Particle Colliders at CERN

present and future

Erik Adli, University of Oslo/CERN November, 2007

References

Bibliography:

- CAS 1992, Fifth General Accelerator Physics Course, Proceedings, 7-18 September 1992.
- LHC Design Report [online]
- K. Wille, The Physics of Particle Accelerators, 2000

Other references

- USPAS resource site, A. Chao, USPAS january 2007
- CAS 2005, Proceedings (in-print), J. Le Duff, B, Holzer et al.
- O. Brüning: CERN student summer lectures
- N. Pichoff: Transverse Beam Dynamics in Accelerators, JUAS January 2004
- U. Am aldi, presentation on Hadron therapy at CERN 2006
- Various CLIC and ILC presentations
- Several figures in this presentation have been borrowed from the above references, thanks to all!

Part III

From LEP via LHC to CLIC

LEP, LHC and CLIC

This decade: both LEP and LHC

LEP: 1989 - 2000

LHC: 2008 -

Next generation being studied:

CLIC: The future

Limitations LEP and LHC

- We want E_{cm} as high as possible for new particle accelerators
- circular colliders \Rightarrow particles bended \Rightarrow two limitations occurs:

I) synchrotron radiation energy loss

$$P_S = \frac{e^2 c}{6\pi\varepsilon_0} \frac{1}{(m_0 c^2)^4} \frac{E^4}{R^2}$$

 $P \propto E^4 \Rightarrow$ Limited LEP to E_{cm} =209 GeV (RF energy replenishment) $P \propto m_0^{-4} \Rightarrow$ changing to p in LHC \Rightarrow P no longer the limiting factor

II) Magnetic rigidity

$$B\rho = \frac{p}{e}$$

Technological limit of bending magnet field strength

- \Rightarrow Limits LHC to E_{cm} =14 TeV (\propto B)
- ⇒ Superconducting magnets needed

Hadron versus lepton collisions

 Colliding particles can be elementary particle (lepton) or composite object (hadron)

LEP: e⁺e⁻ (lepton)

LHC: pp (hadron)

Hadrons easier to accelerate to high energies

- well-defined E_{CM}
- well-defined polarization (potentially)
 - → are better at precision measurements

Example of LHC versus lepton colliders: Higgs

- LHC might discover one, or more, Higgs particles, with a certain mass
- However, discovery and mass are not enough
- Are we 100% sure it is really a SM/MSSM Higgs Boson?
 - What is its spin?
 - Exact coupling to fermions and gauge bosons?
 - What are its self-couplings?
- So, are these properties exactly compatible with the SM/MSSM Higgs?

Confidence requires a need for precision

Higgs: Spin Measurement

The SM Higgs must have spin 0

In a lepton collider we will know E_{cm}

 A lepton collider can measure the spin of any Higgs it can produce

 $e^+e^- \rightarrow HZ$ (mH=120 GeV, 20 fb-1)

Slide: B. Barish

Higgs: self-couplings

The Higgs potential:

$$V(\sigma) = \frac{1}{2}m_H^2\sigma^2 + \lambda v\sigma^3 + \frac{1}{4}\lambda\sigma^4$$

$$v = \sqrt{\frac{-\mu^2}{\lambda}} = \frac{m_H}{\sqrt{2\lambda}}$$

■ SM predicts $g_{HHH} \alpha \lambda$

■ Best measured with polarized lepton collision via

$$e^+e^- \to HHZ$$

(Graph: M.M.Mühlleitner)

The Chainsaw and the Scalpel

After LHC we need a linear lepton collider

Part IV

CLIC: the Compact Linear Collider

The three main parameters

	Rings	Linear colliders
Particle type(s)	ions, p/ p , e ^{+/-}	ions, p/p, e+/-
Collision energy	accelerating cavities reused	accelerating cavities used once
Luminosity	 bunches collided many times several detectors simultaneously 	 each bunch collide only once only one detector in use at a given time

What is a linear collider?

- Main part: two long linear accelerators (linacs), with as high accelerating gradient as possible
- The two beams are "shot" into the collision point, with a moderate repetion rate f_r ~ 10 Hz
- Damping rings needed to get the initial emittance, ε, as low as possible
- Beam Delivery System and final focus are needed to prepare the the beam for collisions (remember: very small beta function, β(s), needed at the collision point)

1st challenge: E_{COM}

- Accelerating cavities used once
- The length of the linac is then given by
 - 1. E_{CM}
 - Accelerating gradient [V/m]
- E.g. for E_e=0.5 TeV and an average gradient of g=100 MV/m we get: l=E[eV] / g[V/m] = 5 km
 - Needs two linacs (e⁺ and e⁻) and a long final focus section ~ 5 km ⇒ total length for this example 15 km
- ⇒ 1st main challenge of future linacs: maximize gradient to keep collider

short enough!

Gradient limited by field break down

2nd challenge: £

$$\mathcal{L} = f \frac{n_1 n_2}{4\pi \sigma_x \sigma_y}$$

$$\sigma_{x}$$
=60 nm, σ_{y} =0.7nm (!)

7Å! Vertical bunch-width of a water molecule!

Future linear colliders: truly nanobeams

The CLIC collaboration

CLIC:

Compact Linear Collider

- Normal conducting cavities
- Gradient 100 MV/m
 - Limited by breakdown

- MAIN BEAM **GENERATION** COMPLEX e - MAIN LINAC e + MAIN LINAC FINAL FOCUS DETECTORS LASER LASER DRIVE BEAM DRIVE BEAM GENERATION RF POWER DECELERATOR COMPLEX
- Two-beam based acceleration
 - Instead of Klystrons use an e⁻ drive beam to generate power
 - For high-energy: klystrons (> 10000 needed) will be more costly, and must be extremely fail-safe
 - Power is easier to handle in form of beam ⇒ short pulses easier
 - Depending on final CLIC parameters klystrons might not even be feasible (too high POWER wrt. RF)

Two-beam accelerator scheme

- Power extracted from one beam (the drive beam) to provide power main beam
- Special Power Extraction Transfer Structure (PETS) technology
- Particles generate wake fields → leaves behind energy

CTF3 – CLIC Test Facility 3

Lattice components

The European strategy for particle physics

CLIC strongly supported by the CERN Council and management, as well as in the European strategy for particle physics:

> 4. In order to be in the position to push the energy and luminosity frontier even further it is vital to strengthen the advanced accelerator R&D programme; a coordinated programme should be intensified, to develop the CLIC technology and high performance magnets for future accelerators, and to play a significant role in the study and development of a high-intensity neutrino facility.

CLIC

Potential site at CERN

- Global project → interests in Europe, USA, Asia
- In fact two different designs being studied CLIC and the ILC
- Which design, and where, depends on many factors, including the results of LHC physics
- CERN: advantage of quite nice stable ground

CLIC Main Parameters (3/2007)

Particle type: e⁻ and e⁺

 $E_{cm} = 3 \text{ TeV}$

Gradient: 100 MV/m

Length: 47.6 km

Luminosity: 3 x 10³⁴ cm⁻²s⁻¹

Particles per bunch: 3 x 10⁹

Pulse repetition rate: (100 – 250) Hz

Beam size at IP: $\sigma_x = 60 \text{ nm}$, $\sigma_y = 0.7 \text{ nm}$

Cost: not yet established

Site: not yet established

CLIC

Novel two-beam acceleration: the future of linear accelerators?

(NB: all parameters might be subject to change)

Grand summary: LHC and CLIC

References

Bibliography:

- CAS 1992, Fifth General Accelerator Physics Course, Proceedings, 7-18 September 1992.
- LHC Design Report [online]
- K. Wille, The Physics of Particle Accelerators, 2000

Other references

- USPAS resource site, A. Chao, USPAS january 2007
- CAS 2005, Proceedings (in-print), J. Le Duff, B, Holzer et al.
- O. Brüning: CERN student summer lectures
- N. Pichoff: Transverse Beam Dynamics in Accelerators, JUAS January 2004
- U. Am aldi, presentation on Hadron therapy at CERN 2006
- Various CLIC and ILC presentations
- Several figures in this presentation have been borrowed from the above references, thanks to all!