The LHCb Muon architecture upgrade review: a summary

Alessandro Cardini

on behalf of

The LHCb Muon Upgrade Group

Summary

- The review was held at CERN on Oct. 9th
- Reviewers: Ken Wyllie, Federico Alessio, Jan Buytaert
- Very constructive meeting, lot of questions asked/answered
- Received reviewers' comments on Nov. 5th, provided feedback on Nov. 13th
- "Procedure" completed (milestone)

The Muon System Upgrade in brief

- Phase 1: get ready for the 40 MHz readout
 - Muon detector will not be modified, but M1 will be removed
 - nODE (with nSYNC ASIC) for an efficient detector readout by TELL40
 - Muon LLT Low level trigger (LLT) implemented on muon system TELL40
 - nPDM and nSB for an efficient chamber pulsing and control using
 GBT through GBT-SCA
 - Ready @ LS2
- Phase 2: new high readout granularity detectors for highluminosity regions equipped with a new highly-integrated FEE ASIC
 - Baseline planning: new detectors and electronics prototypes ready @LS2, then construction, to be installed @ LS3
 - This will is not part of this review and will not be discussed today

Review's Outline

- 1. The new readout architecture and its implementation with the nODE board [S. Cadeddu, P. Ciambrone]
- 2. The nSYNC ASIC [S. Cadeddu]
- 3. The Muon Detector specific part of the TELL40 firmware [E. Santovetti]
- The new control and pulsing systems for the Muon Detector [V. Bocci]

Project Schedule, manpower and responsibilities [A. Cardini]

The Muon detector

Crucial role in the first Trigger level (LO Muon trigger)

Provide an high PT muon trigger at the L0 with the 95% efficiency

5 Stations: 1380 detectors (MWPC & 3-GEM) 20 different types of detectors, with different time response Different dimensions: M1 (24x20cm2), M5 (151x31cm2)

120k Front-end channels combined to have 26k read-out channels

Space point binary information within the bunch crossing Phase inside the bunch crossing

About 50,000 LVDS signal cables of different length

Muon Detector: the Read-out system

7632 Front End boards (CARDIAC): Two ASIC: CARIOCA (ASD chip) DIALOG (time alignment and monitoring) 168 IB (Intermediate Boards) make a logical combination of the front-end channels (~122k) to obtain the read-out channels (~26k)

14 Tell1 of Muon DAQ acquire the data after the L0 yes

152 ODE: Synchronous with LHC Clock. Collect data from FE and send it to L0µ trigger and to DAQ. 24 SYNC ASIC: - Measure of time - BXid association - L0 pipelines

Electronic Chain: 10÷21 m of LVDS cables

156 SB (Service Boards): Control the Front-End Boards

10 PDM: Pulse the FEB synchronously to a given BXid

All boards are controlled through ECS-PVSS

The Front-End Electronics and its connectivity

IN AN

Present ODE architecture

9/10/2013

Present ODE implementation

- L0 front-end electronics stage
 - 192 LVDS input signals
 - 24 SYNC chips (on 3 types of piggy board)
- TFC system interface and clock management
 - 1 optical receiver + 1 TTCrx chip
 - 1 QPLL chip
 - Tree network based on MC100LVEP family
- L0 trigger interface
 - 12 GOL chips + 1 parallel optical transmitter
 - Valid data transmission @40MHz
- L1 DAQ interface
 - 1 GOL chip + 1 VCSel diode
 - Valid data transmission @1 MHz
- FPGA board controller
 - Flash RAM based Actel FPGA (ProAsicPlus)
 - 3 buses (32 bit) for SYNC and GOL interfaces
- ECS interface
 - 1 ELMB board
 - CANbus link on the backplane
 - 2 I2C internal buses
- 6U Compact PCI card
 - 10 layers motherboard with controlled impedance
 - Mixed 5/3.3/2.5 V devices

- Obsolescence of components could be an issue
- No flexibility to match feature run conditions (occupancy, granularity, ...)
- The 4 bit TDC information is extremely (absolutely) useful to monitor and fine tune the time alignment of the Muon Stations
 - This information is sent from ODE boards to the Muon TELL1 via GOL
 - @ max 1 MHz (~900 ns are needed to read-back the complete event from all SYNC chips)
 - the events are selected by the L0yes, received via the TTCrx from TFC system
 - no zero suppression implementation is possible
- Need to maintain (emulate) the present TFC system
 - Master clock, synchronization signals, L0 trigger
- Need to maintain the present ECS system

nODE architecture

aboratori Frascat

9/10/2013

Muon Electronics Upgrade Review

lhcd

ΉC

TELL40 x HIT info

max 22 links in R1

- The number of O.L. for each region of a quadrant (4 stations) is compatible with AMC40 inputs
 - **O.L** per quadrant clinks Region M2 **M4** M5 tot **M3** 22 **R1** 3 12 4 3 20 **R2** 12 4 2 2 **R3** 2 2 4 4 **R4** 2 4 4
- If the resources of each AMC40 and/or ATCA40 were enough, 1 TELL 40 could elaborate the data of a entire quadrant.
 - 4 TELL40 in total for the MUON hit (and LLT)

9/10/2013

Summary

- A new boards (nODE) almost "plug & play" with current ODEs is foreseen
 - No re-cabling
 - Use a new custom ASIC (nSYNC) to integrate all the required functionalities
 - Use new GBT and versatile link components to implement trigger, DAQ, TFC and ECS interfaces
 - Separate links for trigger and DAQ data
 - Reduced number of links to the L0 Muon trigger
 - 2 links per board
 - GBTx in Wide bus mode
 - Read TDC data @ 40 MHz rate
 - 2 links per board
 - GBTx in Wide bus mode
 - Discharge present TFC and ECS systems
 - Enough flexibility to reduce channel occupancy
 - Present power system compatible with minimal maraton re-configuration

SYNC 1.0 vs nSYNC

Why an asic

- Modularity: we are thinking at three possible modularity (32, 48, 96 channels), to best fit the requirements for:
 - Power consumptions (less then 20mA per channel)
 - Best ZS for TDC data
- An eye on LS3 stage: If we go to design a new detector with higher granularity for at least M2R1 and M2R2 (and maybe for the same regions of M3 too), we have also to design a new front-end electronics and a new front-end board where we can integrate the nSYNC direct on the detector.

Technologies

IMEC DARE (Design Against Radiation Effects) technology:

- Radiation-hardened-by-design libraries in standard commercial technology
 - DARE180 well supported (UMC .18)
 - DARE90 small core & IO library available(UMC 90nm)
- Manufacturing, Packaging, Testing, Characterization (lot) Qualification & Radiation test up to FM is supported by imec's ASIC Services
 - Through subcontractors (Microtest, Maser, MAPRAD)
- Flexible solution
 - DARE allows for mixed signal design
 - Can add specific analog blocks; designed by customer, design house or imec
 - Encrypted models of library cells can be used in analog design ervironment.
 - Cells can be added to the library
 - IO pads can be customized ...
- Imec has expertise on the full DSM design flow
- They tested DARE digital blocks up to 1 MRad without failures or leakage current increases.
- SEU performance is in the order of a LET cross-section of 48/60 Mev.

The muon firmware now

- = 24 (max) ODE boards per tell1
- Zero suppression
- Data packing
 - Logical channel address inside tell1 (12 bits)
 - TDC value (4 bits)
- Logical pad coordinates for HLT1
 - Logical pad reconstruction and address packed in 16 bit word

Very preliminary... work just started

The muon firmware for the tell40

- = 48 (max) nODE boards per tell40
- Zero suppression done in the nODE boards
- Data packing with only TDC info (baseline)
 TDC value (4 bits)
- LLT trigger signal managing (if any)
- Logical pad reconstruction
 - possible only in the trigger tell40 board (useful ?) or if we send also the geographical address of the hits (foreseen only in the trigger tell40)

09/10/2013

E. Santovetti - Tell40 Muon firmware

4

Tell40 for the muon LLT trigger

- Actual L0 looks for aligned hits with high pT
 - Search done dividing the detector in 192 pointing towers
 - M3 fired pads are the starting points (seeds) to build the track
- Data received without zero suppression: 1 bit per channel, in a fixed structure (no change respect to now)
- Trigger tell40 can houses some useful logic
 - Logical pad formation and other
- In case the "TDC" tell40 write only the TDC words (without address) the trigger tell40 must write all the fired hits (logical channels). In this case a zero suppression could be necessary

FEB control and pulse distribution Up to 8 Cardiac Board for each lvds i2c branch Service Board - 12 Long distance I2C Like LVDS line - 4 ELMB with ATmega 12 x (I2C+TST signal) 4 Mips processor 12c LVDS signals:SCL,SDAin,SDAout - Flash ACTEL FPGA LVDS TST pulse, TTL Reset Timing Pulse generation, control signals Read Write Dialog Registers - CANBus Module Send pulse to measure rate, calibrate DLL, sync pulse, RESET FEB Valerio Bocci Muon Front End Control System CERN Oct 9 2013 Fast coarse Time Alignment (Without physics) Service Board System Dialog Delay Service Board SB ELMB BC pulse ELMB ELMB 4xCANbus 100 m cables ELMB Sys TEC USB CANbus interface Pulse Distribution Module CAN1 PDM ELMB ODE CAN2 TTCrx Sync 4xCANbus CAN3 Sync Histo CAN4 USB 2.0 HS 480Mbit/s Valerio Bocci Muon Front End Control System CERN Oct 9 2013 Valerio Bocci Muon Front End Control System CERN Oct 9 2013

CERN, 12 October 2013

A. Cardini for the Muon Group

Service Board

New Pulse Distribution Module single GBT

Backplane Signals

Valerio Bocci

Muon Front End Control System CERN Oct 9 2013

Valerio Bocci

Muon Front End Control System CERN Oct 9 2013

New Custom Backplane

New Custom Backplane routing 80 Mbits/s E-Link Lines And Service line

Valerio Bocci

Muon Front End Control System CERN Oct 9 2013

Reviewer's Report - General

- Very constructive review
- Careful monitor contacts' signs of oxidation
- Evaluate radiation level for upgrade
- Improve current ECS "features" in the upgraded system
- Documentation
- Test the new architecture using occupancies from simulation

Reviewer's Report - Readout

- Confusion of link names used during the review agreed to use HIT and TDC (LLT only uses HIT info)
- Is it necessary to transmit TDC data at 40 MHz?
- ZS of TDC info: issues and possibility of NZS
- Consequence of using WideBus in our environment
- TDC resolution: changes foreseen?
- Include TDC info in HIT stream
- Use GBTX functionalities for clock management
- How to fan-out TFC commands to nSYNC chips
- Use TFC link to upload extra info
- Carefully consider nSYNC technology
- CERN, 12 October 2013

Reviewer's Report – back-end, ECS, ...

- HIT binary information: used for LLT but need to be acquired
- nPDM: suggested to already think of having 2 bidirectional links
- Configuration/monitoring timing issue: is there a bottleneck on the nSB?
- ECS rewriting
- Test eLink on a backplane
- Radiation tests could be needed on commercial components
- Schedule is aggressive, nSYNC development should start ASAP

Conclusions

- Very helpful review!
- Suggestions / comments taken thanks!
- Activity on nSYNC planned to start in early 2014
- Push ECS development to proceed in parallel as much as possible
- PID TDR ready → now we can work!