

Atomok nagyítólencse alatt: modern transzmissziós elektronmikroszkópia az anyagtudományban

Kovács András

Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons

Peter Grünberg Institute

Forschungszentrum Jülich

Germany

ELECTRON AND X-RAY MICROSCOPY

Oxide interfaces for the many

mature materials

IMMUNOTHERAPY

NDUCTING POLYMERS

ICAL PROPERTIES quantum effects

nature

Emphasis on reforms

Imperfect twin boundaries

Model magnetic quasicrystals

Transzmissziós elektronmikroszkópia

1931

Sketch by Ernst Ruska

2011

PICO at ER-C

- 1931 Ernst Ruska, Max Knoll
- 1936 Otto Scherzer
- 1946 James Hillier, E.G. Ramberg
- 1949 Gábor Dénes
- 1998 Harald Rose, Max Haider, K. Urban
- 2005 első aberráció korrigált mikroszkópok

Richard P. Feynman "There's Plenty of Room at the Bottom" XII. 29. 1959

"The electron microscope is not quite good enough, with the greatest care and effort, it can only resolve about 10 angstroms. I would like to try and impress upon you while I am talking about all of these things on a small scale, the importance of **improving the** electron microscope by a hundred times. It is not impossible; it is not against the laws of diffraction of the electron."

by Tom Harvey, 1962

Elektromágneses lencse keresztmetszete. C - tekercs, P - pólus saru

FEI

Lencsehibák

Gömbi hiba feloldás határ

Szín hiba információ határ

Aberration	Symbol	Value	Symmetry N	Wave aberration $\mathcal{R}(\cdots)$
Beam/Image shift	A_0	complex	1	$A_0\overline{\omega}$
Defocus	C_1	real	0	$rac{1}{2}C_1\omega\overline{\omega}$
Twofold astigmatism	A_1	complex	2	$\frac{1}{2}A_1\overline{\omega}^2$
Second-order axial coma	B_2	complex	1	$B_2\omega^2\overline{\omega}$
Threefold astigmatism	A_2	complex	3	$\frac{1}{3}A_2\overline{\omega}^3$
Third-order spherical aberration	C_3	real	0	$\frac{1}{4}C_3 (\omega \overline{\omega})^2$
Third-order star-aberration	S_3	complex	2	$S_3\omega^3\overline{\omega}$
Fourfold astigmatism	A_3	complex	4	$rac{1}{4}A_3\overline{\omega}^4$
Fourth-order axial coma	B_4	complex	1	$B_4\omega^3\overline{\omega}^2$
Fourth-order three-lobe aberration	D_4	complex	3	$D_4\omega^4\overline{\omega}$
Fivefold astigmatism	A_4	complex	5	$\frac{1}{5}A_4\overline{\omega}^5$
Fifth-order spherical aberration	C_5	real	0	1 ~ /\3
Fifth-order star-aberration	S_5	complex	2	$\frac{1}{6}C_5 \left(\omega \overline{\omega}\right)^3$ $S_5 \omega^4 \overline{\omega}^2$
Fifth-order rosette aberration	R_5	complex	4	$R_5\omega^5\overline{\omega}$
Sixfold astigmatism	A_5	complex	6	$rac{1}{6}A_5\overline{\omega}^6$
Sixth-order axial coma	B_6	complex	1	$B_6\omega^4\overline{\omega}^3$
Sixth-order three-lobe aberration	D_6	complex	3	$D_6\omega^5\overline{\omega}^2$
Sixth-order pentacle aberration	F_6	complex	5	$F_6\omega^6\overline{\omega}$
Sevenfold astigmatism	A_6	complex	7	$\frac{1}{7}A_6\overline{\omega}^7$
Seventh-order spherical aberration	C_7	real	0	$\frac{1}{8}C_7 (\omega \overline{\omega})^4$
Seventh-order star-aberration	S_7	complex	2	$S_7 \omega^5 \overline{\omega}^3$
Seventh-order rosette aberration	R_7	complex	4	$R_7\omega^6\overline{\omega}^2$
Seventh-order chaplet aberration	G_7	complex	4	$G_7 \omega^7 \overline{\omega}$
Eightfold astigmatism	A_7	complex	8	$rac{1}{8}A_{7}\overline{\omega}^{8}$

Hubble space telescope

before

after

Aberration corrector using hexapoles and round lens transfer doublet

H. Rose, M. Haider, K. Urban, ...

2005

1998

TEM

Scanning TEM (STEM)

A TEM felbontás evolúciója

AIN

CM30-UT (1992) 300 kV FEG no corrector CM200-Cs (1998) 200 kV FEG Cs corrector Titan 80-300 (2005) 300 kV FEG Cs corrector PICO (2012) 300 kV X-FEG Cc & Cs corrector

Williams, Carter: TEM, Springer

Ferroelektromos domén PZT-ben

C.L. Jia et al., Nature Materials 7 (2008) 57

O oszlop YBa₂Cu₃O₇₋₈ szupravezetőben

Williams, Carter: TEM, Springer

Al₂O₃ és Co:ZnO határátmenete

TEM

STEM

+ kémiai információ

Direct-beam disk

H oszlop leképezés YH2-ban

Crystal structure of YH2, ABF image, BF and ADF STEM images.

Ishikawa etal Nature Materials 2011

Atomi felbontású EDX vagy EELS spektroszkópia

Atomi felbontású EDX

FEI - ChemiSTEM technológia

FEI - ChemiSTEM

Al₂O₃ és Co:ZnO határátmenet

Grafén

A. Geim, K. Novoselov Nobel díj 2010

"miracle material"

- Elektron mobilitás ~ 2x10⁵ cm²V⁻¹s⁻¹
- Young állandó 1 TPa (merevség) and szilárdság 130 GPa
- Magas hővezetés ~ 3000 W mK⁻¹
- Magas optikai abszorpció
- Fenntartható magas áramsűrűség
- Ellenálló

Knock-on damage of C ~ 86 kV

Sugárérzékeny szén szerkezetek

Többfalú szén nanocső

U Kaiser, Proc. MC 2009

Grafén

@ 80 kV

J. Jinschek

Atom leképezés és analitika

Suenaga, Nature 2010

Electron holográfia

Co nanokristályok mágneses tere

50 nm

Magnetoszómák

Összefoglalásul

Egy modern TEM berendezés

- nagy felbontású szerkezeti, összetételi, elektromos, mágneses és kémiai információkat képes biztosítani;
- elengedhetetlen része biológiai, kémiai, fizikai, nanotechnológiai, geológia kutatásoknak;
- sajnos drága megvenni és fenntartani;
- speciális tudású kutatókat igényel;

ESTEEM-2 http://esteem2.eu

"PICO"

Titan - "S"

Titan - "T"

"HOLO"

(Titan - "A")

4000EX

Tecnai F20

CM20 F

Helios

Nanomill