Femtoscope Array for Correlations and Spectroscopy

Exochim @ CT and LNS + INFN and Pol. Univ. @Milan + collaboration with GANIL and CEA-IRFU (France), Un. Of Huelva (Spain)

1. Heavy-ion collisions (stable and RI beams)

- Dynamics (HBT, Femtoscopy)
 - Low & Intermediate energies
- Multi-particle correlation spectroscopy (MPCS)
 - → cluster states

2. Direct reactions with RIBs

- Inverse and direct kinematics
 - Nuclei close to drip lines

Heavy-ion collisions – n/p observables

Study of N/Z effects in HIC \rightarrow links to symmetry energy

- n/p energy spectra and angular distributions
- Isospin diffusion, fractionation, isoscaling phenomena...

 p-p, n-n and n-p correlation functions

Correlation femtoscopy in HIC

Femtoscope

$$1 + R(q) = k \times \frac{Y_{coin}(\vec{p}_1, \vec{p}_2)}{Y_{evt.mixing}(\vec{p}_1, \vec{p}_2)}$$

High angular resolution required!

Symmetry energy and pp, nn and np correlations

Important perspectives: pp, nn, np correlations

Within a 4pi detection system!

... Farcos + Chimera @ LNS

FARCOS TELESCOPE – phase 1

- Based on (62x64x64 mm³) clusters
- 1 square (0.3x62x62 mm³) DSSSD 32+32 strips
- 1 square (1.5x62x62 mm³) DSSSD 32+32 strips
- 4 60x32x32 mm³ CsI(Tl) crystals

Fully reconfigurable (more Si layers, neutron detection, ...)

FARCOS detectors

- Double-Sided Silicon Strip Detectors
- •300 μm and 1500 μm
- Capton cable and 2x32pin connectors

- Highly homogenous CsI(Tl) crystals
- Wrapping: 0.12mm thick white reflector +50µm aluminized Mylar.
- 2μm thick aluminized Mylar window at the entrance (0.29 g/cm²)
- Read-out by photo-diodes (300µm)

Single cluster

Mounting allows for addition of other detectors and neutron "transparency"

First prototype modules built

4 clusters expected to be ready by the end of 2012

March-April 2012

Preamplifier box – Phase 1

32 channels Hybrid charge preamplifiers in a volume of about 8cm x 10cm x 2mmm

- Low power consumption: ~750 mW pwe 32 channels operations)
- Rise-Time (pulser): ~ 3-7 nsec for C_{input}=0-100pF
- Energy resolution (pulser)~ 4.3 KeV for C_{input}=0-100pF
- Available with several sensitivities (5, 10, 45, 100 mV/MeV...)

(simplify cooling

First test with beams – July 2012

Tests of CsI(TI) uniformity with scattered beams and particles

 $p, \alpha + p, d, C = E/A=40, 80 \text{ MeV}$

Transfer reactions

Silicon resolution
Integrating DAQ into Chimera system

proto-Farcos preliminary results

Calibration beams at 60 MeV/u Farcos @ Chimera (July 2012)

Silicon 300μm vs Silicon 1500μm

L. Quattrocchi, L. Acosta

Pixel X

Plans for phase 2

- From compact to integrated electronics:
 - Reduce form factor of preamplifiers (maintain performances!...
 cross-talk to be studied...) → Towards ASIC solution
 - Tests of GET system with silicon strip detectors
- Pulse-shape capabilities: profit from Chimera experience and performances
- Digitalization of detector signals
- Update possibilities
 - Increase solid angle
 - Neutron detection... stay tuned on Angelo's presentation