

Status Mini DAQ Software Control
System

J.P. Cachemiche, P.Y. Duval, F. Hachon
R. Le Gac, F. Réthoré

CERN – 12 dec 2013 – LHCb upgrade AMC40 firmware

Overview

● LLI V1.0
● Linux driver
● User library
● Working tools: libraries and commands
● Conclusion

LLI and user driver status

Component access library command status

NYI* OK
MM registers NYI* OK

PLL OK
user registers MM registers demo application NYI* OK

Config menu

minipods PCIe/I2C libminipods.a minipods
FPGA transcievers libphy.a phy

PCIe/SPI libpll.a pll pll_control
libuser.a

* NYI: Not Yet Implemented

The LLI V1.0 is available

The LLI distribution V1.0

Available for dowloading in the AMC40 forge project at :

https://lbredmine.cern.ch/projects/amc40/wiki/Low_Level_interface_Softwar
e

Contains:
- the driver to access the firmware registers via the PCIe bus
- libraries to read/write the registers: user registers and LLI internal registers
- programs/commands to configure the AMC40 components

- minipods
- FPGA phy interface
- pll

- a simple demo program to control the demo firmware application

At this URL you also have links to get:
- the firmware to load the demo application in the FPGA
- the LLI user guide

The CCPC is a diskless system with a linux 2.6.39 kernel and SL62 distribution
using the PXE protocol to boot (supports the PCH_GBE controller).

It needs a server to provide:
- its IP address and boot code (DHCP)
- its kernel and initial file system in RAM (tftp)
- its final root file system to run (NFS)

The CCPC BIOS has been set to boot via PXE.
The needed files are available in the REDMINE project CCPC-Common
 https://lbredmine.cern.ch/projects/ccpc-common
via the WIKI pages.

A guide explains how to configure the server for your CCPC.

CCPC components (reminder)

IP and PXE
DHCP request

tftp: kernel + ramfs

NFS: Mount rootfs

https://lbredmine.cern.ch/projects/ccpc-common

Linux driver for user code registers

One driver to allow read and write accesses to registers mapped in PCIe address space.

The LLI V1.0 uses 2 BARs:

BAR 0: 32 bits non prefetchable memory space for user code registers (/dev/ecs_bar-0)
BAR 2: 32 bits non prefetchable memory space for internal LLI registers (/dev/ecs_bar-1)

BAR 0 is exported through a bridge to user code (see LLI specifications)

The driver is in lli_root/driver directory:

Go in this directory and execute
./start.sh (as root)

User library

The user library is used to write programs that access in read/write mode the registers
implemented in user firmware (under the BAR0).

Very simple set of functions .

void lbPcie_user_init();
void lbPcie_user_close();

//Register
void lbPcie_user_readW(unsigned base_add, unsigned *val);
void lbPcie_user_writeW(unsigned base_add, unsigned *val);

int lbPcie_user_write(unsigned base_add, unsigned *val, int
size);
int lbPcie_user_read(unsigned base_add, unsigned *val, int size);

A simple demonstration program is included in the LLI distribution in directory tests/ecs.

Libraries for LLI internal resources

The LLI needs several user libraries to manage the board basic components:

- the minipods configuration (via an I2C bus interfaced to the PCIe)
- the PLLs configuration (via an SPI bus interfaced to the PCIe)
- the FPGA optical links PHY components (internal registers)

Those resources are mapped in BAR2 space.

Those libraries are not meant to be used directly by users but are building pieces
of two types of programs:

- commands to be used in scripts for resources configurations
(since the previous presentation the commands have been converted to long options)

- menu based programs to configure the resource in inter-active mode

LLI commands (long options)

flags subject
full-status print the full minipods status
temperature print the internal temperature of minipods
vcc-3.3 print the 3.3 Vcc values of minipods
vcc-2.5 print the 2.5 Vcc values of minipods
error-status print general erro status of minipods
los-status print LOS loss of signal status channels
fault-status print faults of TX minipods channels
bias-current print bias current of TX minipods channels
light-output print light output optical power of TX minipods channels
light-input print light input optical power PAVE of RX minipods channels
reset do minipods reset (parameters set to factory values)
channel-disable disable minipods channels
channel-enable enable minipods channels
channel-dump print enable/disable status of minipods channels
squelch-disable disable squelch of minipods channels
squelch-enable enable squelch of minipods channels
squelch-dump print squelch status of minipods channels
margin-activation activate margin of TX minipods channels
margin-deactivation deactivate margin of TX minipods channels
margin-dump print margin activation status of minipods channels
vendor-info print vendor informations of minipods
in-equal-read read the input equalization values of minipods channeles
in-equal-write set values for the input equalization of minipods channels
out-amplitude-read read the output amplitude VOD of RX minipods channels
out-amplitude-write set values for the output amplitude VOD of RX minipods channels
out-deamphas-read read the output deamphasis of RX minipods channels
out-deamphas-write set values for the output deamphasis of RX minipods channels

flag subject
LoopBack-dump print the loopback status
LoopBack-enable enable the loopback mode
loopBack-disable disable the loopback mode
vod-read read the vod current code
vod-write write a new vod code
prea-prtp-read pre amphasis pre-tap current code
prea-prtp-write pre amphasis pre-tap new code
prea-potp1-read post amphasis first pre-tap current code
prea-potp1-write post amphasis first pre-tap new code
prea-potp2-read post amphasis second pre-tap current code
prea-potp2-write post amphasis second pre-tap new code
equal-gain-read RX equalization current DC gain code
equal-gain-write RX equalization DC gain new code
equal-control-read RX equalization current control gain code
equal-control-write RX equalization control gain new code
pre-rvserloop-enable enable pre reverse serial loopback
pre-rvserloop-disable disable pre reverse serial loopback
pos-rvserloop-enable enable post reverse serial loopback
pos-rvserloop-disable disable post reverse serial loopback

Minipods parameters FPGA PHY parameters

LLI commands examples (long options)

The minipods can be controlled typing commands or in bash script like:

#!/bin/bash
#Print the squelch setting of all minipods

minipods --channel-dump
#Print the squelch setting of minipod 4

minipods --squelch-dump -m4
#Disable the squelch of all channels of all minipods

minipods -squelch-disable
#Disable the squelch of all channels 5 of all minipods

minipods –squelch-disable -c5
#Print the equalization setting of all channels of minipod 2

minipods --in-equal-read -m2
#Print the equalization setting of channel 1 of minipod 0

minipods --in-equal-read -m0 -c1
#Set 12 code values for the equalization setting of the 12 channels of all RX minipods

minipods --in-equal-write -l1,1,1,1,1,1,2,2,2,2,2,2
#Set 12 code values for the equalization setting of the 32 channels of minipod 4

minipods --in-equal-write -m4 -l3,3,3,2,2,3,2,2,0,0,0,2

LLI commands examples

The minipods can be controlled via commands in python script like:

#/usr/bin/python
import os

f = os.popen(“minipods --channel-dump”)
print “Squelch setting of all minipods :”, f.read()

print “Disabling the squelch of all channels of all minipods”
f = os.popen(“minipodCmd -squelch-disable ”)

print “Set 12 code values for the equalization setting of the 12 channels of all RX minipods”
f = os.popen(“minipodCmd --in-equal-write -l1,1,1,1,1,1,2,2,2,2,2,2“)

Demo application

LLI V1.0 contains a demo application in the directory: lli_root/user

The application is a simple menu based program to start/stop emitting packets on 6 links
and display the number of packets sent and errors detected.

TX

TX
TX

TX

TX
TX

RX

RX
RX

RX

RX
RX

FPGA Logical view

jtag

GBT
23:12

GBT
11:0

GBe
11:0

Connected
Fiber 0:5

AMC40 front pannel

RCV packets
RCV packets
RCV packets

RCV packets
RCV packets
RCV packets

Nb errors
Nb errors
Nb errors
Nb errors
Nb errors
Nb errors

data validReset

Menu:
 [0] Quitter
 [1] Set data valid
 [2] Clear data valid
 [3] Reset packet id
 [4] Reset error counter
 [5] Get status
 Choix :

ECS integration in WINCC-OA

The CCSERV has been compiled and successfully tested with DIM on the AMCTP

ecsDriverLib

CCSERV

DIM

DIM
fw

Hardware
fw

WINCC_OA

Dynamic DB
Data pointsLocal adaptation

done and tested

DID

Development station

OK

Security barrier

PRIVATE DOMAIN

ECS integration in WINCC-OA

Next steps:
- test with full fwHardware in the CERN wide network
- XML format to feed fwHw with registers descriptions

ecsDriverLib

CCSERV
DIM
fw

Hardware
fw

WINCC_OA

Dynamic DB
Data points

DIM

Conclusion

All software pieces are there to build a control program to manage your firmware on the CCPC.

- a bootable Linux system
- the driver to link PCIe mapped resources into the OS file system
- the libraries to read/write into those resources/registers
- integration into CCSERV for WINCC-OA hardware framework done

1- Load the FPGA with the demo firmware and exercise the commands and programs
2- Analyse the example demo firmware to understand how to create PCIe mapped registers
3- Look at the (simple) example to see how to use the library to access those registers
4- Use the forge to share your feedback (New issue and Issues tabs) in AMC40 project

https://lbredmine.cern.ch/projects/amc40/wiki/Low_Level_interface_Software

https://lbredmine.cern.ch/projects/ccpc-common/wiki/Kernel_and_distribution

Useful links:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

