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Elektromos szigetelő tömbi része szigetel. A minta 
felülete vezethet, esetleges élállapotokon 

keresztül, ezek azonban könnyen lokalizálódnak. 

• Alacsony dimenziós

• Erősen rendezetlen (szennyező atomok, felület)

Anderson-lokalizáció → “zárt csatornák”, nincs vezetés

Minta széle:



Erős mágneses térben garantált élállapotok 
alakulnak ki. Ezeket a rendezetlenség nem tudja 
lokalizálni (“topologikus védelem”, tökéletesen 

vezető csatornák).

• Kvantum Hall effektus

• Töltésmegmaradás: honnan jött? 
Hova megy?

• Pontosan kvantált vezetés, Hall-
ellenállás 
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Figure 1. The Hall resistance Rw and the longitudinal 
resistance R, for the ZOEG in an AlGaAslGaAs 
!?eter~s!rK?ure s? a !e!??peratu.e c?f T = 50 my- The 
WEG has a carrier concentration of fl, = 3 x m-' 
and a mobility of 28 n+' V-' s-'. The inset shows the 
experimental configuration for the measurement of 
R, =Um// and Rw = Uw//.  

given by 

(3) 

and U is called the filling factor. For an integer filling 
factor Y the plateaus in the Hall resistance appear and 
correspondingly the longitudinal resistance mnishes. 

Figure 1 shows a typical example of actual ex- 
perimental traces measured for the DEG in an 
AIGaAdGaAs heterostructure. The inset shows the 
sample geomety, a Hall bar with six ohmic contacts, 
where the two large contacts are used as current con- 
tacts, ie. source and drain, and the four smaller contacts 
are used for the measurements of the voltage drop in 
direction of the current flow (longitudinal resistance) 
and perpendicular to the current p a l l  resistance), for 
a mig&tic field applied perpendicular to the DEG. 
The upper part of figure 1 shows the Hall resistance 
RZv = U z y / I  with the quantized plateaus and the 
lower part the longitudinal resistance R,, = U z z / I  
with the Shubnikov-de Haas oscillations. Plateaus with 
a finite width are found around integer filling factors Y 

and they extend mer wide magnetic field ranges, corre- 
sponding to a large fraction of the change in magnetic 
field necessaq to reach the next iilling factor. 

Even in the original publication the finite plateau 
width was explained by the existence of localized states, 
an explanation which is still valid (Prange and Grivin 
1987, Koch d d 1991). But whereas for many years the 
understanding of transport in real samples with con- 
tacts was very incomplete, the development of the so- 
called edge-state picture helped in the-interpretation of 
many experimental results, and, in turn, the experiments 
helped in the development of the model. Within this 
picture the quantization appears as a consequence of the 
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absence of backscattering, i.e. suppression of scattering 
from one edge of the sample to the other. Bacbcatter- 
ing can be suppressed by localization and, at the same 
time, the current can still flow at the edges. So, a con- 
tradiction previously involved in the localization picture 
has been solved. 

In the last years, many experiments in connection 
with the quantum Hall effect have been explained within 
this edge-state picture developed in 1988-9. This de- 
velopment was not only based on the energy levels of 
a finite sample calculated in 1982 by Halperin (1982) 
and used originally in a model of E Xller (lSnl), but 
also on the application of transmission and reflection 
coefficients to transport in onedimensional channels as 
put forward by Landauer (1957). Certainly, the many 
experiments dealing with onedimensional transport in 
quantum wires (Reed 1989) and in ballistic point con- 
tacts (van We? et a1 @@, Wharam et a1 1988) helped 
in putting together our present day understanding of 
transport in the quantum Hall regime. The edge-state 
model has been applied to a large number of experi- 
ments and deep insight has been gained. Many of these 
experiments are not only explained within this model, 
but also give hints that the current at low current levels 
is really flowing at the edge. Nevertheless, a final proof 
that the current is only flowing at the edge of a sample 
has not been published to date. 

The purpose of the present review is to clarify this 
picture and to show its achievements in the interpre- 
tation of experiments involving high-mobility samples. 
Special emphasis has been put on the experiments with 
gate barriers, since here the model of edge-state trans- 
port in the quantum Hall regime was first applied (Haug 
e& a1 1988). The next section lists the historical develop- 
ment of the model, and the following section gives our 
present-day picture. After these more theoretical and 
historicai sections, severai sections wiii snow the diiier- 
ent aspects of the picture investigated in experiments 
which in turn have influenced the present-day picture. 

2. History 

HistoricaUy, magneticfield induced surface states were 
first investigated in pure metals. In 1957, cyclotron res- 
onance measurements in tin revealed structures at low 
magnetic fields (Kip et d 1957). Then, Khaikin mea- 
sured the surface impedance of single crystals prepared 
from tin and other pure metals, and found an oscilla- 
tion at small field values which he also could not explain 
within the models existing at that time (Khaikin 1961). 

Subsequently, several other groups published sim- 
ilar results (Fawcett and Walsh 1962, Koch and Kuo 
1965). The so-called skipping orbits which describe the 
classical path of electrons moving in a magnetic field 
and colliding with a surface have been put forward as an 
explanationfor the observed oscillati6ns of the surface 
impedance (d'Haevens and Carter 1965, Khaikin 1966). 
Figure 2 shows schematically these classical trajectories 
of an electron moving in a magnetic field at the edge of a 



A tömbi energiasajátállapotok “csavarodhatnak” 
a Brillouin-zónában. Hányszor = Chern-szám.  

E(k): Lokális információ (pl csoportsebesség, 
gap)

|n(k)⟩ extra struktúra, 
tartalmaz globális 
információt is

impulzus k mint adiabatikusan hangolható paraméter:
- Chern-szám = Berry-görbület integrálja a Brillouin-zónára
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Kvantum Hall-effektusnál az élállapotok száma (TKNN 1983):
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Tömbi energiasajátállapotok csavarodása ↔ 

topologikusan védett élállapot. Ez a tömb-él 
korrespondancia

Topologikus szigetelők: Alacsony energiás fizika csak a széleken játszódhat le, 
“topologikusan védett” tulajdonságok a tömbi rész “csavarodásától” függnek

Thouless, Kohmoto, Nightingale, van Nijs, 1983: kapcsolat a Chern-számmal

40 August 2003    Physics Today http://www.physicstoday.org

of the prior measured result. In quantum mechanics, re-
producing the state of the system does not necessarily re-
produce the measurement outcome. So one cannot conclude
from gauge invariance alone that the same number of elec-
trons is transferred in every cycle of the pump.

Why, then, is the Hall conductance quantized? To com-
plete the argument, one has to explain why the mean
transferred charge, averaged over many pump cycles, is
indeed quantized. That’s where topological quantum num-
bers come into play: Chern numbers quantize averages. 

Adiabatic curvature
In 1981, Michael Berry discovered that the phase accumu-
lated by the wavefunction undergoing adiabatic evolution
has a particular geometric component, now known as
Berry’s phase7 (see the article by Berry in PHYSICS TODAY,
December 1990, page 34). To explain what Berry’s phase is
and its significance for the Hall effect, let’s take a step back
and review the notion of parallel transport in geometry.

In 1917, Tulio Levi-Civita developed the modern per-
spective on the geometry of surfaces based on Karl
Friedrich Gauss’s earlier work. In the Euclidean plane,
there is an obvious notion of parallelism for vectors at dif-
ferent points. But that’s not so on a curved surface, where
there is no natural way to compare the directions of tan-
gent vectors at different points. To compare directions, we
need the notion of parallel transport.

For concreteness and simplicity, let us consider the
surface of Earth—ignoring its rotation for the moment.
The plane of a pendulum’s swing defines a direction on the
plane tangent to the surface. If the pendulum is moved
slowly from one point to another, the propagation of that
direction is a realization of parallel transport.

On the rotating planet, a Foucault pendulum is an ex-
ample of parallel transport along a line of latitude. Parallel
transport is an intriguing phenomenon, and the Foucault
pendulum never fails to fascinate visitors to science muse-
ums. John Sullivan has created an interactive Web site that
nicely illustrates parallel transport on a sphere.8 It shows
how a vector can be transported parallel to itself and yet
point in a different direction at the end of a round trip.
That’s what happens with the Foucault pendulum after 24
hours. Only at the poles and on the equator does the pen-
dulum point in the same direction as it did 24 hours earlier.

The failure of parallel transport for closed paths is a
hallmark of intrinsic curvature. In modern geometry, the
local curvature of a surface is defined as the angular mis-
match after the traversal of an infinitesimal closed loop,
divided by the loop’s area.

This notion of curvature extends to a wide range of
other situations. In particular, it lets us introduce curva-
ture into quantum mechanics. Consider a quantum Hamil-
tonian H(F,q) that depends on two angular parameters.
The parameters play a role analogous to the spherical co-
ordinates on Earth’s surface. Suppose that the Hamilton-
ian has a nondegenerate ground state at energy zero. Let

eia +c(F,q)¬ denote the ground state. We are free to choose
a as we please; it is the analog of the pendulum’s initial
direction.

Consider now a closed loop in the parameter space. If
the parameters are varied slowly, we can use the time-
dependent Schrödinger equation to transport the ground
state. The failure of parallel transport around a closed loop
is measured by Berry’s phase. In this case, the local adia-
batic curvature K of the bundle of ground states in the pa-
rameter space, defined as the limit of the Berry phase mis-
match divided by the loop area, turns out to be

K = 2 Im ∀]Fc+]qc¬. (1) 

Hall conductance as curvature 
The Hall conductance can be thought of as a curvature. To
see why, we identify the two angular parameters on which
the Hall-effect Hamiltonian depends. One of them, F, is
associated with the emf that drives the Hall current in fig-
ure 3. The second parameter, q, is related to the ammeter
that measures the Hall current. More precisely, q is cho-
sen in such a way that the Hall current takes the form: 
I = c]q H(F,q). One can treat both F and q as angular pa-
rameters because, by gauge invariance, the Hamiltonian
is periodic in both, with period F0. 

If F varies slowly and the ground-state energy is in-
dependent of F (and strictly below that of the first excited
state), the Schrödinger equation gives

∀c+I+c¬ = \cKF!! (2)

for the expectation value of the Hall current, where K is
the adiabatic curvature given by equation 1.

Equation 2 gives a linear relation between the expec-
tation value of the Hall current and the driving emf, F!! /c,
generated by the time-varying flux tube that threads the
loop. The Hall conductance is therefore \c2K. That relation
establishes the geometric interpretation of the Hall con-
ductance as curvature. 

Ludwig Boltzmann is reputed to have said that ele-
gance is for tailors. The geometric interpretation of the
Hall conductance as curvature is clearly elegant. But is
there more to it than elegance? There is: Geometry links
the Hall conductance with topological invariants. Topol-
ogy, therefore, is our next topic. 

Chern numbers 
Geometry and topology are intimately related. Let us re-
call this relation in the familiar setting of surfaces. A re-
markable relation between geometry and topology is the
formula by Gauss and Charles Bonnet: 

(3)

The integral is over a surface S without a boundary, like
the torus in figure 4, and K is the local curvature of the
surface. Therefore, K dA is the angular mismatch of par-
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Figure 3. Robert Laughlin’s 1981 gedanken experiment in-
terprets the integer Quantum Hall effect as a quantum

pump. Increasing the flux F that threads the conducting
loop by a single flux quantum constitutes a cycle of the

pump, transferring a quantized amount of charge between
the two reservoirs, A and B, connected to the two edges of

the conducting loop. The loop is everywhere subjected to a
perpendicular magnetic field B.

Laughlin, 1981: mágneses 
  fluxus fűzésével



Topologikus szigetelőkhöz nem kell mágneses tér 
(elég spin-pálya kölcsönhatás), nem kell 2D.

trivial insulator to the QSH insulator. Experimentally, we have investigated the
transport properties of HgTe samples with QW width in the range from 4.5 nm
to 12.0 nm, so as to cover both the normal and the inverted band structure
regime. The samples were grown by molecular beam epitaxy (MBE) and the
layer sequence is schematically depicted in Fig. 6. The wells are sandwiched
by Hg0.3Cd0.7Te barriers and n-type modulation doped using I-doping on both
sides of the QW layer. Recent advances in the growth of HgTe-based QW struc-

Figure 6: Schematics of the layer sequence of the MBE-grown quantum well
structures.

tures, that were incorporated in these structures are documented in Ref. [40].
For example, increasing the spacer width between the quantum well and the
doping layer results in an enhancement of the carrier mobility µ, and samples
with mobilities of several 105 cm2/(Vs) even at low densities n < 5×1011 cm−2

have been used for the actual measurements. In such samples, the elastic mean
free path is of the order of several microns.

The devices have been structured by means of optical and electron beam (e-
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2D: Kvantum spin Hall
  2005: grafén? [Fu,Kane] 
  2006: HgTe! [Bernevig, Hughes, Zhang]
  2007: kísérlet, Würzburg [Molenkamp]

All key properties of topological states have been
demonstrated for Bi2Se3 which has the simplest Dirac
cone surface spectrum and the largest band gap. In
Bi2Te3 the surface states exhibit large deviations from a
simple Dirac cone !Fig. 14" due to a combination of
smaller band gap !0.15 eV" and a strong trigonal poten-
tial !Chen et al., 2009", which can be utilized to explore
some aspects of its surface properties !Fu, 2009; Hasan,
Lin, and Bansil, 2009". The hexagonal deformation of
the surface states is confirmed by scanning tunneling mi-
croscopy !STM" measurements !Alpichshev et al., 2010";
Fig. 14. Speaking of applications within this class of ma-
terials, Bi2Te3 is already well known to materials scien-
tists working on thermoelectricity. It is a commonly used
thermoelectric material in the crucial engineering re-
gime near room temperature.

Two defining properties of topological insulators—
spin-momentum locking of surface states and ! Berry
phase—can be clearly demonstrated in the Bi2Se3 series.
The surface states are expected to be protected by T
symmetry which implies that the surface Dirac node
should be robust in the presence of nonmagnetic disor-
der but open a gap in the presence of T breaking pertur-
bations. Magnetic impurities such as Fe or Mn on the
surface of Bi2Se3 open a gap at the Dirac point #Figs.
15!a" and 15!b"$ !Xia et al., 2008; Hsieh, Xia, Qian, Wray,
et al., 2009a; Hor, Roushan, et al., 2010; Wray et al.,
2010". The magnitude of the gap is likely set by the in-
teraction of Fe ions with the Se surface and the T break-

ing disorder potential introduced on the surface. Non-
magnetic disorder created via molecular absorbent NO2
or alkali atom adsorption !K or Na" on the surface
leaves the Dirac node intact #Figs. 15!c" and 15!d"$ in
both Bi2Se3 and Bi2Te3 !Hsieh, Xia, Qian, Wray, et al.,
2009a; Xia, Qian, Hsieh, Shankar, et al., 2009". These
results are consistent with the fact that the topological

FIG. 12. !Color online" Helical fermions: Spin-momentum
locked helical surface Dirac fermions are hallmark signatures
of topological insulators. !a" ARPES data for Bi2Se3 reveal
surface electronic states with a single spin-polarized Dirac
cone. !b" The surface Fermi surface exhibits a chiral left-
handed spin texture. !c" Surface electronic structure of Bi2Se3
computed in the local-density approximation. The shaded re-
gions describe bulk states, and the lines are surface states. !d"
Schematic of the spin-polarized surface-state dispersion in
Bi2X3 !1;000" topological insulators. Adapted from Xia et al.,
2008, Hsieh, Xia, Qian, Wray, et al., 2009a, and Xia, Qian,
Hsieh, Wray, et al., 2009.
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FIG. 13. !Color online" Room temperature topological order
in Bi2Se3: !a" Crystal momentum integrated ARPES data near
Fermi level exhibit linear falloff of density of states, which
combined with the spin-resolved nature of the states suggest
that a half Fermi gas is realized on the topological surfaces. !b"
Spin-texture map based on spin-ARPES data suggest that the
spin chirality changes sign across the Dirac point. !c" The Dirac
node remains well defined up a temperature of 300 K suggest-
ing the stability of topological effects up to the room tempera-
ture. !d" The Dirac cone measured at a temperature of 10 K.
!e" Full Dirac cone. Adapted from Hsieh, Xia, Qian, Wray, et
al., 2009a.

FIG. 14. !Color online" Hexagonal warping of surface states in
Bi2Te3: ARPES and STM studies of Bi2Te3 reveal a hexagonal
deformation of surface states. Fermi-surface evolution with in-
creasing n-type doping as observed in ARPES measurements.
Adapted from Alpichshev et al., 2010.
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3D: felületen nemdegenerált Dirac-fermionok
   (1/4 grafén)

  kevés anyag, pl. Bi1-xSbx, Bi2Se3, Bi2Te3, Sb2Te3

  Fotoemissziós kísérletek, kilépő elektron spinjét is
     mérve (ARPES, SARPES, Hasan, Princeton) 



1D: Topologikusan védett élállapotok 
kvantuminformáció tárolására, feldolgozására.
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Kitaev, 1997: 2D nemábeli anionokkal 
kvantuminformáció-feldolgozás, 
Topologikus kvantumszámítógép

Majorana-fermionok lehetnek 
nemábeli anionok

1 qubit = 2 fermion = 4 Majorana

Fonással kvantumműveletek: 
Majorana energiája 0, fáziszajjal 
szemben topologikusan védett  

Majorana-fermionokat vagy
mást lát a kísérlet? 



Topologikus Szigetelők osztályai (szimmetriák és 
dimenzió alapján) dimenzióredukcióval 

összekapcsolhatók. 

Schnyder et al., 2009; Ryu et al., 2010!. The classes of
equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry "8! with !2= ±1 and/or particle-hole symmetry
"15! with "2= ±1. There are ten distinct classes, which
are closely related to the classification of random matri-
ces of Altland and Zirnbauer "1997!. The topological
classifications, given by Z, Z2, or 0, show a regular pat-
tern as a function of symmetry class and dimensionality
and can be arranged into the Periodic Table of topologi-
cal insulators and superconductors shown in Table I.

The quantum Hall state "class A, no symmetry; d=2!,
the Z2 topological insulators "class AII, !2=−1; d=2,3!,
and the Z2 and Z topological superconductors "class D,
"2=1; d=1,2! described above are entries in the Peri-
odic Table. There are also other nontrivial entries de-
scribing different topological superconducting and su-
perfluid phases. Each nontrivial phase is predicted via
the bulk-boundary correspondence to have gapless
boundary states. One notable example is superfluid
3HeB "Volovik, 2003; Roy, 2008; Schnyder et al., 2008;
Nagato, Higashitani, and Nagai, 2009; Qi, Hughes, et al.,
2009; Volovik, 2009!, in "class DIII, !2=−1, "2=+1; d
=3! which has a Z classification along with gapless 2D
Majorana fermion modes on its surface. A generaliza-
tion of the quantum Hall state introduced by Zhang and
Hu "2001! corresponds to the d=4 entry in class A or
AII. There are also other entries in physical dimensions
that have yet to be filled by realistic systems. The search
is on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized to

exist in graphene "Kane and Mele, 2005a! and in 2D
semiconductor systems with a uniform strain gradient
"Bernevig and Zhang, 2006!. It was subsequently pre-
dicted to exist "Bernevig, Hughes, and Zhang, 2006! and
was then observed "König et al., 2007! in HgCdTe quan-
tum well structures. In Sec. III.A we introduce the phys-
ics of this state in the model graphene system and de-
scribe its novel edge states. Section III.B reviews the
experiments, which have also been the subject of the
review article by König et al. "2008!.

A. Model system: Graphene

In Sec. II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and T
symmetry. That argument ignored the spin of the elec-
trons. The spin-orbit interaction allows a new mass term
in Eq. "3! with respect to all of graphene’s symmetries.
In the simplest picture, the intrinsic spin-orbit interac-
tion commutes with the electron spin Sz, so the Hamil-
tonian decouples into two independent Hamiltonians for
the up and down spins. The resulting theory is simply
two copies of the model of Haldane "1988! with opposite
signs of the Hall conductivity for up and down spins.
This does not violate T symmetry because time reversal
flips both the spin and #xy. In an applied electric field,
the up and down spins have Hall currents that flow in
opposite directions. The Hall conductivity is thus zero,
but there is a quantized spin Hall conductivity, defined
by Jx

↑−Jx
↓=#xy

s Ey with #xy
s =e /2$—a quantum spin Hall

effect. Related ideas were mentioned in earlier work on
the planar state of 3He films "Volovik and Yakovenko,
1989!. Since it is two copies of a quantum Hall state, the
quantum spin Hall state must have gapless edge states
"Fig. 5!.

TABLE I. Periodic table of topological insulators and superconductors. The ten symmetry classes are labeled using the notation
of Altland and Zirnbauer "1997! "AZ! and are specified by presence or absence of T symmetry !, particle-hole symmetry ", and
chiral symmetry %="!. ±1 and 0 denote the presence and absence of symmetry, with ±1 specifying the value of !2 and "2. As
a function of symmetry and space dimensionality d, the topological classifications "Z, Z2, and 0! show a regular pattern that repeats
when d→d+8.

Symmetry d

AZ ! " % 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0
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Dimenzióredukció összeköti a táblázat 
elemeit, 8-dimenziós periodicitás 

[Schnyder, Ryu, Furusaki, Ludwig, 2008]
- időtükrözési Θ 
- részecske-lyuk Ξ

Kristályszimmetria helyett (sérülékeny) 
alapvető, antiunitér szimmetriái: 

+ a kompozíciójuk, királis (unitér) Π=ΘΞ  

Kristályszimmetriák hatása?  Kölcsönhatások figyelembevétele? 



Kevés topologikus szigetelő anyag létezik. 
Mesterséges anyagok, modellrendszerek 

kerestetnek.



A kvantumos bolyongás jól kontrollált 
modellrendszer

• ultrahideg atomok optikai rácsban
 Meschede-csoport, Science (2009)

- Cs atomok, 10μK,|F=4,mF=4〉és |F=3,mF=3〉 

- eltérő cirkulárisan poláris fénnyel csapdázhatók
- csapda mélysége 80μK

• Fényimpulzusok optikai asztalon
Silberhorn group (2010)
elmélet: Gábris Aurél (Prága)

- Anderson-lokalizáció (2011)
- Kölcsönhatás szimulációja 

(Science, 2012)

2

FIG. 1: (A) Experimental setup. Our photon source is a pulsed diode laser with pulse width 88ps, wavelength
805nm and repetition rate 110kHz. The photons are initialized at position |x1, x2� = |0, 0� in horizontal polarization
(corresponding to coin state |c1, c2� = |− 1,−1�). Once coupled into the setup through a low reflectivity beam
splitter (BS, reflectivity 3%), their polarization state is manipulated with an EOM and a half-wave plate (HWP).
The photonic wave packets are split by a polarizing beam splitter (PBS) and routed through single-mode fibres
(SMF) of length 135m or 145m, implementing a temporal step in the x2 direction. Additional HWPs and a second
PBS perform a step in the x1 direction based on the same principle. The split wave packet after the first step with
equal splitting is indicated in the picture. At each step the photons have a probability of 12% (4%) in loops x1 − 1
(x1 + 1) of being coupled out to a polarization and hence coin state resolving detection of the arrival time via four
avalanche photodiodes (APDs). Including losses and detection efficiency, the probability of a photon continuing the
walk after one step is 52% (12%) without (with) the EOM. (B) Projection of the spatial lattice onto a
one-dimensional temporally encoded pulse chain for step one and two. Each step consists of a shift in both x1

direction, corresponding to a time difference of ∆τ1 = 3.11ns, and x2 direction with ∆τ2 = 46.42ns.

changed, whereas the step operator updates the position
according to the new coin value. Explicitly, with a so-
called Hadamard coin ĈH = Ĥ1⊗ Ĥ2, a single step in the
evolution is defined by the operators,

Ĥi|xi,±1� → (|xi, 1�± |xi,−1�)/
√
2, ∀i = 1, 2

Ŝ|x1, x2, c1, c2� → |x1 + c1, x2 + c2, c1, c2�. (1)

The evolution of the system proceeds by repeatedly ap-
plying coin and step operators on the initial state |ψin�,
resulting in |ψn� = (ŜĈ)n|ψin� after n steps. The step
operator Ŝ hereby translates superpositions and entan-
glement between the coin parameters directly to the spa-
tial domain, imprinting signatures of quantum effects in
the final probability distribution.

We performed 2D quantum walks with photons ob-
tained from attenuated laser pulses. The two internal
coin states are represented by two polarization modes
(horizontal and vertical) in two different spatial modes
[App. 1], similar to the proposal in [30]. Incident pho-
tons follow, depending on their polarization, four differ-
ent paths in a fiber network (Fig. 1A). The four paths
correspond to the four different directions a walker can
take in one step on a 2D lattice. Different path lengths
in the circuit generate a temporally encoded state, where
different position states are represented by discrete time-
bins (Fig. 1B). Each round trip in the setup implements
a single step operation while the quantum coin opera-
tion is performed with linear optical elements (half-wave

Unitér folyamat: |Ψ(t+ 1)� = U |Ψ(t)� = SR(θ)|Ψ(t)�

qubit Θ szögű forgatása
részecske eltolása, qubit értéke szerint balra vagy jobbra
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 Heff bonyolult: Első-és távolabbi szomszéd hoppingok, spin-pálya csatolás

Diszkrét hely ⇒ kváziimpulzus, megszorítva 
a Brillouin-zónára:

1 Discrete time quantum walk

|Ψ� =
N�

x=1

(Ψx,↑|x� ⊗ |↑�+Ψx,↓|x� ⊗ |↓�) . (1)

The dynamics is given by the unitary timestep operator, consisting of a
rotation of the spin followed by a spin-dependent translation,

|Ψ(t+ 1)� = U |Ψ(t)�; (2)

U = TR. (3)

x ∈ Z (4)

t ∈ N (5)

The operator T translates the walker to the left(right) if its spin is pointing
left(right):

T =
�

x

�
|x− 1��x|⊗ |↓��↓|+ |x+ 1��x|⊗ |↑��↑|

�
(6)

The coin operator R is the unitary rotation, or “coin flip” operator, diagonal
in x,

R =

�
cos θ − sin θ
sin θ cos θ

�
= e−iθσy (7)

R
�π
4

�
=

1√
2

�
1 −1
1 1

�
(8)

with a possibly x-dependent unitary operator R(x) acting only on the internal
degree of freedom. Rudner et al. take R(x) as a homogeneous rotation of the
spin around the y axis by an angle θ, which is an important parameter:

R(x) ≡ R(θ) = exp(−iθσy/2). (9)

We picked σy in the definition above, but since it is only the

|k� =
�

x

e−ikx|x� (10)

−π < k < π (11)

T =
�

k

�
eik|↑��↑|+ e−ik|↓��↓|

�
⊗ |k��k| =

π�

k=−π

|k��k|eikσz . (12)

U = eikσze−iθσy/2 = cos k cos θ − i {sin k sin θσx + cos k sin θσy + sin k cos θσz}
(13)

1

3D valós egységvektor
3 Pauli mátrixból álló vektor

kvázienergia

Diszkrét idő ⇒ kvázienergia, megszorítva 
egy energia-Brillouin-zónára:

Outline
The Conventional 1D Quantum Walk

Edge State at Lattice Edges

Definition of the Walk
Effective Hamiltonian
Symmetries, topological phases

Effective Hamiltonian, Quasienergy

U(k) = S(k)R = e
−ikσz e

−iθσy

E=Θ

E=Θ

Effective Hamiltonian:

U = Te−i
� 1
0 Hexp(t)dt ≡ e

−iH

� Discrete positions →
quasimomentum, restricted to
Brillouin Zone, −π < k < π

� Time-Reversal Invariant Momenta:
k = 0,±π

� Discrete time → quasienergy,
restricted to Brillouin Zone,
−π < E < π

� Particle-Hole Symmetric Energies:
E = 0,±π

Time Evolution: Unitary Timestep (Floquet) Operator

Janos Asboth Edge States at the Edges of Quantum Walks

2

At variance with Kitagawa et al.
?
, we find two different

topological phases for the simple 1D quantum walk. A

spatial boundary between domains with different topol-

ogy hosts a pair of topologically protected bound states.

We show that a naive way to determine the relative val-

ues of these invariants is in line with the definition of

the topological invariant for periodically driven quantum

systems due to Jiang et al.
?
.

In Section V we consider the quantum walk on a finite

line. Termination of the lattice by a completely reflective

coin operator and “open boundary conditions” by cutting

the links have already been considered, but we rederive

the results using the bulk-boundary correspondence for

completeness. Cutting the links at the boundary leads

us to a generalization of the discrete time quantum walk

which is equivalent to the split-step walk
?
. We find that

the split-step walk has a Z2 × Z2 topological invariant,

which is unique to periodically driven quantum systems.

We map out the parameter space of the split-step walk.

This allows us to predict that a generic 1D particle-hole-

symmetric discrete time quantum walk has a single topo-

logically protected edge state at each “open boundary”,

with energy E = 0 or E = π, depending on the topology

of the bulk and on how the link at the boundary is cut.

This is in contrast to boundaries defined by reflective

coins, where either a pair of bound states with energies

E = 0 and E = π are present, or no bound states at

all. Finally, we provide a striking example of the way in

which periodically driven systems have topological fea-

tures not present in their effective lattice Hamiltonians:

A boundary between two quantum walks with the same
bulk timestep operator supporting a pair of edge states

with energies E = 0 and E = ±π.

II. DISCRETE TIME QUANTUM WALK

The quantum walk we consider in this paper is a stan-

dard extension of the common discrete-time quantum

walk. We consider a particle with a discrete position

degree of freedom, x = 0, . . . , N , and two internal (coin)

states, labeled ↑ and ↓. Thus, the quantum state of the

particle can be represented by a complex 2N -component

vector:

|Ψ� =
N�

x=1

(Ψx,↑|x� ⊗ |↑�+Ψx,↓|x� ⊗ |↓�) . (1)

The dynamics of the quantum walk is given by a uni-

tary timestep (Floquet) operator, consisting of a rotation

of the spin followed by a spin-dependent shift of the par-

ticle,

|Ψ(t+ 1)� = U |Ψ(t)� = SR|Ψ(t)�. (2)

This is illustrated in Fig. 1. Conveniently, we choose the

unit of time to be the period of the time evolution, the

unit of position the period of the lattice, and set � = 1.

FIG. 1: The discrete-time quantum walk. A spin-1/2 particle
starting from a site of a discrete lattice undergoes alternat-
ing spin rotations R and spin-z dependent unitary shifts S.
The first few timesteps are shown representing the effect of
interference.

The operator S translates the particle by one lattice

site to the left (right), if its spin is pointing down(up),

S =

N�

x=1

�
|x− 1��x|⊗ |↓��↓|+ |x+ 1��x|⊗ |↑��↑|

�
. (3)

Periodic boundary conditions are taken, i.e., N + 1 = 1.

For a translation independent bulk, we use the Fourier

transform, |k� = 1√
N

�
x
e
−ikx|x�, and can write the par-

ticle shift operator as

S =

�

k

�
e
−ik|↑��↑|+ e

ik|↓��↓|
�
⊗ |k��k| = e

−ikσz . (4)

Here and in the following the operators σx,y,z denote the

Pauli matrices acting on the internal “pseudospin” degree

of freedom, with basis states |↑�, |↓�.
The coin operator R is a unitary rotation in the inter-

nal space of the particle (corresponding to the “coin flip”

in the classical walk.) It is diagonal in x,

R =

�

x

|x��x|⊗R(x). (5)

We require [R(x), R(x
�
)] = 0 and σzR(x)σz = R(x)

−1
for

every x, x
�
, in order to ensure particle-hole symmetry (see

details later). In that case, without any loss of generality,

we can take R(x) to be a unitary rotation of the spin

around the y axis by a position-dependent angle θ,

R(x) = R(θ(x)) = exp(−iθ(x)σy). (6)

A. Effective Hamiltonian

To realize the quantum walk, we need an experimental

setup with time-dependent external fields. Denoting the

explicitly time-dependent Hamiltonian by H(t), we have

U = Te−i
� 1

H(t)dt
, (7)

where T is the time-ordering operator. Taking the loga-

rithm of U , we can associate a time-independent effective
Hamiltonian Heff to this unitary operator (cf. Floquet

theory), defined as

U = e
−iHeff . (8)

In the translation invariant bulk, the time evolution op-

erator is diagonal in momentum space, U =
�

k
U(k) ⊗

|k��k|, with

U(k) = e
−iHeff(k) = e

−ikσze
−iθσy (9)

3

Heff(k) = E(k)�n(k)�σ (10)

In the bulk, the quantum walk realized by H(t) stro-
boscopically simulates the time evolution via Heff. The
eigenvalues of the effective Hamiltonian Heff are the
quasienergies, which can be restricted to an energy Bril-
louin zone −π, . . . ,π, in the same way as the quasimo-
menta are restricted to the first Brillouin zone. Since
U is a product of SU(2) operators, its determinant is 1,
thus Heff has to be traceless, and the spectrum has to be
symmetric around E = 0. Note that this is a property of
the spectrum and not of Heff(k), and in itself implies nei-
ther particle-hole symmetry (ensured by our choice of R)
nor chiral symmetry (absent in this system: see Section
III C) of the effective Hamiltonian Heff. However, it does
mean that there can be no winding in quasienergy? .

III. SYMMETRIES AND GAPS

To understand what topological phases and topologi-
cally protected edge states the quantum walk might have,
we need to examine the symmetries and the related pro-
tected gaps of the effective Hamiltonian.

A. Particle-Hole Symmetry

In position and σz-basis, matrix of U is real:

U
∗ = U

�
e
−iHeff

�∗
= e

+iH
∗
eff = e

−iHeff

H
∗
eff = −Heff; =⇒ H

∗
eff(−k) = −Heff(k)

For stationary states |Ψ�:

Heff|Ψ� = E|Ψ� =⇒ H
∗
eff|Ψ�∗ = E|Ψ�∗

Heff|Ψ�∗ = −E|Ψ�∗

Thus we have Particle-Hole Symmetry (PHS), with
P

2 = 1. It is represented by complex conjugation:
E ↔ −E; |Ψ� ↔ |Ψ�∗? .

Eigenstates of the quantum walk with energy 0 or π
can be their own particle-hole symmetric partners – this
happens if their wavefunctions are real. If there is a bulk
gap around these states (if these are midgap states), their
energies can be protected against particle-hole symmetric
perturbations.

B. Sublattice Symmetry

The lattice on which the walk takes place is bipartite:
we can assign each lattice site j to one of the sublattices
α and β, with every link connecting sites from different

sublattices. Moreover, the lattice of the unitary timestep
operator itself is bipartite:

U =
�

�jl�

Ujl|j��l|+ Ulj |l��j| : j ∈ α; l ∈ β, (11)

where the Ujl = �j|U |l� are operators in spin space. This
leads to a symmetry of the effective Hamiltonian? , that
is sometimes called “chiral symmetry”? . Since this sym-
metry arises from the bipartition of the timestep opera-
tor, we are going to call it “sublattice symmetry”.
Defining the sublattice operator τz, we can express sub-

lattice symmetry in a concise way:

τz ≡
�

j∈α

|j��j|−
�

l∈β

|l��l|; (12)

τzUτz = −U. (13)

Substituting the definiton of Heff from Eq. (8), we obtain

τzHeffτz = Heff + π. (14)

For energy eigenstates |Ψ�, this means

Heffτz|Ψ� = (E + π)τz|Ψ� (15)

Note that τz is a local operator: we can extend the
unit cell in such a way that the matrix of τz is translation
invariant, and does not link different unit cells. Moreover,
τz is independent of all of the angles θ(x), and so defines
a unitary symmetry for the whole set of Hamiltonians
{Heff(θ(x))}.
Sublattice symmetry (SLS) does not change the num-

ber of independent, symmetry protected gaps. On the
one hand, SLS implies that the bulk has a gap around
E = π if and only if it has a gap around E = 0: This de-
creases the number of independent, symmetry protected
gaps from 2 to 1. On the other hand, however, there is a
new kind of protected gap. For a state with with energy
π/2, its SLS partner can coincide with its PHS partner.
This happens, e.g., if the wavefunction is real on even
and imaginary on odd sites. Assuming there is a bulk
gap around energy π/2 (and therefore around E = −π/2
as well), the energies of this pair of states are protected
by SLS and PHS.

C. No chiral symmetry

Importantly, it is the lattice of the timestep operator
U , and not of the effective Hamiltonian Heff, that is bi-
partite. If the Hamiltonian was bipartite, that would give
us chiral symmetry, with a unitary operator W = τz, as
defined in Eq. (12), and

WHeffW
† = −Heff. (16)

Here, we find no local unitary operator W representing
such a symmetry.

|Ψ(t+ 1)� = U |Ψ(t)� = SR(θ)|Ψ(t)�
Heff = i logU

|Ψ(t)� = U t|Ψ(0)� = e−iHefft|Ψ(0)�

példa:

Minden egész t időpontban szimulálja Heff-et

Unitér időléptető operátor U: forgatás, eltolás
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FIG. 1. (Color online) (a) One-dimensional DTQW protocol.
First, the walker’s internal spin is rotated through an angle θ about the
y axis. Then, the walker is coherently translated by one lattice site to
the right (left) if its spin is up (down), respectively. The quantum walk
is produced by repeatedly applying this combined step operation.
(b) Effective band structure of 1D DTQW with θ = π/2. The spinor
eigenstates at each momentum k are directed along the unit vector
nθ (k) [see Eq. (6)], as represented on the Bloch sphere. nθ (k) always
lies on a plane perpendicular to a constant vector Aθ containing the
origin (see text). Note that nθ (k) winds around the origin once as k

traverses the Brillouin zone (BZ).

particle’s wave function. Moreover, the unprecedented control-
lability of these systems opens the possibility for systematic
investigations of quantum phase transitions between different
topological phases, and of the robustness of these phases to
a variety of perturbations including impurities, decoherence,
interactions, and explicit breaking of symmetries.

II. TOPOLOGICAL PHASES IN 1D

The 1D DTQW protocol employed in recent experi-
ments [11–16] is depicted schematically in Fig. 1(a). The
basis states of the system are described in terms of the
position of the walker, defined on integer lattice sites x, and
its internal spin state, which can be either up (↑) or down (↓).

FIG. 2. (Color online) Topological phases realized by DTQWs.
DTQWs can naturally realize all ten classes of nontrivial topological
phases in 1D and 2D, see Refs. [43,44]. TRS and PHS are defined
by the existence of antiunitary operators T and P satisfying Eqs. (7)
and (8), and may be absent, or present with T 2 = ±1 (P2 = ±1).
In the absence of both TRS and PHS, a distinct chiral symmetry
with a unitary # satisfying Eq. (9) may be found. In each case, the
symmetry-allowed phases are classified by an integer (Z) or binary
(Z2) topological invariant. Classes containing the SSH model [17],
IQH [19,20], and quantum spin Hall (QSH) [21–25] phases are
indicated.

The quantum evolution is produced by repeatedly applying a
unitary operation,

U (θ ) = T R(θ ), (1)

that defines one step of the quantum walk. Each step consists
of a spin rotation R(θ ), followed by a coherent spin-dependent
translation,

T =
∑

x

[|x + 1〉〈x| ⊗ | ↑〉〈↑ | + |x − 1〉〈x| ⊗ |↓〉〈↓ |], (2)

that shifts the walker to the right (left) by one lattice site if its
spin is up (down). This step protocol is a unitary generalization
of the classical process in which a random walker hops left or
right according to the outcome of a stochastic coin flip. Here,
as in the experiments of Refs. [11–13], we consider the case
where R(θ ) corresponds to a spin rotation around the y axis
through an angle θ ,

R(θ ) =
[

cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

]
. (3)

Although the step protocol is defined explicitly in terms of
the discrete unitary operations T and R(θ ), the net evolution
over one step is equivalent to that generated by a time-
independent effective Hamiltonian H (θ ) over the step time
δt ,

U (θ ) = e−iH (θ) δt , h̄ = 1. (4)

The evolution operator for N steps is given by UN (θ ) =
e−iH (θ)N δt . Thus, the DTQW provides a stroboscopic simu-
lation of the evolution generated by H (θ ) at the discrete times
N δt . In the following, we take units in which δt = 1.

The DTQW protocol described earlier is translationally
invariant. The evolution operator U (θ ) and the Hamiltonian
H (θ ) are thus diagonalized down to 2 × 2 blocks in the basis
of Fourier modes |k〉 ⊗ |σ 〉 = 1√

2π

∑
x e−ikx |x〉 ⊗ |σ 〉, with

−π ! k < π . For the choice of R(θ ) in Eq. (3), H (θ ) can
be written as

H (θ ) =
∫ π

−π

dk [Eθ (k) nθ (k) · σ ] ⊗ |k〉〈k|, (5)

where σ = (σx,σy,σz) is the vector of Pauli matrices and the
unit vector nθ (k) = (nx,ny,nz) defines the quantization axis
for the spinor eigenstates at each momentum k. Because the
evolution is prescribed stroboscopically at unit intervals, the
eigenvalues ±Eθ (k) of H (θ ) are only determined up to integer
multiples of 2π . The corresponding band structure is thus
a quasienergy spectrum, with 2π periodicity in energy. For
θ )= 0 or 2π , explicit expressions for Eθ (k) and nθ (k) are
given by cos Eθ (k) = cos (θ/2) cos k and

nθ (k)= [sin (θ/2) sin k, sin (θ/2) cos k, − cos (θ/2) sin k]
sin Eθ (k)

.

(6)

A typical band structure ±Eθ (k) is shown in Fig. 1(b). Note
that for θ∗ = 0 or 2π , the spectrum of H (θ∗) is gapless, and
nθ∗ (k∗) is ill defined for k∗ = 0,π .

Hamiltonians of the form (5) can support topological phases
if they possess certain symmetries, as indicated in Fig. 2. The
TRS and PHS of this table are defined by the existence of
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FIG. 1: Split-step quantum walk experiment. A polarization-encoded single photon, created via spontaneous parametric downconversion

(SPDC), undergoes a succession of steps consisting of rotations, R(θ1), R(θ2) and translations, T1, T2, implemented by half-wave plates

and birefringent beam displacers respectively [16]. In the split-step protocol [10], the two translations displace first |H� and then |V �;

experimentally, we implement such translations through birefringent beam displacers and by shifting the lattice origin by +1 site after each

full step. To probe the topological properties of the quantum walk, semi-circular half-wave plates are used to create spatially inhomogeneous

rotations, R(θ1−), R(θ1+). The output probability distribution is imaged with a single-photon avalanche detector.

k

E 0

0

0

1 11

1 11

0

0

0

CBA

FIG. 2: A, A typical band structure of the effective Hamiltonian Heff(θ1, θ2) for the split-step quantum walk (Here, θ1=π/2 and θ2=0). The

two bands correspond to the eigenvalues of Heff(θ1, θ2). For most θ1 and θ2, the bands display a gap. B, Topology of Heff(θ1, θ2). Each

eigenstate of Heff(θ1, θ2) with momentum k corresponds to a point on a Bloch sphere, illustrated by the symbols in A. As k runs from −π to

π, the states follow a closed trajectory around a great circle, and the winding number W characterizes the topology of Heff(θ1, θ2). C, Phase

diagram of Heff(θ1, θ2) which shows the winding number W as a function of θ1 and θ2. The transition lines correspond to points where the

spectral gap closes at eigenvalues E=0 (black solid line) and E = π (red dotted line).

structure of Heff(θ1, θ2) is due to a chiral symmetry [10]. In

translationally invariant systems with this symmetry, the po-

larization of an eigenstate of Heff(θ1, θ2) with momentum k,

when represented as a spinor on the Bloch sphere, follows a

path along a great circle as the momentum k goes from −π to

π (see Fig. 2B and Appendix B). The topology is then char-

acterized by the winding number W of this path around the

origin. For the split-step quantum walk, two distinct phases

with W=0 and W=1 exist, see Fig. 2C.

A striking consequence of non-trivial topology is the ap-

pearance of localized states at boundaries between two topo-

logically distinct phases [10, 19, 21, 29]. Because our exper-

imental setup allows access to individual lattice sites, we are

able to probe this phenomenon by creating a boundary be-

tween regions where dynamics are governed by two gapped

Hamiltonians Heff(θ1−, θ2) and Heff(θ1+, θ2) characterized

by winding numbers W− and W+. Here we choose to create

the boundary by making θ1 inhomogeneous with θ1(x)=θ1−

for lattice positions x<0 and θ1(x)=θ1+ for x≥0. When

W− �= W+, it is expected that topologically robust localized

states exist at the boundary near x = 0. This can be under-

stood in a heuristic fashion as follows. When W− �= W+,

Kísérlet, 1D: [Kitagawa, ..., White, Nature Comm 
2012)]

Heff manipulálása, pl:
  - spinforgatás más tengelyek körül
  - Hilbert-tér megkettőzése
  - kísérleti szekvencia megkettőzése
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FIG. 4: a, Phase diagram, with symbols indicating the parameters (θ1−, θ1+, θ2), and winding numbers for each experimental case. b,
Experimental probability distributions, with θ2=0. In case 4 we observe oscillatory probabilities around x=0, indicating the presence of at
least two bound states with the quasi-energy difference of π. They are absent in case 5 for initial polarization of |H�. Other initial polarizations
and parameters have been implemented and the result is presented in SI. The bar graphs compare the measured (blue) and predicted (yellow)
probabilities after the seventh step. c, Quasi-energy spectrum of case 4. In addition to the E=0 (red dot) bound state, there is a E=π bound
state (blue star), whose topological origin is described in the text and SI.

the photon is expected to spread ballistically, with the detec-
tion probability at the origin quickly decreasing to zero. How-
ever, if there is a bound state, the bound state component of
the initial state will remain near this boundary even after many
steps.

We first implemented split-step quantum walks with
θ2=π/2 and θ1− and θ1+ such that W−=W+=1, shown as
case 1 on the phase diagram in Fig. 3a. In both cases 1a and
1b in Fig. 3b with the initial polarization of |H� and |V �, re-
spectively, the detection probability at the origin quickly de-
creases to zero. On the other hand, for case 2 in Fig. 3b with
parameters chosen to create a boundary between topologically
distinct phases W−=1 and W+=0, we observe the existence
of at least one bound state as a peak in the probability dis-
tribution near the origin after four steps. This boundary state
is a direct analogue of the zero-energy states of the SSH and
Jackiw-Rebbi models [19, 21]. The quasi-energy E of the lo-
calized state, i.e. the eigenvalue of the effective Hamiltonian
associated with this state, can be found by explicit calcula-
tion, see Fig. 3c. Here we indeed find a single state at E = 0.

The versatile control over parameters in our experimental ap-
paratus allows the test of the robustness of these states against
a variety of changes in microscopic parameters, which is a
universal feature of topological states [19, 21]. To test this,
we implemented case 3 where θ1− and θ1+ are shifted from
those of case 2 while maintaining W−=1 and W+=0, and
confirmed the existence of a bound state in Fig. 3b. In addi-
tion, we study the effects of controlled amounts of decoher-
ence on the bound states and present the result in Appendix
C.

Our experiment also reveals a new topological phenomenon
unique to periodically driven systems, which can be probed
by studying split-step quantum walks with θ2=0, see Fig. 4.
With the appropriate choice of basis (see Appendix D), this
quantum walk becomes equivalent to the one described by the
one-step operator U=iTR(θ1), where T=T1T2 can be imple-
mented with a single beam displacer, extending the experi-
ment to seven steps. This class of quantum walks can only
realize a single topological phase characterized by the wind-
ing number W=0. Therefore we do not expect bound states

 Elmélet: [Kitagawa, Rudner, Berg, Demler,
PRA 2010]
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Hamilton-operátor nem ad számot.
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FIG. 6: Timesteps for a walker started from an edge. Con-
tionuous (dotted) circles and lines correspond to the sites and
links of the bulk (boundary). The timesteps are broken down
to 4 successive operations, as in Eq.(33), each occurring in
1/4 time. Continuous (dotted) circles and lines correspond to
the sites and links of the bulk (boundary). For simplicity, the
bulk is taken with θ = π/2, and φ = 0: a simple quantum
walk. The boundary has θ = π/2, and cut links: φ = π/2. If
the reflection is on a cut link (a), there is a protected midgap
edge state with energy π. If the reflection happens on a re-
flective coin (b), during two timesteps, the walker acquires
a phase of (-1). Superpositions of the states at t = 0 and
t = 1 with a relative phase of i (−i) are therefore stationary
states with energy −π/2 (π/2), not protected by particle-hole
symmetry.

rameters θ and φ:

U2 = S↑R(φA,φB)S↓R(θA, θB), (37)

with the inhomogeneous rotation operator R(θA, θB) de-
fined as in Eq. (21). Taking φB = φA+π and θB = θA+π,
the translationally invariant bulk time evolution opera-

tors of the two domains read

UA = S↑e
−iφAσyS↓e

−iθAσy (38)

UB = S↑e
−i(φA+π)σyS↓e

−i(θA+π)σy . (39)

Note that since e−iπσy = −1, we have

UA = UB . (40)
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FIG. 7: Two successive timesteps of a quantum walk, with
a walker started in bulk A (a), at a sharp boundary (b), or
in bulk B (c). Each timestep is broken down to its 4 stages,
given by the 4 factors in U2(k) = S↑R(0,π)S↓R(π/2,−π/2),
with R(θA, θB) as defined in Eq.(21), with x ∈ A ↔ x <
1. In each case, the walker returns to its initial site after 2
timesteps. In the bulk, during the 2 timesteps a phase factor
of (-1) is acquired by the walker, showing that stationary
states (superpositions of the states at t = 0 and t = 1 with
relative phase ±i) have quasienergy ∓π. At the boundary,
this factor is (+1), therefore even and odd superpositions of
the states at t = 0 and t = 1 are stationary states with energy
0,π. These are at the topologically protected midgap states.

As can be seen from the phase map, Fig.5, the simplest

path in the parameter space connecting two such points

intersects gap closings at E = 0 and at E = π once.

Thus, there are 2 edge states between these two bulks,

with energies 0 and π.
Perhaps the simplest concrete example is a boundary

between φ = 0, θ = π/2, and φ = π, θ = −π/2. We

illustrate this in Fig. 7.

VI. CONCLUSIONS

In this paper we revisited the topological phases of the

1-dimensional quantum walk. To begin, we identified

the symmetries of the corresponding effective Hamilto-

nian. In contrast with the literature, we find that the

Hamiltonian belongs to class D, i.e., it has a Particle-

Hole Symmetry that squares to 1, and no other symme-

tries. We argue that the property of the homogeneous

quantum walk identified as Chiral Symmetry should not

UA=UB  ⇒  Heff(A)=Heff(B)

A két tömb határán mégis védett 
élállapotok

[Asboth, PRB 2012]

A B
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walk. The boundary has θ = π/2, and cut links: φ = π/2. If
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edge state with energy π. If the reflection happens on a re-
flective coin (b), during two timesteps, the walker acquires
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t = 1 with a relative phase of i (−i) are therefore stationary
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Periodikusan gerjesztett rendszerek topologikus 
invariánsai megjelennek a kvantumos 

bolyongásban is.  

Részecske-lyuk szimmetria,1D: 
                    Z2 helyett Z2xZ2 invariáns [Jiang, ..., Zoller, PRL 2011] 

Kvantumos bolyongás: Z2xZ2 invariáns, 
     sávbezáródások számolásával [Asboth, PRB 2012] 

Királis szimmetria, 1D bolyongás: 
                    ZxZ invariáns, időeltolt vonatkoztatási rendszerekkel 
                              [Asboth&Obuse, arxiv 2013] 
                    Periodikusan gerjesztett rendszerekre: ZxZ invariáns 
                              [Asboth&Delplace, unpublished, 2013] 

“Floquet topological insulators”, [Dóra Balázs, BME, 2013]

Szimmetriák nélkül,2D: 
                    extra Z invariáns [Rudner et al, PRX 2013]
                  Kvantumos bolyongásra alkalmazható [Asboth&Edge, unpublished 2013]
                



Topologikus szigetelők és a kvantumos bolyongás

• Dimenziótól, szimmetriától függően diszkrét számú, robusztus, vezető 
élállapot 

• Szilárdtestek: diszperziós reláción túl H(k) topológiája, 
csavarodási szám, Chern-szám, vagy bonyolultabb 
(Z2-invariáns)

• 1D: Kvantumszámítógép építésére hasznos lehet

• Nemkölcsönható rendszerek teljes osztályozása, “periódusos 
rendszer”. 

• Kvantumos bolyongás szimulálhat topologikus szigetelőket

• Diszkrét időlépés → kvázienergia, periodikus (Brillouin-zóna)

• Szimmetriák bonyolultabbak, új topologikus fázisok, invariánsok

• Kapcsolat periodikusan gerjesztett rendszerekkel 

Magyary Ösztöndíj, Nemzeti Kiválóság Program, TÁMOP 4.2.4. A-1-11-1-2012-0001, 
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