Two photon physics with forward detectors

Beata Krupa, Leszek Zawiejski Institute of Nuclear Physics Polish Academy of Sciences

Two-photon processes – a powerful tool

- $\rightarrow \gamma \gamma$ collisions serve as the prototypes of collisions of the other gauge bosons of the Standard Model.
- Tests of electroweak theory in photon-photon annihilation $(\gamma\gamma \rightarrow W^+W^-, \gamma\gamma \rightarrow \text{neutral \& charged Higgs bosons; higher order loop processes } \gamma\gamma \rightarrow \gamma\gamma, Z\gamma, H^0Z^0 \text{ and } Z)$
- \rightarrow The high energy $\gamma\gamma$ and $e\gamma$ collisions tests of QCD.
- → Two-photon production of supersymmetric squark and slepton pairs.
- The eγ collisions allow the study of the photon structure function.

 \longrightarrow ...

Two-photon processes ($\gamma\gamma$, $\gamma^*\gamma$, $\gamma^*\gamma^*$ events) provide a comprehensive laboratory for exploring virtually every aspect of the Standard Model and its extensions.

Photons & their interactions

- As a gauge boson of QED, the photon is a massless (m < 2·10⁻¹⁶eV) and chargeless (q < 5·10⁻³⁰e) particle having no internal structure in the common sense.
- In any quantum field theory the existence of interactions means that the photon themself can develop a structure. It can fluctuate for a short period of time into a charged fermion-antifermion pair, carrying the same quantum numbers as the photon.
- *Direct* photon if it interacts with another object as a whole quantity.
- *Resolved* photon if it interacts through one of the fermions produced in the quantum fluctuation.

Photons & their interactions (II)

- If photon fluctuates into a pair of leptons, the process can be completely calculated within QED. Much more complicated situation – when it fluctuates into a pair of quarks (QCD interactions).
- Vector Meson Dominance (VMD) model the photon turns first into a hadronic system with quantum numbers of a vector meson (J^{CP}=1⁻⁻) and the hard interaction takes place between partons of the vector meson and a probing object.
- Hadron-like and point-like contribution to the photon structure.

Event classes in the process $\gamma\gamma \rightarrow hadrons$

Two photon interactions at e⁺e⁻ colliders (I)

 $e^+e^- \rightarrow e^+e^-X$

the classical way to investigate photon's structure at e⁺e⁻ colliders

virtualities of the photons: $Q_i^2 \equiv -q_i^2 = -(p_i - p_i')^2$

General diagram

The usual dimensionless variables of deep inelastic scattering

$$\mathbf{x} = \frac{Q_i^2}{2q_1 \cdot q_2}$$

fraction of parton momentum with respect to the target photon

Deep inelastic ey scattering

 $= \frac{q_1 \cdot q_2}{p_1 \cdot q_2}$ the energy lost by the inelastically scattered electrons

The hadronic (leptonic) invariant mass squared:

$$W^2 \equiv S_{\gamma\gamma} = (q_1 + q_2)^2$$

Deep inelastic ee scattering

Two photon interactions at e⁺e⁻ colliders (II)

General diagram

Deep inelastic eγ scattering

Deep inelastic ee scattering

$$e^+e^- \rightarrow e^+e^-X$$

Experimentally the kinematical variables are obtained from the four-vectors of the tagged electrons and the hadronic final state:

$$Q_{i}^{2} = 4E_{b}E_{i}' \sin^{2}(\theta_{i}/2),$$

$$y_{ei} = 1 - \frac{E_{i}'}{E_{b}}\cos^{2}(\theta_{i}/2),$$

$$x_{i} = \frac{Q_{i}^{2}}{Q_{1}^{2} + W^{2} + Q_{2}^{2}},$$

$$z_{i} = \frac{Q_{i}^{2}}{y_{ei}s_{ee}} = \frac{E_{i}' \sin^{2}(\theta_{i}/2)}{E_{b} - E_{i}' \cos^{2}(\theta_{i}/2)}.$$

$$W^{2} = \left(\sum_{h} E_{h}\right)^{2} - \left(\sum_{h} \vec{p}_{h}\right)^{2}.$$

 E_b $\overline{(E_i')}$ – energy of the beam electrons (the scattered electrons) E_h (\vec{p}_h) – energies (momenta) of final state particles

Two photon interactions at e⁺e⁻ colliders (III)

General diagram

Deep inelastic ey scattering

 $e^+e^-
ightarrow e^+e^-X$

When the virtualities of the exchanged photons differ significantly the following notation is used:

$$Q^2 \equiv -q^2 = \max(Q_1^2, Q_2^2)$$

$$P^2 \equiv -p^2 = \min(Q_1^2, Q_2^2)$$

Then:
$$W^2 = Q^2(1/x - 1) - P^2$$

x, y refer to the photon with higher virtuality.

Deep inelastic ee scattering

Two photon interactions at e⁺e⁻ colliders (IV)

General diagram

Deep inelastic eγ scattering

 $e^+e^- \rightarrow e^+e^- X$

From the experimental point of view three event classes are distinguished:

- anti-tagged → the structure of quasi-real photon can be studied in terms of total cross-sections, jet production and heavy quark production;
- single-tagged → deep-inelastic electron scattering off a quasi-real photon;
- double-tagged → highly virtual photon collisions

Deep inelastic ee scattering

Photon structure function

Deep inelastic ey scattering

Analogy with studies of the proton structure functions at HERA

HERA LO

Photon structure function

Using single-tagged $\gamma\gamma$ events: deep inelastic $e\gamma$ scattering

The single-tagged events - one scattered electron tagged in the detector $\gamma\gamma$ process – deep inelastic electron scattering on a quasi-real photon. The flux of quasi-real photons can be calculated using Equivalent Photon Approximation (EPA).

The unpolarised eγ DIS cross-section:

$$\frac{d\sigma(e\gamma \to eX)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \cdot \left[\{1 + (1-y)^2\} F_2^{\gamma}(x,Q^2) - y^2 F_L^{\gamma}(x,Q^2) \right]$$

Structure functions of the quasi-real photon

If the photon momentum p is known, then Q^2 , x, y, and W^2 are fixed by energy and angle of the tagged outgoing electron. If p is unknown, the determination of x has to proceed via calorimetric measurements of the hadronic final state.

QED structure function of the photon

QED processes:

The measurements of the QED photon structure functions at e^+e^- colliders are possible by studying the process $e^+e^- \rightarrow e^+e^- l^+l^-$ in deep inelastic photon scattering regime.

It is expected that the most clean measurement can be performed with $\mu^+\mu^-$ final state, because this process has large cross-section & is almost background free.

For e⁺e⁻ final state

the cross-section is even higher, but the number
 of different Feynman diagrams contributing to this process makes the analysis more difficult

For $\tau^+\tau^-$ final state

low statistics, the final state can be only identified by detecting the products of τ decays

Event selection

At first we are concentrating on single-tagged events with electron measured in LumiCal. The optimal choice of the selection cuts to find a high efficiency for signal events is on going. They will include among others cuts like:

An electron candidate observed with energy $E_{tag} > 0.8E_{b}$ and polar angle in the range $31 < \theta < 77$ mrad.

There must be no deposit energy with value $E_a > 0.2E_b$ in the detector on the opposite side (an anti-tag cut applied for possible electron candidates in the hemisphere opposite to the tag electron) – low virtuality of the quasi-real photon

At least 3 tracks originated from the hadronic final state have to be present

The visible invariant mass W_{vis} of the hadronic system should be in some range $W_{low} < W_{vis} < W_{upper}$ The upper limit should reduce expected background of annihilation events. Not yet defined precisely.

The W_{vis} will be reconstructed from tracks measured in tracking detectors together with energy depositions –clustrers in electromagnetic and hadronic calorimeters of the main detector ILD

Now and future prospects

- We learned how to use the ILCSoft (Mokka, Marlin) and DIRAC (event generation and date processing – grid environment)
- The beginning of the simulations in order to see what information can be obtained among others from LumiCal, BeamCal, LHCal detectors.
- For the time being we use the existing data generated for DBD in Whizard 1.95.
- We intend to generate the data using the latest version of Whizard and then other generators (e.g. Pythia, Twogam, Phojet).
- Researching the possibility to measure the photon structure function using forward detectors.

Future: studies of other two-photon processes at linear collider (ILC/CLIC)