IIf|둘

Topologikus szigetelők és modellrendszerek

Asbóth János

Wigner FK SZFI
Nemlineáris és Kvantumoptika Osztály
Kvantummérés Csoport

Elektromos szigetelő tömbi része szigetel. A minta felülete vezethet, esetleges élállapotokon keresztül, ezek azonban könnyen lokalizálódnak.

Minta széle:

- Alacsony dimenziós
- Erősen rendezetlen (szennyező atomok, felület)

Anderson-lokalizáció \rightarrow "zárt csatornák", nincs vezetés

Erős mágneses térben garantált élállapotok alakulnak ki. Ezeket a rendezetlenség nem tudja lokalizálni ("topologikus védelem", tökéletesen vezető csatornák).

- Kvantum Hall effektus
- Töltésmegmaradás: honnan ¡ött? Hova megy?
- Pontosan kvantált vezetés, Hallellenállás

A tömbi energiasajátállapotok "csavarodhatnak"
a Brillouin-zónában. Hányszor = Chern-szám.

$\mathrm{E}(\mathrm{k})$: Lokális információ (pl csoportsebesség, gap)
| $\mathrm{n}(\mathrm{k})\rangle$ extra struktúra, tartalmaz globális információt is
impulzus \mathbf{k} mint adiabatikusan hangolható paraméter:

- Chern-szám = Berry-görbület integrálja a Brillouin-zónára

Kvantum Hall-effektusnál az élállapotok száma (TKNN 1983):

$$
\begin{aligned}
& A_{\mu}^{(n)}(k)=-i\langle n(k)| \partial_{k_{\mu}}|n(k)\rangle \\
& F_{x y}^{(n)}(k)=\partial_{k_{x}} A_{y}-\partial_{k_{y}} A_{x} \\
& C^{(n)}=\frac{1}{2 \pi} \int d k_{x} d k_{y} F_{x y}^{(n)}(k)
\end{aligned}
$$

$$
N=\sum_{n<0} C^{(n)}
$$

Tömbi energiasajátállapotok csavarodása ↔ topologikusan védett élállapot. Ez a tömb-él korrespondancia

Laughlin, 1981: mágneses
fluxus fúzésével

Thouless, Kohmoto, Nightingale, van Nijs, 1983: kapcsolat a Chern-számmal

Topologikus szigetelők: Alacsony energiás fizika csak a széleken játszódhat le, "topologikusan védett" tulajdonságok a tömbi rész "csavarodásától" függnek

Topologikus szigetelőkhöz nem kell mágneses tér (elég spin-pálya kölcsönhatás), nem kell 2D.

2D: Kvantum spin Hall 2005: grafén? [Fu,Kane] 2006: HgTe! [Bernevig, Hughes, Zhang] 2007: kísérlet, Würzburg [Molenkamp]

3D: felületen nemdegenerált Dirac-fermionok (1/4 grafén)
kevés anyag, pl. $\mathrm{Bi}_{1-x} \mathrm{Sb}_{x}, \mathrm{Bi}_{2} \mathrm{Se}_{3}, \mathrm{Bi}_{2} \mathrm{Te}_{3}, \mathrm{Sb}_{2} \mathrm{Te}_{3}$
Fotoemissziós kísérletek, kilépő elektron spinjét is mérve (ARPES, SARPES, Hasan, Princeton)

1D: Topologikusan védett élállapotok kvantuminformáció tárolására, feldolgozására.

Majorana-fermionok In drót végein (kísérleti versenyfutás, 2012: Delft, Lund, Purdue)

Majorana-fermionokat vagy mást lát a kísérlet?

Kitaev, 1997: 2D nemábeli anionokkal kvantuminformáció-feldolgozás, Topologikus kvantumszámítógép

Majorana-fermionok lehetnek nemábeli anionok

1 qubit $=2$ fermion $=4$ Majorana
Fonással kvantummúveletek:
Majorana energiája 0 , fáziszaijal szemben topologikusan védett

annihilate pairs?
braid
braid
braid

Freedman

Topologikus Szigetelők osztályai (szimmetriák és dimenzió alapján) dimenzióredukcióval összekapcsolhatók.

Kristályszimmetria helyett (sérülékeny) alapvető, antiunitér szimmetriái:

- időtükrözési Θ
- részecske-lyuk ミ

Dimenzióredukció összeköti a táblázał elemeit, 8 -dimenziós periodicitás
[Schnyder, Ryu, Furusaki, Ludwig, 2008]

+ a kompozíciójuk, királis (unitér) $\Pi=\Theta \equiv$

Symmetry				d							
AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	Z	0	Z	0	Z	0	Z
AIII	0	0	1	Z	0	Z	0	Z	0	Z	0
AI	1	0	0	0	0	0	Z	0	Z_{2}	Z_{2}	Z
BDI	1	1	1	Z	0	0	0	Z	0	Z_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	Z	0	0	0	Z	0	\mathbb{Z}_{2}
DIII	-1	1	1	Z_{2}	Z_{2}	Z	0	0	0	Z	0
AII	-1	0	0	0	Z_{2}	\mathbb{Z}_{2}	Z	0	0	0	Z
CII	-1	-1	1	Z	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	Z	0	0	0
C	0	-1	0	0	Z	0	Z_{2}	\mathbb{Z}_{2}	Z	0	0
CI	1	-1	1	0	0	Z	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	Z	0

Kristályszimmetriák hatása? Kölcsönhatások figyelembevétele?

Kevés topologikus szigetelő anyag létezik. Mesterséges anyagok, modellrendszerek kerestetnek.

A kvantumos bolyongás jól kontrollált modellrendszer

- Fényimpulzusok optikai asztalon Silberhorn group (2010) elmélet: Gábris Aurél (Prága)

- Anderson-lokalizáció (2011)
- Kölcsönhatás szimulációja
(Science, 2012)
- ultrahideg atomok optikai rácsban Meschede-csoport, Science (2009)

- Cs atomok, $10 \mu \mathrm{~K},\left|\mathrm{~F}=4, \mathrm{~m}_{\mathrm{F}}=4\right\rangle$ és $\left|\mathrm{F}=3, \mathrm{~m}_{\mathrm{F}}=3\right\rangle$
- eltérő cirkulárisan poláris fénnyel csapdázhatók
- csapda mélysége $80 \mu \mathrm{~K}$
$|\Psi(t+1)\rangle=U|\Psi(t)\rangle=S R(\theta)|\Psi(t)\rangle$ qubit Θ szögú forgatása részecske eltolása, qubit értéke szerint balra vagy jobbra

A kvantumos bolyongás szimulál egy effektív Hamilton-operátort

Unitér időléptető operátor U: forgatás, eltolás

$$
\begin{aligned}
& |\Psi(t+1)\rangle=U|\Psi(t)\rangle=S R(\theta)|\Psi(t)\rangle \\
& |\Psi(t)\rangle=U^{t}|\Psi(0)\rangle=e^{-i H_{\text {eff }} t}|\Psi(0)\rangle
\end{aligned}
$$

Minden egész \dagger időpontban szimulálja $H_{\text {effet }}$ példa:

$$
U(k)=e^{-i H_{\text {eff }}(k)}=e^{-i k \sigma_{z}} e^{-i \theta \sigma_{y}}
$$

Diszkrét idő \Rightarrow kvázienergia, megszorítva egy energia-Brillouin-zónára: $-\pi<E<\pi$

Diszkrét hely \Rightarrow kváziimpulzus, megszorítva a Brillouin-zónára:
$H_{\text {eff }}$ bonyolult: Első-és távolabbi szomszéd hoppingok, spin-pálya csatolás

A kvantumos bolyongásban a szimmetriák hangolhatók，lehet szimulálni a topologikus szigetelők összes osztályát．

Elmélet：［Kitagawa，Rudner，Berg，Demler， PRA 2010］
$H_{\text {eff }}$ manipulálása，pl：
－spinforgatás más tengelyek körül
－Hilbert－tér megkettőzése
－kísérleti szekvencia megkettőzése

Particle－Hole Symmetry

	＋1	－1	\times	
既 +1	$\underset{\text { SSH }}{Z}$			
践 -1	Z_{2}	Z		
耧 \times	Z_{2}			$\underset{\text { Chiral }}{ }$

1D

Particle－Hole Symmetry

2D

Kísérlet，1D：［Kitagawa，．．．，White，Nature Comm 2012）］

A kvantumos bolyongásnak saját topologikus fázisai vannak, amikről a szimulált effektív Hamilton-operátor nem ad számot.

Periodikusan gerjesztett rendszerek topologikus invariánsai megielennek a kvantumos bolyongásban is.

"Floquet topological insulators", [Dóra Balázs, BME, 2013]
Részecske-lyuk szimmetria,1D:
Z2 helyett Z2xZ2 invariáns [Jiang, ..., Zoller, PRL 2011]
Kvantumos bolyongás: Z2xZ2 invariáns,
sávbezáródások számolásával [Asboth, PRB 2012]
Királis szimmetria, 1D bolyongás:
ZxZ invariáns, időeltolt vonatkoztatási rendszerekkel
[Asboth\&Obuse, arxiv 2013]
Periodikusan gerjesztett rendszerekre: $Z \times Z$ invariáns
[Asboth\&Delplace, unpublished, 2013]
Szimmetriák nélkül,2D:
extra Z invariáns [Rudner et al, PRX 2013]
Kvantumos bolyongásra alkalmazható [Asboth\&Edge, unpublished 2013]

Topologikus szigetelők és a kvantumos bolyongás

- Dimenziótól, szimmetriától függően diszkrét számú, robusztus, vezető élállapot
- Szilárdtestek: diszperziós reláción túl $H(k)$ topológiája, csavarodási szám, Chern-szám, vagy bonyolultabb (Z_{2}-invariáns)
- 1D: Kvantumszámítógép építésére hasznos lehet
- Nemkölcsönható rendszerek teljes osztályozása, "periódusos rendszer".
- Kvantumos bolyongás szimulálhat topologikus szigetelőket
- Diszkrét időlépés \rightarrow kvázienergia, periodikus (Brillouin-zóna)
- Szimmetriák bonyolultabbak, új topologikus fázisok, invariánsok
- Kapcsolat periodikusan gerjesztett rendszerekkel

Magyary Ösztöndï, Nemzeti Kiválóság Program, TÁMOP 4.2.4. A-1-11-1-2012-0001, Kvantummérés csoport, Domokos Péter, Lendület LP 2011-016

