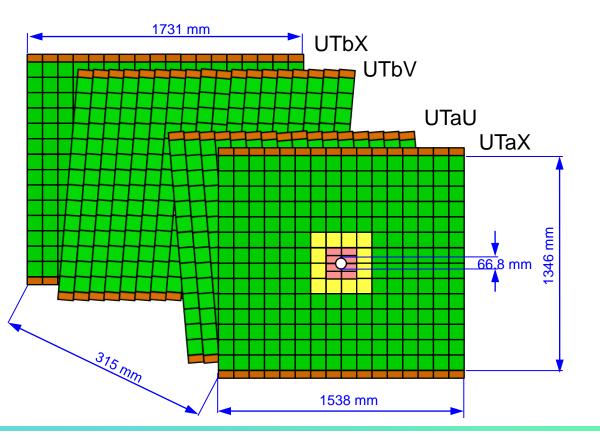
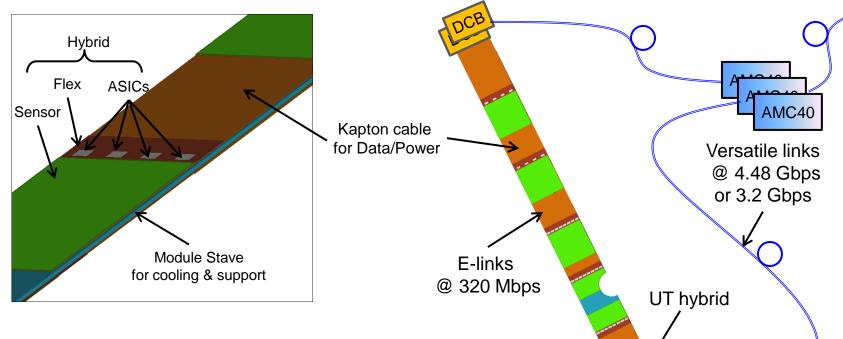
Upstream Tracker Data Format

JC Wang


Upgrade Electronics & AMC40 Firmware Meeting 12/12/2013

UT - Upstream Tracker

Sensor			
Pitch (µm)	~190	~95	~95
Length (mm)	~100	~100	~50
Strips/sensor	512	1024	1024
ASICs/sensor	4	8	8



- ❑ UT detector consists of 4 planes at Z locations similar to that of TT. The middle two planes are at ±5°.
- □ Each plane has 16 or 18 modules stretching from top to bottom.
- There are 14 or 16 sensors per module mounted on both sides alternatively for overlaps.
- Strips of UT sensor are vertical, pitch=190, 95 μm, length=5,10 cm.
- Analog signals are digitized by SALT ASICs at the sensor proximity. Each ASIC handles128 strips.
- Digital data are sent to the ends of modules via flex data cable as and further via optical fiber.
- □ In total there are 68 modules, 968 sensors, and 4192 ASICs.

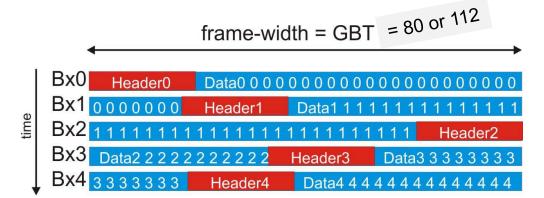
Readout Chain

Data concentrator boards

- □ UT signals from silicon strips are digitized and zero suppressed at ASICs, 4 or 8 ASICs per sensor.
- Digital data are sent to data concentrator boards (DCB) via e-link lines in flex data cable as SLVS signals.
- □ UT e-ports/e-links operates at 320 Mbps. One ASIC needs up to 5 e-links, depending on the occupancy.
- DCBs pack data from up to 10 or 14 e-links passively to GBTx frame and send to AMC40 via optical fibers.

12/12/2013

Data Format @ ASIC


Неа	der Field	d (6 or 12	bits)	Data	Comment	Probability @
BXID	NoData	IsTrunc	Length	Field	Comment	L=2x10 ³³ cm ⁻² s ⁻¹
4-bit	1	0	-	I	BXVeto, HeaderOnly, or empty event	88.2%
0000	1	1	-	I	Idle packet	
4-bit	0	0	6-bit	Hits	Normal event (Length=NumHits≤63)	11.8%
4-bit	0	1	6-bit	I	Truncated event (NumHits>63, or bufferFull)	2.6x10 ⁻⁵
4-bit	0	1	11 1111	*	NZS packet, details in appendix	
12-bit	-	-	-	*	Synch packet, with preset pattern	

- UT data format was formed with help from Federico Alessio. This is an optimized revision during implementation in the SALT chip.
- Events of all BXIDs are saved, in sequential BXID order. The length of BXID is 4-bit.
- For high probability BXVeto & empty event (no hit in ASIC), only the 6-bits header is sent.
- For events that NumHits \leq 63, a 6-bit "Length" is used for the number of hits that follow. Each hit is a 12-bit data (7 for channel ID, 5 for ADC).
- If NumHits > 63, or the buffer is full, a truncated event packet is saved instead. Length = NumHits/4 is saved for monitor purpose. No actual hit data follows. The default truncation threshold is 63, which is configurable and can be tightened if necessary.
- When there is not enough data to fill all e-ports, one or more idle packets are added.
- UT does not mix NZS & ZS data. NZS is for calibration or test run only. Its packet header is unique. The length of data that follow = 804 bits. Details can be found in appendix.

UT GBTx Packet Format

From "Electronics Architecture of the LHCb Upgrade" http://cds.cern.ch/record/1340939

UT ASICs are independent. E-ports within an ASIC send data coherently as if they are from one port. Each ASIC data form its own GBT sub-frame.

	ASIC of	ASIC of				
e-port 0	e-port 1	E-port 2	E-port 3	E-port 1	E-port 2	E-po
8 -bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-ł
head0	data000	000000000000000000000000000000000000000	0000000000	head0	data00000	head
0000000000	0000000 he	ead1 h	ead idle	0000000000	0000000000	0000
idle head	d2 data2222	2222222222	2222222222	00000000	nead1 <mark>data</mark>	11111
2222222222	2222222222	22222222222	2222222222	111111111111	111111 head2	idle

Up to 10 or 14 e-ports for passive DCB

- In the initial design DCB packs events passively. Each ASIC occupies a fixed number of bits in the GBTx frame (a sub-frame). The sub-frames are independent.
- AMC40 FPGA does not have enough resource to handle 24 x multi-sub-frames, as found by Guillaume Vouters.
- We are exploring two options: repacking at DCB, or keep passive DCB, and do something at AMC40 end.
- Repacking: To repack data at DCB we need FPGAs to decode, BXID align and pack event, just like what is done at AMC40. The FPGA needs to work in a radiation environment (up to 10-30 kRad). There are ~1000 GBT to handle.
- Passive: On AMC40 side we plan to match ASICs according to their occupancy etc. So different AMC40 can be optimized for different issues, e.g. long waiting or more sub-frames; More AMC40 may be used to reduce number of sub-frames per board, and we use 80 bit GBT frame width; More powerful FPGA is also possible.
- We are still investigating. Feasibility, cost and data integrity are the factors that we need to consider.

	Не	ader Fiel	d (24 bits)		Data	Comment
BXID	NoData	IsTrunc	Length (11-bit)	EDAC	Field	Comment
4-bit	1	0	0	7-bit	-	HeaderOnly, BXVeto
0000	0	0	0	0	0	All-zero GBT frame for idle
4-bit	0	0	11-bit	7-bit	Hits	Each hit use 16 bits
4-bit	0	1	11-bit	7-bit	-	Truncated event. Length is saved
4-bit	0	1	0x7FF	7-bit	*	NZS packet, details in appendix
12-bit	-	-	-	-	*	Synch packet with preset pattern

- If we choose to repack events at DCB, this is the format of data sent to AMC40.
- Up to 8 ASICs are repacked into one GBTx frame, no sub-frame in it.
- All headers have fixed length = 24 bits. Header fields are protected by 7-bit error detection & correction (EDAC) information.
- Each hit needs 15 bits (3 + 7 for channel ID, 5 for ADC). We use 16 bits instead to have header aligned with bytes. This helps at AMC40.
- When there isn't sufficient data to send, DCB sends an all-zero GBT frame, which may insert inside an event. This is consistent with the general specification.

- Front end contacts: Krzysztof Swientek.
- Technology: ASIC (passive DCB), ASIC+FPGA (repacking).
- Data format information (not already presented):
 - GBT width: 80 for passive, 112 for repacking as UT has its own header correction.
 - NZS possible: NZS for calibration or special runs only. No ZS & NZS mixing run.
 - Without repacking, in each sub-frame the max ZS data after one header is 63*12 = 756 bits, NZS data has fixed size 804 bits. With repacking, in each frame the max ZS data after one header is 8*63* 16 = 8064 bits, max NZS data has 6404 bits.
 - Are data time-ordered by BXID: Data are time ordered. All BXIDs are saved.
- Data format compliant with the specs: For passive DCB solution data from 4192 ASICs are not synchronized. Each ASIC occupies a sub-frame.
- UT hit clustering & spill-over correction will be done on AMC40.
- Sync command integration & synch-frame definition: not settled yet.
- Data latency to AMC40 is not fixed.
- For passive DCB, data contains idle packets that should be ignore. It has unique header flags. For repacking solution, standard idle frame will be sent.

- Special run modes: We need NZS runs for pedestal/noise & test pulse calibration, low intensity beam test run for debugging purpose.
- Data emulation available: ASIC DSP design and simulation is in progress; We have simulated output of e-ports and DCB gbtx from MC data as input to AMC40.
- Estimated bandwidth: ~1000-1200 GBTx links, ~ 40-50 AMC40.
- Estimation resources FE encoding: working on it.
- Bit ordering: MSB first.

BXID	NoData	InTrunc	Length	(EDC)	Hit1	Hit 2	Next event
MSB-LSB			MSB - LSB	MSB-LSB	ChanID MSB-ADC LSB		

- Back end contact: Jianchun Wang.
- Data processing: with UT-specific functions adding to generic firmware. Status: infrastructure setup ready (mini-DAQ, work station). We have C++ simulation of readout chain and UT-specific functions using MC data.
- Output interface ??
- DSP block is needed to add UT-specific functions, including spill over correction and hit clustering.

Backup

		Heade	er Field						
DVID	NoData	li	nfo Field			Data Field	Comment	Probability @ L=2x10 ³³ cm ⁻² s ⁻¹	
БЛІЛ	NODala	IsEmpty	IsTrunc	IsSmall	Length				
4-bit	1	-	-	-	-	-	BXVeto or HeaderOnly	32.7%	
4-bit	0	1	-	-	-	-	Empty event	55.6%	
4-bit	0	0	1	1	8-bit	- Truncated event			
4-bit	0	0	0	1	2-bit	Hits	Small event, NumHits < 4	10.7%	
4-bit	0	0	0	0	8-bit	Hits	Large event, NumHits \geq 4	1.1%	
0000	0	0	0	0	0x00	-	Idle packet, 16 zeros		
4-bit	0	0	0	0	0xFF	*	NZS packet		
12-bit	-	-	-	-	-	*	Synch packet		

- Event is truncated if NumHits>Threshold or buffer is full. The threshold is configurable. Length=NumHits for monitor purpose, although no hit follows.
- Hit data 12-bit = 7-bit channel ID + 5-bit ADC.
- Header length shorter for high probability type of events.
- DSP implementation may require re-optimization.

NZS UT Data Format

Name	Bits	Comment
BCID	4	
Other header bits	8	Only to identify NZS packet
Number of ASICs	4	Useful if multi-ASIC data is repacked at DCB
NumChanCM	8	
NumChanSignal	8	Digital signal processing perometers from the first ASIC
NumChanRecover	8	Digital signal processing parameters from the first ASIC.
CMValue	8	
ADC 0	6	ADC values channel by channel
ADC 1		ADC values channel by channel

- In pedestal/noise, test pulse or other special test runs UT can be in non-zerosuppression (NZS) mode.
- All 6-bit ADC values without pedestal subtraction are sent out channel by channel in sequential channel ID order. No channel ID is needed.
- We also want to save a few parameters in digital process for debugging purpose. The number may increase when digital process is finalized:
- > The event data size is fixed (4 + 8 + 4 + 4x8 + 128x6 = 816 bits).