

Running simulation for the Mini-DAQ: TFC and FE features

LHCb Electronics Upgrade Meeting 12 December 2013

Federico Alessio

Simulation framework

Philosophy maintaned:

→ flexible, configurable, easy-to-use, collaborative ...

Realistic and synthesizable code for TFC + TELL40 + MEP

- \rightarrow realistic environment
- \rightarrow follow specs to the very last detail
- \rightarrow expertise available for it

Emulation of different allowed FE encodings

- \rightarrow generic one
- → from a .txt file (raw data)
- \rightarrow from you...

TFC (fast commands) available

to TELL40

63 52	51	50	49 18	17 14	13 10
BXID(110)	Reserve	MEP Accept	MEP Dest(310)	Trigger Type(30)	Calibration Type(30)

9	8	7	6	5	4	3	2	1	0
Synch	Snapshot	Trigger	BX Veto	NZS Mode	Header Only	BE Reset	FE Reset	EID Reset	BXID Reset

to FE

23 12	11	10	9	85	4	3	2	1	0
BXID(110)	Reserve	Synch	Snapshot	Calibration Type(30)	BX Veto	NZS Mode	Header Only	FE Reset	BXID Reset

Periodicity, rates, delays, codes are all configurable via a simple configuration package

For details on the commands and their usage, see LHCb-PUB-2012-017

LHCD THCD ONLINE	
TFC to FE : 	specific con
constant FE_r number of	eset_wait clock cycles

Configuration package features I

Everything is explained in the Mini-DAQ handbook document!

figurations parameters

: std logic vector (15 downto 0) := X"00FA"; -- 250 clock cycles to wait after one FE RESET command

constant NZS enb : std logic := '1'; -- enable/disable NZS trigger constant NZS consecutive enb : std logic := '0'; -- number of consecutive NZS triggers constant NZS TAE wait clkcycle: std logic vector(11 downto 0) := X"005"; -- number of clock cycles to wait after one or more consecutive NZS triggers

-- CALIBRATION TRIGGERS

```
constant CALIBTRG A period : std logic vector(15 downto 0) := X"0001";
-- periodicity as a number of orbits (1 = every orbit etc.)
                             : std logic vector(15 downto 0) := X"OCOF";
constant CALIBTRG A bxid
-- BXID on which calibration trigger will trigger
                                                             := '1';
constant CALIBTRG A enb
                             : std logic
-- enable/disable calibration trigger
```

constant CALIBTRG B period : std logic vector(15 downto 0) := X"0001"; constant CALIBTRG B bxid : std logic vector(15 downto 0) := X"04AF"; constant CALIBTRG B enb : std logic := '0'; : std logic vector(15 downto 0) := X"0001"; constant CALIBTRG C period : std logic vector(15 downto 0) := X"09DF"; constant CALIBTRG C bxid constant CALIBTRG C enb : std logic := '0'; : std logic vector(15 downto 0) := X"0001"; constant CALIBTRG D period : std logic vector(15 downto 0) := X"020F"; constant CALIBTRG D bxid : std logic constant CALIBTRG D enb := '0': -- same as Calib A

Enables NZS triggers and Calibration types

Configuration package features II

-- SPECIAL ENABLES constant SNAPSHOT enb : std logic := '1'; -- enable SNAPSHOT command constant SNAPSHOT interval : std logic vector(15 downto 0) := X"37B0"; -- number of clock cycles between two SNAPSHOT commands constant SYNCH enb : std logic := '1': -- enable SYNCH command constant SYNCH length : std logic vector(15 downto 0) := X"000A"; -- number of consecutive SYNCH triggers (in clock cycles) constant SYNCH wait : std logic vector(15 downto 0) := X"0002"; -- number of consecutive clock cycles to wait after one or more SYNCH commands constant BX VETO enb : std logic := '1': -- enable BX VETO command (ignore if not used in FE) constant HEADER ONLY enb : std logic := '1'; -- enable HEADER ONLY command (ignore if not used in FE)

Various enables/parameters to emulate TFC commands to FE

Front-End HDL code

Implemented three <u>generic</u> different types of algorithms to emulate FE data encoding:

- ✓ Variable frame length packing with Variable size header (called VV)
- ✓ Variable frame length packing with Fixed size header (called FV)
- ✓ Fixed frame length packing with Fixed size header (called FF)

NB: this was needed to develop the TELL40 code and study each decoding scenario

For more details, see LHCb-INT-2013-015

Compress (zero-suppress) data already at the FE

- reduce # of links
- data driven readout (asynchronous) + variable latencies!

Efficiently use data link bandwidth

- pack data on data link continuously with elastic buffer
- extensive use of GBT (robust FEC vs WideBus mode)
 - ✓ evaluate choices based on complexity vs robustness

LHCb Electronics Upgrade Meeting, 12/12/13

Asynchronous readout. header is the unique identifier for each event in frame:

- ✓ Compulsory (tag for each crossing), partly programmable (must contain length of frame+BXID+info)
- Difficult buffer management, but almost no truncation.
- Flexible against occupancy fluctuation. Flexible usage of NZS data. \checkmark
- Maximum exploitation of bandwidth \rightarrow reduce # of links. \checkmark
- Readout Board uses Header info to decode and separate frames \rightarrow lots of resources.

Dynamic packing algorithm

This is how the FE buffer would behave in this scenario (example with 500chx4bits + 12bits BXID + 1 «no data» bit BX VETO enabled for all empty-empty)

Fixed vs variable length header in *variable frame length packing*

Variable packing with fixed length header (FV).

Header field						
BXID	information	Length				
BXID [11:0]	X bits	Y bits				

Use case of this encoding is if FE occupancy is very low and want to save on # of links: less bits when no data is sent

Variable packing with variable length header (VV) (fully flexible!).

	Header Only			o	utput of data filter	
Synch	or BX Veto	NZS		Header fi		
	or BufferFull		BXID	No data	Length	Data field
1	x	х	BXID [11:0]	x	х	Synch pattern
0	1	х	BXID [n:0]	1	х	No data
0	0	1	BXID [n:0]	0	NZS code (unique)	Uncompressed data
0	0	0	BXID [n:0]	0	Data length [m:0]	Compressed data

LHCb Electronics Upgrade Meeting, 12/12/13

Synchronous readout: one clock cycle \rightarrow one event \rightarrow one GBT frame (for many FE ch)

- ✓ Header more flexible: you can add addresses, hitmaps... Always at the same place.
- Very simple buffer management, but truncation might happen (depends on avg event size)
- ✓ Not flexible against occupancy problem (depends of avg event size).
- \checkmark Loses a bit of bandwidth as empty spaces must be padded.
- \checkmark Readout Board uses a fixed length to decode frames \rightarrow fewer resources

Generic FE algorithms

Algorithms are generic and programmable via configuration package:

- ✓ Programmable
 - Number of channel and size of channels
 - Buffer depth
 - GBT width frame (80 or 112 bits)
 - Header fields
 - Introduce bugs in a controlled way
 - skip BXID, swap BXID etc...
- ✓ Synthesizable
 - Estimate resources in FE (and TELL40...)

Can emulate <u>ANY</u> combination of the FE packing algorithms, but must be compatible with TELL40 decoding...

Select the type of encoding + specify header and data fields parameters

Configuration package features IV

constant	FE_interface_fifo_depth	: std_logic_vector(7 downto 0) := X"A0";
constant constant constant constant constant	occupancy_01 occupancy_02 occupancy_03 occupancy_04 occupancy_05 occupancy_06	<pre>: real := 3.6; : real := 3.5; : real := 3.4; : real := 3.3; : real := 3.2; : real := 3.1;</pre>
constant	NZS_data_length	: INTEGER := channel_size*number_of_channel;
constant constant	FE_BXID_offset SOL40_TO_FE_TFC_CMD_offset	<pre>: unsigned(11 downto 0) := X"000"; : unsigned(11 downto 0) := X"D8B";</pre>
constant constant	Synch_Pattern_Frame_size SYNCH_PATTERN_frame	: INTEGER := 10; : std_logic_vector(9 downto 0) := "1011010011";
constant	active_fiber	: std_logic_vector(31 downto 0) := x"0000003F";

Change the buffer depth, occupancy for different channels, alignment settings, pattern frame (remember it's programmable)...

Configuration package features V

-- Introduce voluntary BXID bugs -- to add to document -- NOTE 1: if both skip and swap are enabled, skip has priority -- NOTE 2: if skip interval and swap interval have the same value, skip has priority constant skip BXID : std logic := '0'; : std logic vector(15 downto 0) := X"0545"; constant skip BXID interval constant swap BXID : std logic := '0'; constant swap BXID interval : std logic vector(15 downto 0) := X"0641"; : std logic vector(11 downto 0) := X"00C"; constant skip BXID jump -- constant in case of many FE constant skip BXID ApplyToAll : std logic := '0'; constant swap BXID ApplyToAll : std logic := '0';

Introduce voluntary bugs in FE code

LHCh

Nota Bene I

The FE encodings shown here are the ONLY ones allowed in the TELL40 decoding block

These has been agreed amongst you and if you want to perform a different type of encoding, you should contact us.

There are also other ways to inject FE data to test: → From a .txt file → From your own HDL code

LHCb Electronics Upgrade Meeting, 12/12/13

Your FE code

Only specs:
→ FE data from a .txt file:
[112 or 80 bits data][1 bit data valid]
data valid = 1 == GBT data frame
data valid = 0 == GBT idle frame

→ FE data from your own code: follow the allowed types of encoding

Everything is explained in the Mini-DAQ handbook document!

Nota Bene II

We expect you to develop your code (eventually):

- Use our configuration package's constant declaration
 - In that way the entire simulation will be set up for you
- Select the type of decoding and see if it works
 - There is a generic wave.do with the signals you are supposed to look at to figure out if it works or not
- → If it doesn't, track a bug (and contact us) <u>https://lbredmine.cern.ch/projects/amc40/issues/new</u>

Outlook

Next steps:

- ✓ FE code: Done! If you need help just ask.
- ✓ TFC code: v0 is out there.
 - Will add more features to SODIN with time
 → Ask if you need to enable some features
 - Will work more on developing the SOL40 ECS code to FE
 → Help from CBPF to develop an emulation of the GBT-SCA
 - → Collaboration with you and ESE group is fundamental (to say the least...)

Conclusion

The simulation framework will be our tool to develop hardware code for the upgrade:

→ Please use it, mis-use it and especially, contribute to it! We need all the expertise you can possibly provide.

(live) DEMOs

Qs & As?

- no change: 1 bit for each AMC board + BXID for which the throttle was set
 - \rightarrow 16 bits in 8b/10b encoder
 - → same GX buffer as before (as same decoder!)

LHCb Electronics Upgrade Meeting, 12/12/13

S-TFC protocol to FE, no change

✓ TFC word on downlink to FE via SOL40 embedded in GBT word:
 → 24 bits in each GBT frame every 40 MHz = 0.98 Gb/s
 → all commands associated to BXID in TFC word

23 12	11	10	9	85	4	3	2	1	0
BXID(110)	Reserve	Synch	Snapshot	Calibration Type(30)	BX Veto	NZS Mode	Header Only	FE Reset	BXID Reset

Put local configurable delays for each TFC command

- GBT does not support individual delays for each line
- Need for «local» pipelining: detector delays+cables+operational logic (i.e. laser pulse?)
 → DATA SHOULD BE TAGGED WITH THE CROSSING TO WHICH IT BELONGS!

TFC word will arrive before the actual event takes place

- To allow use of commands/resets for particular BXID
- Accounting of delays in S-ODIN: for now, 16 clock cycles earlier + time to receive
- Aligned to the furthest FE (simulation, then in situ calibration!)

TFC protocol to FE has implications on GBT configuration and ECS to/from FE

see specs document!

LHCb Electronics Upgrade Meeting, 12/12/13

- TFC bits are packed in GBT frame so that they all come out on the same clock edge
 - \checkmark We can repeat the TFC bits also on consecutive 80 MHz clock edge if needed
- → Leftover 17 e-links dedicated to GBT-SCAs for ECS configuring and monitoring (see later)

In simple words:

- Odd bits of GBT protocol on rising edge of 40 MHz clock (first, msb),
- Even bits of GBT protocol on falling edge of 40 MHz clock (second, lsb)

TFC decoding at FE after GBT

This is crucial!!

- → we can already specify where each TFC bit will come out on the GBT chip
- → this is the <u>only way</u> in which FE designers still have minimal freedom with GBT chip
 - ✓ if TFC info was packed to come out on only 12 e-links (first odd then even), then decoding in FE ASIC would be mandatory!
 - ✓ which would mean that the GBT bus would have to go to each FE ASIC for decoding of TFC command
- → there is also the idea to repeat the TFC bits on even and odd bits in TFC protocol
 - \checkmark would that help?
 - ✓ FE could tie logical blocks directly on GBT pins...

Now, what about the ECS part?

Each pair of bit from ECS field inside GBT can go to a GBT-SCA

- One GBT-SCA is needed to configure the Data GBTs (EC one for example?)
- The rest can go to either FE ASICs or DCS objects (temperature, pressure) via other GBT-SCAs
 - ✓ GBT-SCA chip has already everything for us: interfaces, e-links ports ...
 - \rightarrow No reason to go for something different!
 - ✓ However, «silicon for SCA will come later than silicon for GBTX»...
 - \rightarrow We need something while we wait for it!

Separate links between controls and data

- A lot of data to collect
- Controls can be fanned-out (especially fast control)

Compact links merging Timing, Fast and Clock (TFC) and Slow Control (ECS).

- Extensive use of GBT as Master GBT to drive Data GBT (especially for clock)
- Extensive use of GBT-SCA for FE configuration and monitoring

LHCb THCp	READ FROM		e cod	e:		lynar	nic	packing		
GB	TPACKING	IF FE_RESET = 1 or SYNCH = 1 → reset derandomizer buffer	→ duri	ing SYNC	H command asserted, FE should exc ALIGNMENT FRAME for links syn AL ALIGNMENT FRAME	change data field with M				
ELSE	LOGIC		00000	(pro) MANU/ (pro)	ogrammable via ECS) AL ALIGNMENT FRAME ogrammable via ECS)	EV XX HEADER EV XX+1 HEADER	0x5 0x5			
					GBT	F ENCODER				
D	ATA WORD of	EV 01	EV 01 HEADER	0x5	NB: GBT HEADER = X"5" if d	ata or X"6" if IDLE	↓ :			
DW of EV 02	EV 02 HEADE	R REST OF DAT	A WORD of EV 01	0x5	EX: EV02 is NZS					
	REST OF	DATA WORD of EV	02	0x5						
	REST OF	DATA WORD of EV	02	0x5						
EV 04 HEADER	EV 03 HEADER	REST OF DATA	WORD of EV 02	0x5						
DW OF EV 06	EV 06 HEAD	ER EV 05 HEADER	REST OF EV 04 HEADER	0x5	FOLLOWING 3 EVENTS HAVE HEADER ONLY = 1 FROM TFC					
	REST C	OF DATA WORD of E	/ 06	0x5	NEXT EVENT IS IN LINE					
DW of EV 07	EV 07 HEADE	R REST OF DAT	A WORD of EV 06	0x5						
DW of EV 08 EV	08 HEADER	REST OF DATA \	WORD of EV 07	0x5						
EV 09 HEA	EV 09 HEADER REST OF DATA WORD of EV 08									
	00000				DERANDOMIZER IS EMPTY, SEI FRAME OVER GBT FRAM	ND IDLE E	Very important to			
EV 11 HEADER	EV 11 HEADER EV 10 HEADER DATA WORD of EV 09			0x5		analyze simulation				
	REST of EV 11 HEADER				TWO EMPTY EVENTS			output bit-by-bit and		
		G	3T ENCODER					clock-by-clock!		

Studied differences in efficiency

This is the usual example:

500 channels of 4 bits each, occupancy 3.1%, buffer depth 160, 12 bits of BXID

Studied differences in efficiency

This is just another example:

500 channels of 4 bits each, occupancy 3.6%, buffer depth 160, 4 bits of BXID

Studied impact on TELL40 resources

Length field will likely contain the number of channels hit (not the length of the data word – that would require more bits) Each channel has a "data length unit value" (i.e. size of each channel)

The code: configuration

FE generic data generator is fully programmable:

- Number of channels associated to GBT link
- ✓ Width of each channel
- ✓ Derandomizer depth
- ✓ Mean occupancy of the channels associated to GBT link
- ✓ Size of GBT frame (80 bits or WideBus + GBT header 4 bits)

Extremely flexible and easy to configure with parameters

Covers almost all possibilities (almost...)

✓ Including flexible transmission of NZS and ZS

Including TFC commands as defined in specs

- ✓ Study dependency of FE buffer behaviour with TFC commands
- ✓ Study effect of packing algorithm on TELL40
- ✓ Study synchronization mechanism at beginning of run
- ✓ Study re-synchronization mechanism when de-synchronized
- ✓ Etc... etc... etc...

And it is fully synthesizable... ©

Conclusions

Packing mechanism as specified in our document is feasible.

Will be used temporarily to emulate FE generated data in global readout and TFC simulation.

However, very big open questions:

- Is your FE compatible with such scheme? What about such code in an ASIC?
- Behaviour of FE derandomizer will strongly depend on your compression or suppression mechanism.
 - If dynamic could create big latencies
 - If your data does not come out of order can become quite complicated...
- Behaviour of FE derandomizer will strongly depend on TFC commands
 - FE buffer depth should not rely on having a BX VETO! Aim at a bandwidth for fully 40 MHz readout → BX VETO solely to discard events synchronously.
 - What about SYNCH command? When do you think you can apply it? Ideally after derandomizer and after suppression/compression, but...
- ✓ How many clock cycles do you need to recover from an NZS event?
 - Can you handle consecutive NZS events?

Old TTC system support and running two systems in parallel

We already suggested the idea of a *hybrid system*: reminder: L0 electronics relying on TTC protocol

- → part of the system runs with old TTC system
- → part of the system runs with the new architecture

How?

- 1. Need connection between S-ODIN and ODIN (bidirectional)
 - → use dedicated RTM board on S-ODIN ATCA card
- 2. In an early commissioning phase ODIN is the master, S-ODIN is the slave
 - → S-ODIN task would be to distribute new commands to new FE, to new TELL40s, and run processes in parallel to ODIN
 - → ODIN tasks are the ones today + S-ODIN controls the upgraded part
 - ✓ In this configuration, upgraded slice will run at 40 MHz, but positive triggers will come only at maximum 1.1MHz...
 - Great testbench for development + tests + apprenticeship...
 - Bi-product: improve LHCb physics programme in 2015-2018...
- 3. In the final system, S-ODIN is the master, ODIN is the slave

→ ODIN task is only to interface the L0 electronics path to S-ODIN and to provide clock resets on old TTC protocol

LHCb Electronics Upgrade Meeting, 12/12/13