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• Electron dynamics in molecules in most of the time are strongly coupled to nuclear dy-
namics. Proper theoretical description of them in polyatomic molecules is a challenge.
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• We propose a new scheme for the description of the coupled electron and nuclear
motion in the ozone molecule.

• The electron dynamics as well as the nuclear dynamics will be treated separately.
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The electronic structure of the molecule
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Preparing initial coherent non stationary state by pump pulses;

It is a superposition of different repulsive states in the Chappuis band∗ (which are populated
by NIR radiation) as well as in the Hartley band (which is populated by the 3rd harmonic
pulse);

Neither the electrons nor the nuclei are in a stationary state;
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∗S. Y. Grebenshchikov, Z-W. Qu, H. Zhu and R. Schinke, Phys. Chem. Chem Phys. 9, 2044 (2007).
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Parameters

The center wavelength of the NIR is 750nm, the center wavelength of the UV is 260nm.

The intensities are: NIR: up to 1014W/cm2 (1014W/cm2);
UV: up to 1013W/cm2 (2× 1011W/cm2).

The NIR pulse has a width just below 4fs and for the UV 3fs.
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Time-dependent Born–Oppenheimer Separation

The total wave function of the molecular system Ψtot can be assumed as:

Ψtot(~rel, ~R, t) =
n∑

k=1
Ψk
nuc(~R, t)ψ

k
el(~rel; ~R)

• Ψk
nuc(~R, t) is the nuclear wave function;

• ψkel(~r; ~R) is the electronic wave function;

• n is the number of the molecular electronic states (now n = 4);
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Nuclear Dynamics

i
∂

∂t
Ψk
nuc(~R, t) =

∑
l

Hk,lΨ
l
nuc(~R, t)

where

H = Tnuc + V +K

• Tnuc is the nuclear kinetic energy;

• Vk,k (k = 1, ...n) is the k − th B-O potential;

• Kk,l with k 6= l is the coupling term between the (k, l)− th electronic states

(nonadiabatic coupling (NAC) and the light-matter coupling (~µ(k, l)· ~E(t));
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• The nonadiabatic coupling term is neglected within the Born-Oppenheimer approxima-
tion but plays a key mechanistic role at the conical intersections (CI)!

• In the ozone molecule the two states (1B1 and 1A2, in C2v) of the Chappuis band are
strongly coupled through nonadiabatic interaction arising from a symmetry-allowed CI;

• In the actual nuclear quantum dynamical calculations this nonadiabatic electron-nuclear
coupling will be fully taken into account;

• Diabatic potential energies have been used for the nuclear dynamical calculations ∗;

∗S. Y. Grebenshchikov, Z-W. Qu, H. Zhu and R. Schinke, Phys. Chem. Chem Phys. 9, 2044 (2007)
9



The nuclear Schrödinger equation is solved by using the MCTDH (multi configuration time
dependent Hartree) method∗.

It is very efficient approach for solving the TD nuclear Schrödinger equation. Molecules with
25-30 modes can be described by using it.

We have n electronic diabatic states (k = 1, ground and k = 2, ..., n excited). The MCTDH
nuclear wave function for the k − th state is Ψk

nuc(~R, t) and contains the relative

phases between the electronic states:

Ψk
nuc(~R, t) = exp(−iφk(~R, t))ak(~R, t)

exp(−iφk(~R, t)) is the phase of the k − th state, which oscillates very fast.

Ψk
nuc(~R, t) coe�cients are provided by the MCTDH and contain all the infor-

mation about the phases.

∗H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990); U. Manthe, H.-D.
Meyer, and L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992); M. H. Beck, A. Jäckle, G. A. Worth, and
H.-D. Meyer, Phys. Rep. 324, 1 (2000); Worth, G. A.; et al., The MCTDH Package, Version 8.2, (2000),
Version 8.3, (2002), Version 8.4 (2007), University of Heidelberg, Germany; See http://mctdh.uni-hd.de/;
H.-D. Meyer, F. Gatti, and G. A. Worth, Eds.; Multidimensional Quantum Dynamics: MCTDH Theory and
Applications. Wiley-VCH, Weinheim, (2009).
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The TD density operator is∗:

ρ̂(~R, ~R′, t) =
∣∣∣Ψtot(~r, ~R

′, t)
〉 〈

Ψtot(~r, ~R
′, t)

∣∣∣ ,

the density matrix can be de�ned as:

ρii(~R, ~R
′, t) =

〈
ψiel(~r;

~R′)
∣∣∣ ρ̂(~R, ~R′, t)

∣∣∣ψiel(~r; ~R′)〉 = Ψi
nuc(~R, t)Ψi∗

nuc(~R
′, t).

The population on the i− th state is:

Pii(t) =
∫
d~Rρii(~R, ~R, t).

∗G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. V., PRA 86, 043426 (2012).
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The density matrix element over the i− th and i
′ − th molecular electronic states is:

ρ
ii
′(~R, ~R′, t) =

〈
ψiel(~r;

~R)
∣∣∣ ρ̂(~R, ~R′, t)

∣∣∣∣ψi′el(~r; ~R′)〉 = Ψi
nuc(~R, t)Ψi′∗

nuc(~R
′, t),

The relative electronic coherence between the i− th and i
′ − th states is ∗:

C
ii
′(t) =

∫
d~Rρ

ii
′(~R, ~R, t)/

√
Pi(t)Pi′(t).

∗G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. V., PRA 86, 043426 (2012).
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Electronic structure part
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The resonance structure, or resonance forms of the ozone

The molecule can be described by an average of the two resonance forms
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The molecular orbital diagram of ozone

Within the hybrid orbital approximation each oxygen atom combines its 2s, 2pz and 2py
orbitals to make three 2sp2 hybrid orbitals.

* O1 uses one 2sp2 orbital to combine with one 2sp2 orbital of O2, making a sigma bonding
and sigma antibonding orbital

* O3 uses one 2sp2 orbital to combine with a second 2sp2 orbital of O2, making another
sigma bonding and sigma antibonding orbital

* Two 2sp2 orbitals on O1, one 2sp2 orbital on O2, and two 2sp2 orbitals on O3 are non-
bonding.
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The 2px orbital on O1, the 2px orbital on O2, and 2px orbital on O3 combine to form three
π symmetry orbitals.

The p orbitals in the picture above indicate electron density in those orbitals.
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Molecular orbitals of the ozone

• π1, bonding all the way across the 3 atoms;

• π2, non-bonding, zero pi electron density on the second atom;

• π3, antibonding, the mathematical sign of the wavefunction changes with every atom,
repulsive interaction between atoms;
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Details of the QC calculations

• Gaussian and Molpro packages were used;

• SA-4-CASSCF(18,12)/STO-3G;

• Various schemes of state-averaging were used depending on the number of coupled
states;

• Here we state-averaged over X, Chap1, Chap2, and B;

• Larger basis set were also tried (aug-cc-pVTZ and perhaps even larger). Results do
not change when looking at the electronic wavepacket;

• MRCI calculations were also performed to check that the CASSCF calculations where
correct in terms of electronic wavefunctions;
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Electron dynamics

The electronic charge density at the Franck-Condon (FC) geometry is:

ρiel(~r;
~RFC) = N

∫
N(spin)

dσ1dσ2 . . . dσN

∫
N−1(space)

dτ2 . . . dτN∣∣∣ψiel(~r1 = ~r, σ1, ~r2, σ2, ..., ~rN , σN ; ~RFC)
∣∣∣ 2

The transition density between the i− th and i
′ − th molecular electronic states is:

γii
′

el (~r; ~RFC) = N
∫
N(spin)

dσ1dσ2 . . . dσN

∫
N−1(space)

dτ2 . . . dτN

ψi∗el(~r1 = ~r, σ1, ~r2, σ2, ..., ~rN , σN ; ~RFC)

ψi
′
el(~r1 = ~r, σ1, ~r2, σ2, ..., ~rN , σN ; ~RFC)

It is a measure of the interference between states i and i′.
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The differential electronic charge density (difference of the electronic charge density be-
tween an excited state (B or Chap1) and the ground state) at the FC geometry:

spin space1
221

2
FC2211elFC ;,,,,,,;

N N
NNNN

ii dddddRrrrrNRr

due to the   * excitation. For B, it is less obvious because this state comes

from several single-electron excitations: one   * and two   *.  

 

Differential charge density at the FC geometry for states B, (a) side view, (b) 

top view, and Chap1, (c) side view, (d) top view. Blue: hole; green: electron.  

i
NN

ii
NN RrrrtRtRrrr FC2211elFCnucFC2211mol ;,,,,,,,,,,,,,,,

For B(top) state, (a) side view, (b) top view, this state comes from one nπ → π∗ and two
nσ → σ∗ electron excitations;

For Chap1(bottom) state, (c) side view, (d) top view, this state comes from one nσ → π∗
electron excitation;

Blue: hole; green: electron.
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The total molecular wavepacket at the FC geometry is:

Ψmol(~r1, σ1, ~r2, σ2, ..., ~rN , σN ; ~RFC, t) =∑
i

Ψi
nuc(~RFC, t)ψ

i
el(~r1, σ1, ~r2, σ2, ..., ~rN , σN ; ~RFC)

(here the TD coefficients are the nuclear wave functions at FC)

The total charge density at FC is:

ρtot(~r, t; ~RFC) =
∑
i
|Ψi

nuc(~RFC, t)|2ρi(~r; ~RFC)

+ 2Re
∑
i<i′

Ψi∗
nuc(~RFC, t)Ψi′

nuc(~RFC, t)γ
ii′
el (~r; ~RFC).
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The excited-state differential charge density at the FC point (the difference of the total

charge density between an excited state (B or C1) and the ground state:

∆ρexc(~r, t; ~RFC) = |ΨB
nuc(~RFC, t)|2[ρB(~r; ~RFC)− ρGS(~r; ~RFC)]

+ |ΨC1
nuc(~RFC, t)|2[ρC1(~r; ~RFC)− ρGS(~r; ~RFC)]

+ 2Re
∑
i<i′

ΨB∗
nuc(~RFC, t)ΨC1

nuc(~RFC, t)γ
B,C1
el (~r; ~RFC).
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Snapshots of the time evolution of the excited differential electronic charge density at the
FC geometry. Side view (blue: hole; green: electron)∗.

A “periodic twisting” motion of the differential electronic charge density has been induced
by exciting a coherent superposition of C1 and B states. The period of this motion is about
1.2− 1.3 fs.

∗G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. V., PRA 86, 043426 (2012).
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The snapshots belong to those time values for which the green curve has maxima
or minima.
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• The population densities at the FC point are totally symmetric (A1);

• The interference term is A2(B1
⊕

B2);

• Therefore the electronic charge density is not totally symmetric;

• Time-dependent anisotropy of the electronic cloud which could be detected in time
resolved photoelectron spectra experiments using attosecond XUV probe pulse, which
is in progress.
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Electron dynamics beyond the FC region?

∆ρexc(~r, t) =
∫
{|ΨB

nuc(~R, t)|2[ρB(~r; ~R)− ρGS(~r; ~R)]

+ |ΨC1
nuc(~R, t)|2[ρC1(~r; ~R)− ρGS(~r; ~R)]

+ |ΨC2
nuc(~R, t)|2[ρC2(~r; ~R)− ρGS(~r; ~R)]

+ 2Re
∑
i<i′

ΨB∗
nuc(~R, t)ΨC1

nuc(~R, t)γ
B,C1
el (~r; ~R) + ...}d~R;
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We excite only the B state of the Hartley band with a much larger intensity pump pulse
(1014W/cm2) than previously. (The center wavelength and the FWHM are 260 nm and 3

fs, respectively.) The population obtained is more pronounced. The non-stationary state is
a coherent superposition of the ground and the B Hartley states∗.
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∗G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. V., Coherence revival during the attosec-
ond electronic and nuclear quantum photodynamics of the ozone molecule.(arXiv 1305.5038v1) in press.
PRA.
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The two-dimensional nuclear density function (depending on R1 and R2, the two bond
lengths, and integrated over θ, the bond angle) is:

∣∣∣Ψi
nuc(R1, R2, t)

∣∣∣2 =
∫

Ψi
nuc(R1, R2, θ, t)Ψi∗

nuc(R1, R2, θ, t) sin θdθ
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The applied electric field and the time evolution of the diabatic populations on the
ground (X) and diabatic excited (B) states∗
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∗G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. V., Coherence revival during the attosec-
ond electronic and nuclear quantum photodynamics of the ozone molecule.(arXiv 1305.5038v1) in press.
PRA.
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The real, the imaginary parts and the absolute value of the relative electronic
coherence between the ground (X) and Hartley (B) states
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• In the first time period the coherence increases very fast and reaches its maximum;

• It retains this value for 3 - 4 fs, which is approximately equivalent to the duration of the
laser pulse;

• A few femtoseconds later (∼ 5 fs), the coherence reappears in contrast with what was
observed in previously;

• This phenomenon could be enhanced experimentally by optimizing the parameters of
the laser pulse;
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Snapshots of the time evolution of the nuclear wave packet density along both O - O
bonds∗
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∗G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. V., Coherence revival during the attosec-
ond electronic and nuclear quantum photodynamics of the ozone molecule.(arXiv 1305.5038v1) in press.
PRA.
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• This revival of electronic coherence is interesting because the pump pulse is already
off;

• The wave packet oscillates in the B state and then goes back to the FC region where it
is still coherent with the part left in the ground state;

• A part of the nuclear wave packet stays trapped on the symmetric ridge of the B poten-
tial energy surface, where both O - O bonds increase synchronously;
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• A valley-ridge inflection point occurs, where the nuclear wave packet splits into three
components;

• One part is bound to come back to the FC region, while the rest dissociates along either
of both equivalent channels;
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Local population density for state B (black) and real part of the interference term
(dashed green) at the FC point as functions of time
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The excited state differential electronic charge density at the FC geometry (difference
of the total charge density between the excited state B and the ground state):

∆ρB(~r, t; ~RFC) = ρtot(~r, t; ~RFC)− [|ΨX
nuc(~RFC, t)|2 + |ΨB

nuc(~RFC, t)|2]ρX(~r; ~RFC)

= |ΨB
nuc(~RFC, t)|2[ρB(~r; ~RFC)− ρX(~r; ~RFC)] + 2ReΨX∗

nuc(~RFC, t)ΨB
nuc(~RFC, t)γ

XB(~r; ~RFC)

= |ΨB
nuc(~RFC, t)|24ρB(~r; ~RFC) + 2ReΨX∗

nuc(~RFC, t)ΨB
nuc(~RFC, t)γ

XB(~r; ~RFC),

where4ρB(~r; ~RFC) = ρB(~r; ~RFC)− ρX(~r; ~RFC).
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Time evolution of the excited differential electronic charge density at the FC
geometry∗

∗G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. V., Coherence revival during the attosec-
ond electronic and nuclear quantum photodynamics of the ozone molecule.(arXiv 1305.5038v1) in press.
PRA.

39



• The electronic charge density oscillates from one bond to another with a period of 0.8
fs;

• The resulting electronic wave packet is thus a coherent superposition of two chemical
structures, O· · · O2 and O2· · · O;

• The subfemtosecond oscillation between both structures at the FC geometry prefigures
that the dissociation of ozone could be controlled by modulating the electron density on
the attosecond time scale;
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