LHCb Electronics Upgrade Meeting

Data Format

Thursday 12th December, 2013

Frédéric Machefert

Laboratoire de l'Accélérateur Linéaire

On behalf of the calorimeter upgrade group

Overview of the Front-end

- The calorimeter data are produced by ~250 FEB
- Each FEB receives the signal from 32 PMT and converts the signal into 32 words 12 bit wide (12 bit ADC)
- The almost « unavoidable » scale for the FEB is
 - 4 FE blocks of 8 channels / FEB \rightarrow 4 opt. Links / FEB
 - 8 x 12 = 96 bits to be sent per block
- 4 Fibres for the DAQ
- An extra fibre is needed for the LLT-Calo
 - FEB/TRIG40 connection
- To send 96 bits, the « standard » (80 bits) data-format of the GBT cannot be used
 - Need to base our design on the « wide-bus » frame implementation
 - Not needed for the LLT-Calo fibre

Thursday 12 December 2013

Digital design

- 5 fibres are necessary to send
 - the Data (4)
 - the LLT-Calo (1)
- No complex compression of the data
 - Simplicity
 - Reduction of the risk of data corruption
- LLT is basically a copy of what is in the L0-Calo except for the opt. link

Data format - DAQ

- We need to base our design on the 112 user bit « wide-bus » frame
- Out of the 112 bits, 96 used for the channels data
- 16 remaining bits for synchronisation/identification
 - Crate identifier (5 bits, could we save 1 bit separating ECAL/HCAL ?)
 - FEB identifier (4 bits)
 - 7 (8?) bit for the BxID
- BxID coded on 12 bits \rightarrow we miss a few bits
 - 2 solutions
 - Send only 7 (8 ?) bits \rightarrow probably sufficient for synchronisation
 - Split 12 bit word and send MSB on several links (4+2+2+2+2, 1 extra bit free per link) → more complex

Bx-id	Crate-id	FEB-id	ADC-7	ADC-6	ADC-5	ADC-4	ADC-3	ADC-2	ADC-1	ADC-0
[111, 105]	[104, 100]	[99, 96]	[95, 84]	[83,72]	$[71,\!60]$	[59, 48]	[47, 36]	[35, 24]	[23, 12]	[11,0]

- Need to find an extra bit for the « no data bit » \rightarrow could be the saved bit from ECAL/HCAL separation
- Data_length not useful \rightarrow this is a constant for us
- In this design there is no margin
 - no possible correction, nor any parity bit for checking
- The « synchronisation » data could consist in sending a (wrong) specific pattern on the FEB/CRATE id

Thursday 12 December 2013

Frédéric Machefert - LHCb Week - Electronic upgrade meeting

Data format – LLT-Calo

- The data format of the LLT-Calo (FEB-TRIG40 connection) is not so demanding as for the DAQ. The data to send are (preliminary)
 - 5 bits of local address
 - 8 bits of ET of the highest ET 2x2 cluster
 - 13 bits of total ET on the board
 - 5 bits of crate identifier (4?)
 - 4 bits of FEB identifier
 - 6 bits of multiplicity
 - 1 bit of status
- A total of 42 bits \rightarrow the standard format is sufficient
- No complex compression needed
- Data correction can still be used on this link
 - Probably more useful on the LLT path than on the DAQ path

Thursday 12 December 2013

Some ideas

- We « lose » the CRATE/FEB id bits
 - Do we need them all the time ?
 - Could we define a « test » mode when we emit FEB/CRATE id → check optical link connexion
 - Could we send the FEB/CRATE id on the data frame only when SYNCH command is active (having a synchronisation bit to identify the frame)
 - Recover 9 bits (« physics » mode) for
 - Full Bxid coding
 - Some protection bits
 - However, this would request 2 working mode for the backend
- Could we have some protection bits in the LLT-Calo link to correalte ADC/LLT information
 - Is it necessary ?
 - Is it feasible at all in the online ?
 - The links do not get to the same hardware...

Thursday 12 December 2013

Frédéric Machefert - LHCb Week - Electronic upgrade meeting