Anderson lokalizáció kvark-gluon plazmában

Kovács Tamás György

MTA Atomki, Debrecen

Pittler F., M. Giordano és S. Nishigaki

2013. augusztus 23.

Statisztikus fizika \rightarrow termodinamika

 $N \gg 1$ szabadsági fokú fizikai rendszerek:

statisztikus fizika

ightarrow termodinamika

szimmetriák

Központi határeloszlás tétel:

- N >> 1 független azonos eloszlású mennyiség átlaga Gauss eloszlású
- A határeloszlás majdnem univerzális
- Termodinamika:
 - m: átlag (pl. mágnesezettség, belső energia...)
 - σ : szórás (pl. szuszceptibilitás, fajhő...)

véletlen mátrixok statisztikus fizikája

Sok szabadsági fokú kvantumrendszer: Hamilton operátor: $N \times N$ -es Hermitikus mátrix ($N \gg 1$)

- véletlen mátrixok elmélete szimmetriák
 majdnem univerzális spektrálstatisztika
- "Szabad paraméter": állapotsűrűség $\rho(E)$
- Korrelációk a spektrumban univerzálisak
- Két lehetőség:
 - Véletlen mátrix statisztika
 - Triviális (Poisson) statisztika (pl. diagonális véletlen mátrixok, sok mátrixelem nulla...)

Szomszédos sajátértékek távolságának eloszlása

$$\boldsymbol{s} = \frac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n \rangle}$$

- λ_n statisztikusan függetlenek (Poisson)
 - $\Rightarrow p(s) = \exp(-s)$
- Véletlen mátrix statisztika

- Statisztikus fizikai rendszer 4-dimenziós kockarácson
- Dinamikai változók: $U_i \in SU(3)$ a rácséleken (gluontér)
- Dirac operátor (kovariáns): D[U]
 - U-któl függő diszkretizált differenciáloperátor
 - $\approx V \times V$ ritka mátrix (V : térfogat)
 - Minden sorban csak néhány $(\mathcal{O}(V^0))$ elem nem-nulla
 - Első szomszéd csatolások

$T < T_c$

- D[U] ritka mátrix, de: kis sajátértékek statisztikáját véletlen mátrix modell írja le
- analitikusan: effektív σ-modell a pionokra
 → véletlen mátrix modell
- numerikusan: rács QCD

Mi történik $T > T_c$ esetén? (kvark-gluon plazma)

Átmenet (cross-over) $T_c \approx 200 \text{MeV}$ hőmérsékleten:

$T > T_c$ spektrálsűrűség rács szimuláció

szomszédos sajátértékek távolságának eloszlása $s = \frac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n \rangle}$

szomszédos sajátértékek távolságának eloszlása $s = \frac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n \rangle}$

Miért függetlenek a kis sajátértékek? Tipikus sajátvektorok

nagyobb sajátértékek

Analógia: Anderson lokalizáció

- "Tight binding" közelítés egy elektron Hamilton op.:
- bázis: rácspontokban lokalizált atomi elektronpályák
- Diagonális elemek: elektronpálya energiája
- Első szomszéd csatolás ("hopping")

Analógia: Anderson lokalizáció

- "Tight binding" közelítés egy elektron Hamilton op.:
- bázis: rácspontokban lokalizált atomi elektronpályák
- Diagonális elemek: elektronpálya energiája
- Első szomszéd csatolás ("hopping")
- Rácshibák, szennyezés → elektron Hamilton operátor: "véletlen mátrix".
 - Anderson modell:
 - Szennyezés: véletlen diagonális elemek
- Erős szennyezés → a sávhatáron lokalizált állapotok jelennek meg.

Anderson modell

• Ec mobilitási határ

- E < Ec lokalizált állapotok
- E > E_c delokalizált állapotok

• E_c-nél igazi másodrendű fázisátalakulás

- Korrelációs hossz divergál
- ν korrelációs hossz kritikus exponens
- Numerikus szimulációkból meghatározták
- Univerzális (csak a szimmetriától és a dimenziótól függ)

Tényleg Anderson átmenetet látunk-e a QCD-ben?

● Véges-méret skálázás → kritikus exponens

Véges-méret skálázás

$$\lambda
ightarrow (\lambda - \lambda_c) \cdot L^{1/
u}$$

Létezik-e olyan λ_c és ν , amelyekkel átskálázva a különböző térfogatok egy görbére esnek?

$$\lambda
ightarrow (\lambda - \lambda_c) \cdot L^{1/\nu}$$

Létezik-e olyan λ_c és ν , amelyekkel átskálázva a különböző térfogatok egy görbére esnek?

Összefoglalás

- A QCD-ben talált átmenet igazi Anderson átalakulás
- ν = 1.40(7) kompatibilis a megfelelő szimmetriájú Anderson modell kritikus exponensével
- Kritikus statisztika vizsgálata (S. Nishigaki, plenáris előadás a Lattice 2013 konferencián)
- Kritikus hullámfüggvények vizsgálata (multifraktál szerkezet?)
- Publikációk:
 - TGK, Phys. Rev. Lett. 104 (2010) 031601
 - TGK & F. Pittler, Phys. Rev. Lett. 105 (2010) 192001
 - TGK & F. Pittler, Phys. Rev. D 86 (2012) 114515