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From LEP via LHC to CLIC



LEP: 1989 - 2000 |_|_|: 2008 -

Next generation being studied:
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CLIC: The future



Ne w om |
circular colliders = particles bended = two limitations occurs:

) synchrotron radiation energy loss

p e 1 E*
5 = synchrotron”
GTTEEI ( ) CE )4 RQ light cone

P o< E*= Limited LEP to E_ =209 GeV (RF energy replenishment)
P < my# = changing to p in LHC = P no longer the limiting factor

II) Magnetic rigidity

Technological limit of bending magnet field strength
= Limits LHCto E_,=14TeV (=< B) -
= Superconducting magnets needed
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composite object (hadron)
m LEP: e*e (lepton)
s LHC: pp (hadron) - -

= Hadron collider:
m Hadrons easier to accelerate to high energies

m Lepton collider (LC):
= well-defined E,
m well-defined polarization (potentially)
— are better at precision measurements
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= LHC might discover one, or more, Higgs
narticles, with a certain mass

s However, discovery and mass are not enough

m Are we 100% sure it is really a SM/MSSM Higgs
Boson?
m What is its spin?
m Exact coupling to fermions and gauge bosons?
= What are its self-couplings?
m S0, are these properties exactly compatible with
the SM/MSSM Higgs?

Confidence requires a need for precision




= The SM Higgs must
have spin O

= In a lepton collider we 15-
will know E_,, ]

cross section (fb)
o
|

= A lepton collider can
measure the spin of any
Higgs it can produce
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Vs (GeV)

e*e- - HZ (mH=120 GeV, 20 fb-1)

Slide: B. Barish
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m Best measured with polarized lepton collision via
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After LHC we need a linear lepton collider



Part |V

CLIC: the Compact Linear Collider



Rings

Linear colliders

Particle type(s)

ions, p/p, e*"

ions, p/p, e*"

Collision energy

accelerating cavities
reused

accelerating cavities
used once

Luminosity

m bunches collided many
times

m several detectors
simultaneously

m each bunch collide
only once

= only one detector in
use at a given time




source

ring

main linac

beam delivery

Main part: two long linear accelerators (linacs), with as high
accelerating gradient as possible

The two beams are "shot" into the collision point, with a
moderate repetion rate f. ~ 10 Hz

Damping rings needed to get the initial emittance, €, as low as
possible

Beam Delivery System and final focus are needed to prepare
the the beam for collisions (remember: very small beta
function, B(s), needed at the collision point)



cceleratng caviues usea once

The length of the linac is then given by

1. Eem
2. Accelerating gradient [V/m]

E.g. for E.=0.5 TeV and an average gradient of g=100 MV/m we
get: I=E[eV] / g[V/m] =5 km
Needs two linacs (e* and e°) and a long final focus section ~ 5 km =
total length for this example 15 km

= 15t main challenge of future linacs: maximize gradient to keep collider
short enough !

Gradient limited by field break down




0,=60 nm, 6,=0.7nm (!)
7A ! Vertical bunch-width of a water molecule!

(LEP: width of a human hair)

m Future linear colliders: truly nanobeams



> CLIC
m CLIC: GENERATION
COMPLEX
Compact Linear Collider — Zn :

= Normal conducting cavities \1:\ o

AAAAAAAAAAAAAAAAAAAAAAA

= Gradient 100 MV/m (-J (-/ SRV \-)K-)
imi = iF

FINAL €+ MAINLINAC }
FOCUS

= Limited by breakdown w4 N/
DRI".-'EBEAM DRIVE BEAM

. DECELERATOR GENERATION RF POWER
m Two-beam based acceleration COMPLEX

m Instead of Klystrons use an e- drive beam to generate power

m For high-energy: klystrons (> 10000 needed) will be more costly, and
must be extremely fail-safe

m Power is easier to handle in form of beam = short pulses easier

m Depending on final CLIC parameters klystrons might not even be
feasible ( too high POWER wirt. RF)



m Power extracte
beam) to provide power main beam

m Special Power Extraction Transfer Structure
(PETS) technology

m Particles generate wake fields < leaves behind
energy

QUAD

POWER EXTRACTION
STRUCTURE

ACCELERATING
STRUCTURES

EFM



CTF3 complex
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The European strategy for particle physics

o strongly supported by the
and management, as well as in the European
strategy for particle physics:

4. In order to be in the position to push the energy and
luminosity frontier even further it is vital to strengthen
the advanced accelerator R&D programme; a coordmated
progranime should be intensified, to develop the CLIC technology
and high performmnce magnets for future accelerators, and to play
a significant role in the study and development of a high-mntensity
neutrino facility.
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m Global project — interests in Europe, USA, Asia

= In fact two different designs being studied CLIC
and the ILC

= Which design, and where, depends on many
factors, including the results of LHC physics

m CERN: advantage of quite nice stable ground
i I+ B

Département de 'Ain : Canton de Genéve

i £

Département de I'Ain Canton de Vaud

FHASE 2 FHASE 1 FHASE 2



Particle type: e and e*

E..,=3TeV
Gradient: 100 MV/m
Length: 47.6 km

Luminosity: 3 x 10%* cm-2s?
Particles per bunch: 3 x 10°
Pulse repetition rate: (100 — 250) Hz cLje

Beam size at IP: 6, = 60 nm, Oy = 0.7 nm Novel two-beam

: acceleration: the
Cost: not yet established future of linear

Site: not yet established accelerators?

(NB: all parameters might be subject to change)



LHC CLIC
Collider type Ring Linear, 100 MV/m
Length 27 km circumference 48 km linear length
Particle type(s) p/p, ions et
Collision energy 14 TeV per proton (max. ofa | 3 TeV

few TeV per parton)

Luminosity

m ~ 10" protons per bunch

m f, =40 MHz
=G, =17um

L ~103%cm=3st?

m ~ 10° e*" per bunch
mf ~10 Hz
=0, ~1nm

L ~103 cm=3s
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