Neutron detection at n_TOF

Massimo Barbagallo Istituto Nazionale Fisica Nucleare, Sezione di Bari

NEDENSAA NuPNET Collaboration Meeting 2013 20-22 February 2013, Acireale

n_TOF measurements at glance

Neutron induced fission and capture reactions

The s-process nucleosynthesis

The s-process nucleosynthesis

The s-process nucleosynthesis

Need of new and accurate neutron cross-sections:

- refine models of stellar nucleosynthesis in the Universe
- obtain information on the stellar environment and evolution

Nuclear technologies

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d sf *6.291;6.248	Cm 241 32,8 d 5,539 7,472,431,132	Cm 242 162,94 d sf a 6,113; 6,039 sl; g y (44); a ⁻¹ o ⁻²⁰ o ₁ - 5	Cm 243 29,1 a sf a 5.785, 5.742 c st.g g 7.78; 228; 210; er a 130; a; 620	Cm 244 18,10 a sf stg y(43,ker +18,911.1	Cm 245 8500 a sf a5,361;5,304 at g y 175; 133 g 350, g, 2100	Cm 246 4730 a a 5,386; 5,343 sf; g y (45); e ² g 1,2; g; 0,16
Am 236 ? 3,7 m	Am 237 73,0 m st (0.042 9.200,436;474; 9.90	Am 238 1,63 h sf 4,5,94 y 963, 919, 561; 605	Am 239 11,9 h	Am 240 50,8 h	Am 241 432,2 a st π 5,685,5,643 si γ 60;26 e ¹ γ 60;26 e ¹ γ 60;26	Am 242 141 a 16 h 141 a 16 h	Am 243 7370 a sf = 5275; 5233 \$1.775.5 \$1,0074	Am 244 26 m 10,1 h 5f p 1.5. p 0.4 7744 1004. 806 6 g 105 p 104 p 106	Am 245 2,05 h sf 109 283 241;290
Pu 235 25,3 m st 25,85 248 (756 34)	Pu 236 2,858 a si a 5,788; 5,721 si Mg 20 y 148,109; e7 o ₁ 160	Pu 237 45,2 d sf *5,334 *5,334 *5,2380	Pu 238 87,74 a 81,95,490; 5,496 81,95, Mg y (43,100); e ⁻ x 510; o ₁ 17	Pu 239 2,411 · 10 ⁴ a st a 5.157; 5,144 a; y (52) a; m e; z70; cy 752	Pu 240 6563 a sf 0.5,168;5,124 817 (45) 817 (45) 918 (10)	Pu 241 14,35 a \$1 0,02:9 4,489 1,148 1,148 1,148 1,149	Pu 242 3,750 · 105 a 3,750 · 105 a 4,901; 4,856 8; y (45) e18 e18 e18 e18	Pu 243 4,956 h sf 8-0.6. y84.00 x 100; m 200	Pu 244 8,00 - 10 ⁷ a sf o 4,588; 4,546 81.7 en en 1,7
Np 234 4,4 d ε; β+ γ 1559; 1528; 1602 σ ₁ -900	Np 235 396,1 d ε, α.5,025; 5,007 γ(26,84); e ⁻¹ g: σ160 + ?	Np 236 22,5 h 1,54 10 ⁵ g 4 87.0.5 4 87.0. 7 (892) 4 87.0. 693) 4 70.0. 693) 4 70.00	Np 237 2,144 · 10 ⁶ a 4 · 790; 4,774 7 · 20; 67; 67 180; 67.0,020	Np 238 2,117 d β-1,2 γ 984; 1029; 1026; 924, β- g; σ; 2100	Np 239 2,355 d β* 0.4; 0.7 γ 106; 278; 228 6*; g σ 32+ 19; σ; < 1	Np 240 7,22 m 65 m 87 22 π 87 0.9 γ 555: γ 565: 507 601: 61: 448	Np 241 13,9 m β ⁻ 1.3 γ 175; (133)	Np 242 2,2 m 5,5 m 8 2,7 5 705 645; 1473 198	Np 243 1,85 m
U 233 1,592 · 10 ⁵ a « 4.824; 4,783 Ne 25; γ (42; 97); e ⁻ « 47; « 530	U 234 0,0055 2,455 · 10° 6 0 4775 4700 et Mg 28 NK 155 v21. 0° 9% et 0.005	U 235 0,7200 25 m 7,838-10 ⁸ a 4,536 st h,0,000 8 7,938 st d 38. q 566	U 236 120 ns	U 237 6,75 d β = 0,2 γ 60: 208 e ⁻ σ = 100; σt < 0,3	U 238 99,2745 270 pc 4,458 10°s 1534 351 10°s 1534 351 10°s	U 239 23,5 m β-1.2; 1,3 γ 75; 44 σ 22; σ 15	U 240 14,1 h β ⁻ 0,4 γ 44: (190) e m		U 242 16,8 m 5-7 68; 58; 585; 573 m
Pa 232 1,31 d 8	Pa 233 27,0 d β=0,3; 0,6 γ 312; 300; 341; e= α 20+19; α < 0,1	Pa 234 1,17 m 6,70 h (β 2.3 β 0.5 1(1001; 1.2 107 1/31,601; 1,4 (1.6 1,4 (Pa 235 24,2 m β-1.4 γ 128 - 659 m	Pa 236 9,1 m β=2,0;3,1 γ 642; 687; 1763; g βsf?	Pa 237 8,7 m 8-1.4; 2,3 7,854; 865; 529; 541	Pa 238 2,3 m β-1,7; 2.9 γ 1015; 635; 448; 680			
Th 231 25,5 h β=0,3; 0,4 y 26; 84	Th 232 100 1,405·10 ¹⁰ a 0.4.013: 3.950; ef y [84]; eT 0.7.37; et 0.000005	Th 233 22,3 m sf 8712. 187.29: 499.26: 499.26: 41500: 49.15	Th 234 24,10 d β=0,2 γ 63; 92; 93 e=; m σ 1.8; σ < 0,01	Th 235 7,1 m β-1,4 γ 417; 727; 696	Th 236 37,5 m β-1,0 γ 111: (647; 196)	Th 237 5,0 m			

Nuclear technologies

244, 245Cm 1.5 Kg/yr

241Am:11.6 Kg/yr 243Am: 4.8 Kg/yr

239Pu: 125 Kg/yr

237Np: 16 Kg/yr

LLFP 76.2 Kg/yr

LLFP

Quantities refer to yearly production in 1 GWe LW reactor

Nuclear technologies

n_TOF is a spallation neutron source based on 20 GeV/c protons from the CERN PS hitting a Pb block (~350 neutrons per proton).

Experimental area at 200 m.

n_TOF is a spallation neutron source based on 20 GeV/c protons from the CERN PS hitting a Pb block (~350 neutrons per proton).

Experimental area at 200 m.

n_TOF is a spallation neutron source based on 20 GeV/c protons from the CERN PS hitting a Pb block (~350 neutrons per proton).

Experimental area at 200 m.

n_TOF features

Main feature:

- extremely high instantaneous neutron flux (10⁵ n/cm²/pulse).
- very convenient for measurements of radioactive isotopes,
- low cross sections,
- Isotope available in small quantity

Other features of the neutron beam:

• high resolution in energy ($\Delta E/E = 10^{-4}$)

study resonances

· Wide **energy range** (25 meV<En<1 GeV)

measure fission up to 1 GeV

· low **repetition** rate (< 0.8 Hz)

no wrap-around

n_TOF measurements

Phase 2

Capture ¹⁵¹Sm ²³²Th ^{204,206,207,208}Pb, ²⁰⁹Bi ^{24,25,26}Mg 90,91,92,94,96**Zr**, 93**Zr** 186,187,188**O**S *(*2001-2004*)* 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am **Fission** 233,234,235,236,238 232**Th** ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

Phase 1

```
<sup>25</sup>Mg
                            88Sr
                            58,60,62 Ni. 63 Ni
                            54,56,57Fe
                            236,238
                            <sup>241</sup>Am
(2009-2012)
                            Fission
                            240,242P11
                             ^{235}U(n,\gamma/f)
                            <sup>232</sup>Th, <sup>234</sup>U
                            <sup>237</sup>Np (FF ang.distr.)
                            (n,\alpha)
                            33S,59Ni
```

Capture

The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %)

$$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$

Neutron measurements are a priority in every **time-of-flight facility**.

The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %)

$$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$

Neutron measurements are a priority in every time-of-flight facility.

The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %)

$$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$

Neutron measurements are a priority in every time-of-flight facility.

The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %)

$$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$

Neutron measurements are a priority in every time-of-flight facility.

The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %)

$$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$

Neutron measurements are a priority in every **time-of-flight facility**.

neutron detection at n_TOF

At n_TOF, **4** different neutron detection systems based on **3** different reactions are used to measure neutrons and to monitor the neutron flux.

Such an approach allows to achieve **high accuracy** (quantified later) in flux determination

$$\Phi(E_n) = \frac{C_X(E_n) - B(E_n)}{n \cdot \varepsilon(E_n) \cdot \sigma_X(E_n)}$$

neutron detectors at n_TOF

Neutron detectors are used at n_TOF both to measure and monitor neutron flux.

- 1 Silicon based detection system
- 2 Micromegas detectors
- 1 Calibrated fission chamber
- 1 Parallel Plate Avalanche Counter

General features:

• Low efficiency (few % or less)

Small in-beam masses (transparency)

• Fast response (~ ns)

Radiation hardness

Silicon Monitor (SiMon)

Array of four 6x4 cm² silicon detectors + a 300 μm ⁶Li thin converter foil

Silicon Detector

3 cm

Neutron beam

Mylar

1.5 µm

 $n + {}^{6}Li \longrightarrow \alpha + t + 4.78 \text{ MeV}$

Silicon Monitor (SiMon)

Array of four 6x4 cm² silicon detectors + a 300 μm ⁶Li thin converter foil

$$n + {}^{6}Li \longrightarrow \alpha + t + 4.78 \text{ MeV}$$

2 MicroMegas detectors equipped with ^{10}B (0.6 μm) and ^{235}U (1 mg) deposits

$${}^{10}_{5}\text{B} + n \to \begin{cases} {}^{7}_{3}\text{Li} + \alpha & Q - value = 2.792\,MeV(b.r.\,6\%) \\ {}^{7}_{3}\text{Li}^* + \alpha & Q - value = 2.310\,MeV(b.r.\,94\%) \end{cases}$$

$${}^{235}\text{U} + n \to FFs \qquad Q - value \sim 200\,MeV$$

2 MicroMegas detectors equipped with ^{10}B (0.6 μm) and ^{235}U (1 mg) deposits

$${}^{10}_{5}\mathrm{B} + n \to \begin{cases} {}^{7}_{3}\mathrm{Li} + \alpha & Q - value = 2.792\,MeV(b.r.\,6\%) \\ {}^{7}_{3}\mathrm{Li}^* + \alpha & Q - value = 2.310\,MeV(b.r.\,94\%) \end{cases}$$

$${}^{235}\mathrm{U} + n \to FFs \qquad Q - value \sim 200\,MeV$$

2 MicroMegas detectors equipped with ^{10}B (0.6 μm) and ^{235}U (1 mg) deposits

$${}^{10}_{5}\mathrm{B} + n \to \begin{cases} {}^{7}_{3}\mathrm{Li} + \alpha & Q - value = 2.792\,MeV(b.r.\,6\%) \\ {}^{7}_{3}\mathrm{Li}^* + \alpha & Q - value = 2.310\,MeV(b.r.\,94\%) \end{cases}$$

$${}^{235}\mathrm{U} + n \to FFs \qquad Q - value \sim 200\,MeV$$

2 MicroMegas detectors equipped with ^{10}B (0.6 μm) and ^{235}U (1 mg) deposits

 ${}^{10}_{5}\mathrm{B} + n \to \begin{cases} {}^{7}_{3}\mathrm{Li} + \alpha \quad Q - value = 2.792\,MeV(b.r.\,6\%) \\ {}^{7}_{3}\mathrm{Li}^* + \alpha \quad Q - value = 2.310\,MeV(b.r.\,94\%) \end{cases}$ ${}^{235}\mathrm{U} + n \to FFs \qquad Q - value \sim 200\,MeV$

The PTB calibrated fission chamber

PTB detector is a fission chamber loaded with 201.4(5) mg of ²³⁵U in five deposits.

The PTB chamber is calibrated, meaning that the mass of ²³⁵U and the detection efficiency are well known from previous "international intercomparisons".

Reference detector in measuring neutron flux, not only at n_TOF.

Parallel Plate Avalanche Counter (PPAC)

At n_TOF PPAC detector is a stack of 10 parallel plate avalanche counters. Some of them are loaded with ²³⁵U or ²³⁸U in order to measure neutron flux.

Fission fragments detected in coincidence, rejection of α background.

Fast response

Very low sensitivity to γ

Results from neutron measurements

Measurements from 0.025 eV up to 1 GeV

Up to few keV results from different detectors agree within 2% (or less)

From few keV to higher energies agreement within 4-5%

Results from neutron measurements

After carefull comparisons an **evaluated neutron flux** has been then determined combining results from all the detectors where they are considered reliable.

Other neutron detectors

At n_TOF some measurements are also dedicated to test innovative neutron detectors, **both** in the context of the collaboration **and** from proposals of external research groups.

Recently (among others):

Triple GEM detector

MEDIPIX detector

Fast neutron (elastic scattering in Polyethilene) **Slow neutron** (10B converter)

Other neutron detectors

At n_TOF some measurements are also dedicated to test innovative neutron detectors, **both** in the context of the collaboration **and** from proposals of external research groups.

Recently (among others):

Single-Crystal Diamond Detector (SDD)

Fast neutron detection is achieved by detecting charge particles produced via the reactions:

- 12 C(n, α) 9 Be (Q_{value}=5.7 MeV, E_{thr}=6.17 MeV)
- 12 C(n,n')3 α (Q_{value}= 7.23 MeV, E_{thr}=7 MeV)

Conclusions

- The n_TOF facility is active since 2001, with the aim of addressing the request of accurated nuclear data for nuclear astrophysics and nuclear technologies.
- The **high quality** of its **neutron beam** makes **n_TOF** a unique facility in the world for cross section measurements of neutron induced reactions.
- Several neutron detection systems based on standard reactions are used to measure neutrons flux with high accuracy. Results show a very nice agreement.
- R&D activity is welcome...

Conclusions

- The n_TOF facility is active since 2001, with the aim of addressing the request of accurated nuclear data for nuclear astrophysics and nuclear technologies.
- The **high quality** of its **neutron beam** makes **n_TOF** a unique facility in the world for cross section measurements of neutron induced reactions.
- Several neutron detection systems based on standard reactions are used to measure neutrons flux with high accuracy. Results show a very nice agreement.
- R&D activity is welcome....also for measurements in the second experimental area presently under construction.

Conclusions EAR2

Experimental Area 2 will be placed at 20 m from the spallation target.

Higher fluence, by a factor of 25, relative to EAR1.

The **shorter flight path** implies a factor of 10 smaller time-of-flight.

Global gain by a factor of **250 in the signal/background ratio** for radioactive isotopes!

Conclusions

- The n_TOF facility is active since 2001, with the aim of addressing the request of accurated nuclear data for nuclear astrophysics and nuclear technologies.
- The **high quality** of its **neutron beam** makes **n_TOF** a unique facility in the world for cross section measurements of neutron induced reactions.
- Several neutron detection systems based on standard reactions are used to measure neutrons flux with high accuracy. Results show a very nice agreement.
- R&D activity is welcome....also for measurements in the second experimental area presently under construction.

Thanks for your kind attention

Back-up slides

Back-up slide

