Kulis, J. Moroń, D. Przyborowski, K. Świentek

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

- Introduction and motivation
- ADC testing issues
- Multichannel digitizer in AMS 0.35 um
- Multichannel SAR ADC in IBM 130 nm
- SAR architecture considerations
- Design of 10(6)-bit SAR ADC
- System level blocks (PLL, SLVS, ...)
- Preliminary tests of prototypes in IBM 130 nm
- SAR ADC, PLL, SLVS
- Summary

ASIC group, infrastructure and activities at Faculty of Physics of AGH-UST

- People: staff 7, phd students 4, master students ~4
- Dedicated labs for microelectronics and detectors:
 - Clean-room class ISO6
- Equipment: probe-stations (e.g.semi-automatic Cascade), bonder (F&K Delvotec 5330), semiconductor parameter analyzers (Agilent B1500A x 2, HP4145A), spectrum/signal anylezers (Agilent 4395A, N9030A), scopes up to 40GS/s (e.g. Agilent 90804A), generators (e.g. Agilent 81150A, 81160A), semiconductor lasers (Picoquant PDL 800-D with 660nm and 1060nm heads), radioactive sources, precise XYZ moving stages, High Voltage SMU (Keithley SMU237), RLC meters (e.g. Agilent E4980A)
- Computer power for ASIC design: 2 servers DELL MD710HD (24 cores)+disc array MD3200i, 5 x very fast PCs for fast complex analyses, personal workstations
- Software (>20 licenses): ASIC design (Cadence, Synopsis, Mentor Graphics),
 FPGA design (Xilinx), PCB design (Altium)
- Projects: ATLAS, **LHCb**, **ILC/CLIC**, PANDA, SOI, general microelectronics/detector R&D

Motivation LumiCal detector readout electronics for ILC

- Present readout ASICs developed in CMOS AMS 0.35 um
- Development of new readout in CMOS IBM 130 nm in progress...

Motivation... Multichannel readout ASIC for LHCb strip tracker

- Complex 128 channel ASIC
 - Preamplifier-shaper, 6-bit ADC, zero supp., serialization
 - Pitch ~40um
- CMOS IBM 130 nm technology
- Application in various detectors
 - TT tracker, VELO strip, IT tracker ?

"Fast" Multichannel 10-bit ADC Commercial and research solutions

Parameter	Our work	K. Kavani et al ESSCIRC 2002	AD9212 AnalogDevices	ADS5287 TexasInstruments	MAX1434 Maxim
Nr of channels	8	8	8	8	8
Architecture	10-bit pipeline	10-bit pipeline	10-bit pipeline	10-bit pipeline	10-bit pipeline
Serialization	Per channel & per chip	Per chip	Per channel	Per channel	Per channel
Technology	0.35 μm CMOS	0.25 μm CMOS	-	CMOS	BiCMOS
Supply	3.3 V	2.5 V	1.8 V	3.3/1.8 V (A/D)	1.8 V
Max. f _{sample}	25MS/s	20MS/s	65MS/s	65MS/s	50MS/s
Input range	2Vpp	-	2 Vpp	2 Vpp	1.4 Vpp
Power/channel	~1.2mW/MS/s plus I/O (<15%)	41mW@20MS/ s	100mW@65MS/ s 68mW@40MS/s	74mW@65MS/s 46mW@30MS/s	96mW@50MS/ s
Area	8.2 mm ²	4mm ²	9x9mm ² (package)	9x9mm ² (package)	14x14mm ² (package)
INL	<0.68LSB	-	<0.5LSB	<1LSB	<1LSB
DNL	<0.62LSB	-	<0.4LSB	<0.55LSB	<0.5LSB
SINAD	~60.3dB	54.3dB	>=60dB	>=60.4dB	>=60dB
Tpower_ON	<=10Tclk (~μs)	-	375μs	-	100ms

- Introduction and motivation
- ADC testing issues
- Multichannel digitizer in AMS 0.35 um
- Multichannel SAR ADC in IBM 130 nm
- SAR architecture considerations
- Design of 10(6)-bit SAR ADC
- System level blocks (PLL, SLVS, ...)
- Preliminary tests of prototypes in IBM 130 nm
- SAR ADC, PLL, SLVS
- Summary

ADC testing Static measurements

- •**DNL** Differential NonLinearity the difference between an actual step width and the ideal step width
- •INL Integral NonLinearity deviation of an actual transfer function from a straight line (integrated DNL)

ADC testing Dynamic measurements

$$ENOB = \frac{SINAD[dB] - 1.76}{6.02}$$

- •Single tone, full scale sine wave applied to input of the ADC
- •Fourier Transform computed from the collected digital samples

- •SINAD Signal to Noise And Distortions
- •**THD** Total Harmonic Distortions

- •SFDR Spourious Free Dynamic Range
- •SNHR Signal to Non Harmonic Ratio

ADC testing/design Resolution vs sampling clock jitter

$$V_{IN}(t) = V_A \times \sin(2\pi \times f_{IN} \times t)$$

$$\frac{\text{dV}_{\text{IN}}(t)}{\text{dt}} = 2\pi \times f_{\text{IN}} \times \text{VA} \times \cos(2\pi \times f_{\text{IN}} \times t)$$

$$\frac{dV_{IN}(t)}{dt}\Big|_{DMS} = \frac{2\pi \times f_{IN} \times V_A}{\sqrt{2}}$$

$$\frac{VERROR_RMS}{t_J} = \frac{2\pi \times f_{IN} \times V_A}{\sqrt{2}}$$

$$V_{ERROR_RMS} = \frac{2\pi \times f_{IN} \times V_A \times t_J}{\sqrt{2}}$$

$$\text{SNR} = 20 \text{log}_{10} \left[\frac{\text{V}_{\text{IN_RMS}}}{\text{VERROR_RMS}} \right] = 20 \text{log}_{10} \left[\frac{\text{V}_{\text{A}} / \sqrt{2}}{2\pi \times f_{\text{IN}} \times \text{V}_{\text{A}} \times t_{\text{J}} / \sqrt{2}} \right]$$

ADC testing/design Resolution vs sampling clock jitter...

ADC testing FPGA based test setup

- Capturing data from ADC up to 300
 MHz in LVDS standard
- •AD9522 external PLL used to provide low jitter sampling clock (<10ps required!)
- •Other instruments (power supplies-Agilent B1500A, signal generators-Agilent 81160A) controlled via GPIB/Etherhet by the supervising PC
- •Fully automatic ASIC testing 12

- Introduction and motivation
- ADC testing issues
- Multichannel digitizer in AMS 0.35 um
- Multichannel SAR ADC in IBM 130 nm
- SAR architecture considerations
- Design of 10(6)-bit SAR ADC
- System level blocks (PLL, SLVS, ...)
- Preliminary tests of prototypes in IBM 130 nm
 - SAR ADC, PLL, SLVS
- Summary

Multichannel digitizer Architecture

- Specs&impleentation issues:
 - 8 channels of 10-bit pipeline ADC
 - Technology AMS 0.35um
 - Fully differential ADC
 - Layout with 200um ADC pitch
 - Multimode digital multiplexer/serializer:
 - Serial mode (~250MHz): one data link per all channels (max fsmp ~ 3 MSps)
 - Parallel mode (~250MHz): one data link per channel (max fsmp ~ 25 MSps)
 - Test mode: single channnel output (max fsmp ~50 MSps)
 - High speed LVDS interface (~1GHz)
 - Bootstrapped S/H switches
 - Power pulsing
 - Low power DACs for internal settings
 - BandGap reference source
 - Temperature sensor

2.6mm x 3.2mm

Multichannel digitizer 10-bit pipeline ADC

S/H stage

- High throughput conversion rate = clock rate
- 1.5 bit per stage redundancy reduces comparator requirements
- Fully differential architecture

1.5 bit pipeline stage

Multichannel digitizer Performance

Performance

- ENOB=9.7 up to 25 Ms/s (8 channels)
- INL<0.68, DNL<0.62
- Sampling rate up to ~25MS/s (multichannel) or up to ~50MS/s (single channel)
- Power scales linearly with sampling rate
 ~1.2mW/channel/MHz (without power pulsing)

Static measurements

Dynamic measurements

Multichannel digitizer in LumiCal detector

4 pairs of Front-end + ADC

Sensor

□ LumiCal detector module with 32 fully equipped channels (Front-end +ADC ASICs) plus FPGA data concentrator is regularly used during FCAL Collaboration test-beams

- Introduction and motivation
- ADC testing issues
- Multichannel digitizer in AMS 0.35 um
- Multichannel SAR ADC in IBM 130 nm
 - SAR architecture considerations
- Design of 10(6)-bit SAR ADC
- System level blocks (PLL, SLVS, ...)
- Preliminary tests of prototypes in IBM 130 nm
- SAR ADC, PLL, SLVS
- Summary

Design of SAR multichannel ADC

Specifications & implementation issues:

- 8 channels of 10-bit (6-bit) SAR ADC
- Technology IBM 130 nm
- Layout with 146um (40um) ADC pitch
- Multimode digital multiplexer/serializer:
 - Serial mode: one data link per all channels (external clk division or PLL clk generation)
 - Parallel mode: one data link per channel (external clk division or PLL clk generation)
 - Test mode: single channnel output (max fsmp ~50 Msps)
- PLL for data serialization
- High speed SLVS interface (~1GHz)
- Power pulsing
- Generation of short sampling pulse
- Bootstrapped S/H switches
- Voltage reference not yet addressed...
- SingleEnded-to-Differential converter ??

SAR ADC motivation General features & design considerations

- Power and area-efficient architecture – the same circuitry is used N-times (for N-bit ADC) to approximate the input voltage
- Only one comparator, two DACs and SAR logic needed – fits well to modern digital CMOS
- Limited sampling rates but with modern CMOS technology (~100nm) up to ~100MSps 10-bit ADCs were reported
 - next conversion cannot be started before completion of previous one
 - sampling time adds to conversion time (not like in pipeline)

- Comparator the only analog block
- DAC network serves as sampling capacitance
- Simple digital logic
- Fully differential implementation increases the resistance to disturbances

Why various SAR configurations? Switching energy

- With CMOS technology scaling digital power consumption is decreasing rapidly - so minimizing analog power (DAC, comparator) is of main interest
- Huge progress has been obtained in the last ~10 years in optimizing capacitive DAC configurations and their switching schemes
- Various DAC switching configurations were proposed
- Conventional (100% power consumption)
- 2 step switching (~10% power saving)
- Charge sharing (~24% power saving)
- Split capacitor (~37% power saving)
- Energy saving (~56% power saving)
- Set and down (~81% power saving)
- Vcm-based (~87% power saving)
- Merge Capacitor Switching (MCS) (~93% power saving)
- Last half year some new were proposed (up to ~98% power saving)

Switching energy – principle 2-bit capacitor array example

Energy drawn from Vref: $E=V_{ref}^{*} \Delta Q$ "up" transitions – S_i short to V_{ref}^{*} "down" transitions – S_i short to gnd

- 1. S_2 "up" transition: $E=C_0V_{ref}^2$
- 2. If $V_{in} > V_{ref} / 2$ then S_1 goes "up": $E = C_0 V_{ref}^2 / 4$, otherwise S_1 goes "down":

Conventional switching: E=5C₀V²_{ref}/4

2 step switching: $E=3C_0V_{ref}^2/4$

"down" transitions consume much power...

Switching energy – principle 2-bit capacitor array example...

There are other ways to perform "down" transitions:

Split capacitor: $E=C_0V_{ref}^2/4$

$$C_{2,1}$$
 $C_{2,0}$
 C_{2

Switching scheme may be optimized to save power in "down" transitions!

Switching energy Comparison of simple schemes

Switching energy versus output code

Hspice points vs Matlab model (from Ginsburg paper)

Switching energy – more efficient configurations Set and down vs conventional

Conventional 10-bit SAR

Set and down SAR ADC:

- pair of MSB capacitors less
- V_{in} sampled on top plate
- 1st comparsion done before any switching

Ch. Ch. Liu, S-J. Chang, G-Y.Huang, Y-Z. Lin "A 10-bit 50MS/s SAR ADC with a monotonic capacitor switching procedure", IEEE Journal of Solid-State Circuits v.45 pp. 731-740, April 2010

Set and down 10-bit SAR

Variable common mode...

25

Switching energy – more efficient configurations Set and down 3-bit SAR ADC example

Switching energy ~81% less than conventional SAR ADC

Switching energy – more efficient configurations Merge Capacitor Switching (MCS) SAR ADC

Switching energy ~93% less than conventional SAR ADC

Such switching scheme is used in our present design

SAR switching energy Merge Capacitor Switching (MCS)...

Within last ~half year new papers with even more efficient schemes were published...

- Introduction and motivation
- ADC testing issues
- Multichannel digitizer in AMS 0.35 um
- Multichannel SAR ADC in IBM 130 nm
- SAR architecture considerations
- Design of 10(6)-bit SAR ADC
- System level blocks (PLL, SLVS, ...)
- Preliminary tests of prototypes in IBM 130 nm
- SAR ADC, PLL, SLVS
- Summary

Design of SAR ADC Implementation issues

Split DAC architecture

allows using higher unit capacitance for the given total DAC capacitance. It helps to bypass the problem of relatively high C_{min} available in CMOS technologies – allows to decrease the effective "LSB capacitance" and so power consumption

Asynchronous logic

- no fast clock needed for bit cycling
- only sampling pulse needed for digital control
- sampling pulse (trigger) does not need to be periodic

Dynamic comparator

- alows to obtain zero static power consumption and so "power pulsing" is given for freel
- Bootstrapped sampling switch
 - improves ADC linearity

Design of SAR ADC Bootstrapped S/H switch

Idea

Implementation

Design of SAR ADC Dynamic comparator

H.J. Jeon, Y-B. Kim, M. Choi "Offset voltage analysis of dynamic latched comparator", IEEE 54th Int. Midwest Symp. On Circuits and Systems, 2011

Design of SAR ADC – DAC capacitors Noise and matching considerations

Noise

Matching

Thermal switch noise of sampling circuit – kT/C

$$kT/C < \sigma^2/12$$

$$kT/C < (V_{ref}/2^N)^2/12$$

$$C > 12 kT (2^{N}/V_{ref})^{2}$$

For
$$V_{ref} = 1 V$$
:

$$N=6$$
 bits $C > 0.2$ fF

$$N=8$$
 bits $C > 3.3$ fF

$$N=10$$
 bits $C > 52$ fF

$$N=12$$
 bits $C > 830$ fF

VNCAP M1-M2 \sim 0.4fF/um²

MIMCAP $\sim 2 fF/um^2$

Mis-match % (3σ)

VNCAP 10x20 um² (~80fF) ~5%

MIMCAP $6x7 \text{ um}^2 (\sim 80 \text{fF}) \sim 0.7\%$

MOM – no model exist, matching unknown...

MIMCAP has high density and good matching

Switch noise is negligible

Design of 10-bit SAR in IBM 130nm

Designs of 10-bit ADC

- Architecture: SAR ADC with segmented/split DAC
- •Asynchronous SAR logic No-bit clk
- Scalable frequency (up to ~50 MS/s) and power consumption
- 1-2mW at 40MS/s
- 146um pitch
- Fabricated in 2012 (2 prototypes)

Design of 6-bit ADC

- Architecture: SAR ADC with segmented/split DAC
- Asynchronous SAR logic No-bit clk
- Scalable frequency (up to ~100 MS/s) and power consumption
- ~300uW at 40MS/s
- 40um pitch
- Fabricated in 2012

Design of 10-bit SAR in IBM 130nm

SAR DAC channel 600um x 146um

Two slightly different designs in IBM 130 nm submitted

- •Simulated ENOB $\approx 9.5-9.7$ bits
- Maximum sampling rate ~50 MS/s
- Power consumption ≈ 1-1.4mW @ 40 MS/s
- •Slightly different DAC capacitance splitting in 2 prototypes
- •No dummy capacitors in DAC network!

Design of 6-bit SAR ADC in IBM 130 nm

- Single channel: 40um x 400um (area 0.016 mm²)
- Custom capacitor p-cell layout done to obtain 40um pitch

Simulation of 6-bit SAR ADC Example of dynamic performance

Dynamic parameters obtained from discrete Fourier analyses of 1024 samples of input sine wave.

Post-layout simulation results at 40MS/s:

- SINAD ≈ 37.5 dB
- ENOB ≈ 5.94 bits

Simulation of 6-bit SAR ADC Example of Monte-Carlo mismatch analysis

Simulation performed 100 times

ENOB always above 5.8 bits, average 5.95 bits

- Introduction and motivation
- ADC testing issues
- Multichannel digitizer in AMS 0.35 um
- Multichannel SAR ADC in IBM 130 nm
- SAR architecture considerations
- Design of 10(6)-bit SAR ADC
- System level blocks (PLL, SLVS, ...)
- Preliminary tests of prototypes in IBM 130 nm
- SAR ADC, PLL, SLVS
- Summary

Design of PLL for data serialization Example of 6-bit ADC

PLL needed to multiply Sample CLK frequency by 6 (in this example)

- Flexible PLL needed for our applications
 - different division factors needed for 6(10)-bit ADCs and maybe also for different numbers of ADC channels
 - scalable frequency PLL needed for scalable sampling rate ADC
- Low power consumption is default requirement

Design of PLL for data serialization

• Design specifications:

- Architecture type II PLL with 2nd order filter
- Technology IBM130 nm
- Scalable frequency and power consumption
- Automatically switched VCO range (narrow ranges for small jitter)
- Configurable division factors
- Very low power consumption

PLL - principle of automatic VCO mode change

- Comparators check whether a voltage signal at the PLL filter (Vcn) is grater than Vhigh or lower than Vlow.
 - If Vcn > Vhigh (VCO too slow) for certain period (measured by counter) control logic switches the mode register to faster mode (up).
 - If Vcn < Vlow (VCO too fast)
 VCO mode register is switched to slower mode (down).
 - When Vcn voltage stays between Vhigh and Vlow the mode is not changed.

PLL prototypes in IBM 130nm

1st prototype

- •Output frequency range 60 520MHz
- •Simulated power ~0.2mW @ 500MHz
- •Low area 200x160 um
- Automatically changed VCO modes
- •PLL divider by 8 or 10
- Used for 10-bit ADC serialization

Fabricated in mid 2012

2nd prototype

- •Output frequency range 8MHz 3GHz
- Simulated power ~1mW @ 3GHz
- •Low area 300x300 um
- Automatically changed VCO modes
- •PLL divider by 6, 8, 10 or 16
- •Used for 6(10)-bit ADC serialization

Fabricated at the end of 2012

Design of SLVS interface

- Specifications:
 - Architecture
 - Driver based on Boni paper
 - Receiver based on self-biased amplifier (Bazes paper)
 - Technology IBM 130 nm
 - Maximum frequency ~1GHz
 - Pitch matched to pads. Driver/receiver integrated with 2 pads (146um pitch)

44

A. Boni, A. Pierazzi, D. Vecchi, LVDS I/O Interface for Gb/s-per-Pin Operation in 0.35 μm CMOS, IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 706–711, April 2001 M. Bazes, Two Novel Fully Complementary Self-Biased CMOS Differential Amplifiers, IEEE J. Solid-State Circuits, vol. 26, no. 2, pp. 165–168, February 1991.

Design of sampling pulse generator

Generator of sampling pulse converts 50% duty external sampling clock into internal variable width pulse (controlled by Ibias)

Pulse generator design is based on MOS thyristor delay circuit.

Layout of 8 channel 10-bit SAR ADC in IBM 130 nm

Layout of 8 channel prototype of 6-bit SAR ADC in IBM 130 nm

2340um x 1380um

- Introduction and motivation
- ADC testing issues
- Multichannel digitizer in AMS 0.35 um
- Multichannel SAR ADC in IBM 130 nm
- SAR architecture considerations
- Design of 10(6)-bit SAR ADC
- System level blocks (PLL, SLVS, ...)
- Preliminary tests of prototypes in IBM 130 nm
- SAR ADC, PLL, SLVS
- Summary

Prototypes under tests... 10-bit ADC, PLL, SLVS

Prototype of 10-bit ADC

- SAR ADC with segmented DAC
- Scalable frequency (up to ~50 MS/s) and power consumption
- Simulated power consumption
- 1-2mW at 40MS/s
- 146um pitch

Prototype of PLL

- Type II PLL with 2nd order filter
- Scalable frequency&power
- Automatically switched VCO frequency range 8MHz – 3GHz
- VCO frequency division by 6, 8, 10 or 16
- Simulated power consumption ~1mW at 3GHz

Preliminary measurements of 10-bit SAR ADC Static measurements

INL/DNL measurements 0.5 INL [LSB] -0.5 128 256 384 512 768 1024 Code [LSB] 1.5 DNL [LSB] 0.5 -0.5 -1 128 256 384 640 768 1024 Code [LSB]

- ADC is alive and works in the whole input signal range
- There are some codes with worse linearity (to be investigated...)

Preliminary measurements of 10-bit SAR ADC Dynamic measurement at 40Ms/S

- First dynamic measurements show that ADC is fully functional and gives reasonable resolution results
- Quantitative measurements in progress...

Preliminary measurements of 10-bit SAR ADC Maximum sampling frequency

• It is suspected that measured ENOB is limited by the setup

Preliminary measurements of 10-bit SAR ADC Dynamic measurements – f_{in} scan

- For low f_{in} ENOB of >= 9.2 was measured
- \bullet It is suspected that ENOB decrease with f_{in} is partially/mainly due to setup

Preliminary measurements of 10-bit SAR ADC Dynamic measurements – different channels

Results for different channels (only one channel ON during measurements) are similar

Preliminary measurements of 10-bit SAR ADC Power consumption vs sampling frequency

- Power measured for 8 ADC channels
- At 40MS/s power consumption is about 1 mW per channel – in agreement with simulations

Preliminary measurements of PLL CLK out vs CLK ref

- PLL measurements have just started (~ 2 days) and are in progress...
- PLL output CLK in frequency range 15MHz-1.2GHz already observed
- There are some gaps between frequency ranges...
- Automatic mode detection looks promising

REF CLK [MHz]

• SLVS driver works at least up to 1.2 GHz (used for PLL output)

Preliminary measurements of PLL Jitter

• Measured jitter at least few times higher than simulated (to be verified...)

Preliminary measurements of PLL Power consumption

• Power consumption seems to be higher than simulated (to be verified...) but anyway very low

Front-end architecture Single-to-Differential converter

Sampling amplifier issues

Conventional folded cascode (FC)

$$Gm_{FC}=gm_{P1}$$
, $SR_{FC}=2I_{b}/C_{L}$

Recycling folded cascode (RFC)

$$Gm_{RFC} = gm_{P1} (1+K), SR_{RFC} = 2KI_b/C_L$$

In 130nm a gain of few hundred may be achieved. For 10-bit accuracy a second stage or a gain boosting is needed

Summary

- Multichannel ADC in AMS 0.35um developed and working well in LumiCal detector module in test beams
- Two very low power multichannel SAR ADCs (10-bit, 6-bit) developed and fabricated in IBM 130 nm
- PLLs, SLVS, etc... developed as well
- First measurements of 10-bit SAR ADC showed that the blocks (ADC in particular) are functional
- ENOB ~9 bits (preliminary and to be verified...)
- Power consumption ~1mW@40MHz in agreement with simulations
- Tests of 6-bit ADC should start in May...
- PLL works and looks promising
- SLVS works well up to above 1GHz
- Quantitative tests in progress...

Preliminary measurements of 10-bit ADC Dynamic measurements – fin scan

• ENOB ~ 9.2 was measured

Sampling pulse width

