## Femtoscope Array for Correlations and Spectroscopy

Exochim @ CT and LNS + INFN and Pol. Univ. @Milan + collaboration with GANIL and CEA-IRFU (France), Un. Of Huelva (Spain)

1. Heavy-ion collisions (stable and RI beams)

- Dynamics (HBT, Femtoscopy)
- Low \& Intermediate energies
- Multi-particle correlation spectroscopy (MPCS)
$\rightarrow$ cluster states

2. Direct reactions with RIBs

- Inverse and direct kinematics
- Nuclei close to drip lines


## Heavy-ion collisions - n/p observables

Study of N/Z effects in HIC $\rightarrow$ links to symmetry energy

$$
{ }^{124} \mathrm{Sn}+{ }^{124} \mathrm{Sn}(\mathrm{~N} / \mathrm{Z}=1.48),{ }^{48} \mathrm{Ca}+{ }^{48} \mathrm{Ca}(\mathrm{~N} / \mathrm{Z}=1.4),{ }^{197} \mathrm{Au}+{ }^{197} \mathrm{Au}(\mathrm{~N} / \mathrm{Z}=1.49)
$$



'Pre-equilibrium


Expansion


Multifragmentation

- n/p energy spectra and angular • Isospin diffusion, fractionation, distributions isoscaling phenomena...
- p-p, n-n and n-p correlation functions


## Correlation femtoscopy in HIC

Femtoscope


$$
1+R(q)=k \times \frac{Y_{\text {coin }}\left(\vec{p}_{1}, \vec{p}_{2}\right)}{Y_{\text {evt.mixing }}\left(\vec{p}_{1}, \vec{p}_{2}\right)}
$$




High angular resolution required!

## Symmetry energy and pp, nn and np correlations



Important perspectives: $\mathrm{pp}, \mathrm{nn}, \mathrm{np}$ correlations

Within a 4pi detection system!
... Farcos + Chimera @ LNS


## FARCOS TELESCOPE - phase 1

- Based on (62x64x64 mm ${ }^{3}$ ) clusters
- 1 square ( $0.3 \times 62 \times 62 \mathrm{~mm}^{3}$ ) DSSSD $32+32$ strips
- 1 square ( $1.5 \times 62 \times 62 \mathrm{~mm}^{3}$ ) DSSSD $32+32$ strips
- $460 \times 32 \times 32 \mathrm{~mm}^{3} \mathrm{CsI}(\mathrm{TI})$ crystals


Fully reconfigurable (more Si layers, neutron detection, ...)

## FARCOS detectors


-Double-Sided Silicon Strip Detectors

- $300 \mu \mathrm{~m}$ and $1500 \mu \mathrm{~m}$
- Capton cable and $2 \times 32$ pin connectors
- Highly homogenous CsI(TI) crystals
-Wrapping: 0.12 mm thick white reflector $+50 \mu \mathrm{~m}$ aluminized Mylar.
- $2 \mu \mathrm{~m}$ thick aluminized Mylar window at the entrance ( $0.29 \mathrm{~g} / \mathrm{cm}^{2}$ )
- Read-out by photo-diodes ( $300 \mu \mathrm{~m}$ )


## Single cluster



Mounting allows for addition of other detectors and neutron "transparency"

## First prototype modules built



March-April 2012
4 clusters expected to be ready by the end of 2012


## Preamplifier box - Phase 1

32 channels Hybrid charge preamplifiers in a volume of about $8 \mathrm{~cm} \times 10 \mathrm{~cm} \times 2 \mathrm{mmm}$


- Low power consumption: $\sim 750 \mathrm{~mW}$ pwe 32 channels
(simplify cooling operations)
- Rise-Time (pulser): $\sim 3-7$ nsec for $\mathrm{C}_{\text {input }}=0-100 \mathrm{pF}$
- Energy resolution (pulser) $\sim 4.3 \mathrm{KeV}$ for $\mathrm{C}_{\text {input }}=0-100 \mathrm{pF}$
- Available with several sensitivities (5, 10, $45,100 \mathrm{mV} / \mathrm{MeV} . .$. )


## First test with beams - July 2012

Tests of $\mathrm{CsI}(\mathrm{TI})$ uniformity with scattered beams and particles


## proto-Farcos preliminary results

Calibration beams at $60 \mathrm{MeV} / \mathrm{u}$ Farcos @ Chimera (July 2012)


Silicon $300 \mu \mathrm{~m}$ vs Silicon $1500 \mu \mathrm{~m}$


Silicon $1500 \mu \mathrm{~m}$ vs $\mathrm{CsI}(\mathrm{TI}) 6 \mathrm{~cm}$


CsI 3

matrix responseCsi3

L. Quattrocchi, L. Acosta


$$
S_{i j}=\frac{L_{i j}-\left\langle L_{i j}\right\rangle}{\langle L\rangle}
$$

matrix responseCsi3

## Plans for phase 2

- From compact to integrated electronics:
- Reduce form factor of preamplifiers (maintain performances!... cross-talk to be studied...) $\rightarrow$ Towards ASIC solution
- Tests of GET system with silicon strip detectors
- Pulse-shape capabilities: profit from Chimera experience and performances
- Digitalization of detector signals
- Update possibilities
- Increase solid angle
- Neutron detection... stay tuned on Angelo's presentation

