Neutron detection at n_TOF ## Massimo Barbagallo Istituto Nazionale Fisica Nucleare, Sezione di Bari NEDENSAA NuPNET Collaboration Meeting 2013 20-22 February 2013, Acireale ### **n_TOF** measurements at glance ### **Neutron induced fission and capture reactions** ## The s-process nucleosynthesis ## The s-process nucleosynthesis ## The s-process nucleosynthesis ### Need of new and accurate neutron cross-sections: - refine models of stellar nucleosynthesis in the Universe - obtain information on the stellar environment and evolution # **Nuclear technologies** | | Cm 238
2,4 h | Cm 239
3 h | Cm 240
27 d
sf
*6.291;6.248 | Cm 241
32,8 d
5,539
7,472,431,132 | Cm 242
162,94 d
sf a 6,113; 6,039
sl; g
y (44); a ⁻¹
o ⁻²⁰
o ₁ - 5 | Cm 243
29,1 a
sf a 5.785, 5.742
c st.g
g 7.78; 228;
210; er
a 130; a; 620 | Cm 244
18,10 a
sf
stg
y(43,ker
+18,911.1 | Cm 245
8500 a
sf
a5,361;5,304
at g
y 175; 133
g 350, g, 2100 | Cm 246
4730 a
a 5,386; 5,343
sf; g
y (45); e ²
g 1,2; g; 0,16 | |---|--|--|--|--|---|--|---|---|---| | Am 236 ?
3,7 m | Am 237
73,0 m
st (0.042
9.200,436;474;
9.90 | Am 238
1,63 h
sf
4,5,94
y 963, 919, 561;
605 | Am 239
11,9 h | Am 240
50,8 h | Am 241
432,2 a
st
π 5,685,5,643
si γ 60;26
e ¹ γ 60;26
e ¹ γ 60;26 | Am 242
141 a 16 h
141 h | Am 243
7370 a
sf
= 5275; 5233
\$1.775.5
\$1,0074 | Am 244 26 m 10,1 h 5f p 1.5. p 0.4 7744 1004. 806 6 g 105 p 104 p 106 | Am 245
2,05 h
sf
 109
 283
 241;290 | | Pu 235
25,3 m
st
25,85
248 (756 34) | Pu 236
2,858 a
si
a 5,788; 5,721
si Mg 20
y 148,109; e7
o ₁ 160 | Pu 237
45,2 d
sf
*5,334
*5,334
*5,2380 | Pu 238
87,74 a
81,95,490; 5,496
81,95, Mg
y (43,100); e ⁻
x 510; o ₁ 17 | Pu 239
2,411 · 10 ⁴ a
st
a 5.157; 5,144
a; y (52)
a; m
e; z70; cy 752 | Pu 240
6563 a
sf
0.5,168;5,124
817 (45)
817 (45)
918 (10) | Pu 241
14,35 a
\$1 0,02:9
4,489
1,148
1,148
1,148
1,149 | Pu 242
3,750 · 105 a
3,750 · 105 a
4,901; 4,856
8; y (45)
e18
e18
e18
e18 | Pu 243
4,956 h
sf
8-0.6.
y84.00
x 100; m 200 | Pu 244
8,00 - 10 ⁷ a
sf
o 4,588; 4,546
81.7
en
en 1,7 | | Np 234
4,4 d
ε; β+
γ 1559; 1528;
1602
σ ₁ -900 | Np 235
396,1 d
ε, α.5,025;
5,007
γ(26,84); e ⁻¹
g: σ160 + ? | Np 236 22,5 h 1,54 10 ⁵ g 4 87.0.5 4 87.0. 7 (892) 4 87.0. 693) 4 70.0. 693) 4 70.00 | Np 237
2,144 · 10 ⁶ a
4 · 790; 4,774
7 · 20; 67; 67
180; 67.0,020 | Np 238
2,117 d
β-1,2
γ 984; 1029;
1026; 924, β-
g; σ; 2100 | Np 239
2,355 d
β* 0.4; 0.7
γ 106; 278;
228 6*; g
σ 32+ 19; σ; < 1 | Np 240
7,22 m 65 m
87 22 π 87 0.9
γ 555: γ 565:
507 601:
61: 448 | Np 241
13,9 m
β ⁻ 1.3
γ 175; (133) | Np 242
2,2 m 5,5 m
8 2,7 5
705 645;
1473 198 | Np 243
1,85 m | | U 233
1,592 · 10 ⁵ a
« 4.824; 4,783
Ne 25;
γ (42; 97); e ⁻
« 47; « 530 | U 234
0,0055
2,455 · 10° 6
0 4775 4700 et
Mg 28 NK 155 v21.
0° 9% et 0.005 | U 235
0,7200
25 m 7,838-10 ⁸ a 4,536 st
h,0,000 8 7,938 st
d 38. q 566 | U 236 120 ns | U 237
6,75 d
β = 0,2
γ 60: 208
e ⁻
σ = 100; σt < 0,3 | U 238
99,2745
270 pc 4,458 10°s
1534 351 10°s
1534 351 10°s | U 239
23,5 m
β-1.2; 1,3
γ 75; 44
σ 22; σ 15 | U 240
14,1 h
β ⁻ 0,4
γ 44: (190)
e
m | | U 242
16,8 m
5-7 68; 58; 585;
573
m | | Pa 232
1,31 d
8 | Pa 233
27,0 d
β=0,3; 0,6
γ 312; 300;
341; e=
α 20+19; α < 0,1 | Pa 234 1,17 m 6,70 h (β 2.3 β 0.5 1(1001; 1.2 107 1/31,601; 1,4 (1.6 1,4 (| Pa 235
24,2 m
β-1.4
γ 128 - 659
m | Pa 236
9,1 m
β=2,0;3,1
γ 642; 687;
1763; g
βsf? | Pa 237
8,7 m
8-1.4; 2,3
7,854; 865;
529; 541 | Pa 238
2,3 m
β-1,7; 2.9
γ 1015; 635;
448; 680 | | | | | Th 231
25,5 h
β=0,3; 0,4
y 26; 84 | Th 232
100
1,405·10 ¹⁰ a
0.4.013: 3.950; ef
y [84]; eT
0.7.37; et 0.000005 | Th 233
22,3 m
sf
8712.
187.29:
499.26:
499.26:
41500: 49.15 | Th 234
24,10 d
β=0,2
γ 63; 92; 93
e=; m
σ 1.8; σ < 0,01 | Th 235
7,1 m
β-1,4
γ 417; 727;
696 | Th 236
37,5 m
β-1,0
γ 111: (647;
196) | Th 237
5,0 m | | | | ### **Nuclear technologies** 244, 245Cm 1.5 Kg/yr 241Am:11.6 Kg/yr 243Am: 4.8 Kg/yr 239Pu: 125 Kg/yr 237Np: 16 Kg/yr LLFP 76.2 Kg/yr LLFP Quantities refer to yearly production in 1 GWe LW reactor ## **Nuclear technologies** n_TOF is a spallation neutron source based on 20 GeV/c protons from the CERN PS hitting a Pb block (~350 neutrons per proton). Experimental area at 200 m. n_TOF is a spallation neutron source based on 20 GeV/c protons from the CERN PS hitting a Pb block (~350 neutrons per proton). Experimental area at 200 m. n_TOF is a spallation neutron source based on 20 GeV/c protons from the CERN PS hitting a Pb block (~350 neutrons per proton). Experimental area at 200 m. ### **n_TOF** features #### Main feature: - extremely high instantaneous neutron flux (10⁵ n/cm²/pulse). - very convenient for measurements of radioactive isotopes, - low cross sections, - Isotope available in small quantity ### Other features of the neutron beam: • high resolution in energy ($\Delta E/E = 10^{-4}$) study resonances · Wide **energy range** (25 meV<En<1 GeV) measure fission up to 1 GeV · low **repetition** rate (< 0.8 Hz) no wrap-around ### **n_TOF** measurements Phase 2 # **Capture** ¹⁵¹Sm ²³²Th ^{204,206,207,208}Pb, ²⁰⁹Bi ^{24,25,26}Mg 90,91,92,94,96**Zr**, 93**Zr** 186,187,188**O**S *(*2001-2004*)* 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am **Fission** 233,234,235,236,238 232**Th** ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm Phase 1 ``` ²⁵Mg 88Sr 58,60,62 Ni. 63 Ni 54,56,57Fe 236,238 ²⁴¹Am (2009-2012) Fission 240,242P11 ^{235}U(n,\gamma/f) ²³²Th, ²³⁴U ²³⁷Np (FF ang.distr.) (n,\alpha) 33S,59Ni ``` **Capture** The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %) $$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$ **Neutron measurements** are a priority in every **time-of-flight facility**. The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %) $$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$ Neutron measurements are a priority in every time-of-flight facility. The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %) $$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$ Neutron measurements are a priority in every time-of-flight facility. The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %) $$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$ Neutron measurements are a priority in every time-of-flight facility. The accurate determination of **neutron cross sections** requires a high accuracy knowledge of the **neutron flux** (typically within 1-3 %) $$\sigma_X(E_n) \propto \frac{C_X(E_n) - B(E_n)}{\Phi(E_n)}$$ **Neutron measurements** are a priority in every **time-of-flight facility**. ### neutron detection at n_TOF At n_TOF, **4** different neutron detection systems based on **3** different reactions are used to measure neutrons and to monitor the neutron flux. Such an approach allows to achieve **high accuracy** (quantified later) in flux determination $$\Phi(E_n) = \frac{C_X(E_n) - B(E_n)}{n \cdot \varepsilon(E_n) \cdot \sigma_X(E_n)}$$ ### neutron detectors at n_TOF Neutron detectors are used at n_TOF both to measure and monitor neutron flux. - 1 Silicon based detection system - 2 Micromegas detectors - 1 Calibrated fission chamber - 1 Parallel Plate Avalanche Counter #### General features: • Low efficiency (few % or less) Small in-beam masses (transparency) • Fast response (~ ns) Radiation hardness ## **Silicon Monitor (SiMon)** Array of four 6x4 cm² silicon detectors + a 300 μm ⁶Li thin converter foil Silicon Detector 3 cm Neutron beam Mylar 1.5 µm $n + {}^{6}Li \longrightarrow \alpha + t + 4.78 \text{ MeV}$ ## **Silicon Monitor (SiMon)** Array of four 6x4 cm² silicon detectors + a 300 μm ⁶Li thin converter foil $$n + {}^{6}Li \longrightarrow \alpha + t + 4.78 \text{ MeV}$$ ### **2 MicroMegas** detectors equipped with ^{10}B (0.6 μm) and ^{235}U (1 mg) deposits $${}^{10}_{5}\text{B} + n \to \begin{cases} {}^{7}_{3}\text{Li} + \alpha & Q - value = 2.792\,MeV(b.r.\,6\%) \\ {}^{7}_{3}\text{Li}^* + \alpha & Q - value = 2.310\,MeV(b.r.\,94\%) \end{cases}$$ $${}^{235}\text{U} + n \to FFs \qquad Q - value \sim 200\,MeV$$ ### **2 MicroMegas** detectors equipped with ^{10}B (0.6 μm) and ^{235}U (1 mg) deposits $${}^{10}_{5}\mathrm{B} + n \to \begin{cases} {}^{7}_{3}\mathrm{Li} + \alpha & Q - value = 2.792\,MeV(b.r.\,6\%) \\ {}^{7}_{3}\mathrm{Li}^* + \alpha & Q - value = 2.310\,MeV(b.r.\,94\%) \end{cases}$$ $${}^{235}\mathrm{U} + n \to FFs \qquad Q - value \sim 200\,MeV$$ ### **2 MicroMegas** detectors equipped with ^{10}B (0.6 μm) and ^{235}U (1 mg) deposits $${}^{10}_{5}\mathrm{B} + n \to \begin{cases} {}^{7}_{3}\mathrm{Li} + \alpha & Q - value = 2.792\,MeV(b.r.\,6\%) \\ {}^{7}_{3}\mathrm{Li}^* + \alpha & Q - value = 2.310\,MeV(b.r.\,94\%) \end{cases}$$ $${}^{235}\mathrm{U} + n \to FFs \qquad Q - value \sim 200\,MeV$$ ### **2 MicroMegas** detectors equipped with ^{10}B (0.6 μm) and ^{235}U (1 mg) deposits ${}^{10}_{5}\mathrm{B} + n \to \begin{cases} {}^{7}_{3}\mathrm{Li} + \alpha \quad Q - value = 2.792\,MeV(b.r.\,6\%) \\ {}^{7}_{3}\mathrm{Li}^* + \alpha \quad Q - value = 2.310\,MeV(b.r.\,94\%) \end{cases}$ ${}^{235}\mathrm{U} + n \to FFs \qquad Q - value \sim 200\,MeV$ ### The PTB calibrated fission chamber PTB detector is a fission chamber loaded with 201.4(5) mg of ²³⁵U in five deposits. The PTB chamber is calibrated, meaning that the mass of ²³⁵U and the detection efficiency are well known from previous "international intercomparisons". Reference detector in measuring neutron flux, not only at n_TOF. ## **Parallel Plate Avalanche Counter (PPAC)** At n_TOF PPAC detector is a stack of 10 parallel plate avalanche counters. Some of them are loaded with ²³⁵U or ²³⁸U in order to measure neutron flux. Fission fragments detected in coincidence, rejection of α background. Fast response Very low sensitivity to γ ### **Results from neutron measurements** ### Measurements from 0.025 eV up to 1 GeV Up to few keV results from different detectors agree within 2% (or less) From few keV to higher energies agreement within 4-5% ### **Results from neutron measurements** After carefull comparisons an **evaluated neutron flux** has been then determined combining results from all the detectors where they are considered reliable. ### Other neutron detectors At n_TOF some measurements are also dedicated to test innovative neutron detectors, **both** in the context of the collaboration **and** from proposals of external research groups. ### **Recently (among others):** ### **Triple GEM detector** #### **MEDIPIX** detector **Fast neutron** (elastic scattering in Polyethilene) **Slow neutron** (10B converter) ### Other neutron detectors At n_TOF some measurements are also dedicated to test innovative neutron detectors, **both** in the context of the collaboration **and** from proposals of external research groups. ### **Recently (among others):** ### **Single-Crystal Diamond Detector (SDD)** Fast neutron detection is achieved by detecting charge particles produced via the reactions: - 12 C(n, α) 9 Be (Q_{value}=5.7 MeV, E_{thr}=6.17 MeV) - 12 C(n,n')3 α (Q_{value}= 7.23 MeV, E_{thr}=7 MeV) ### **Conclusions** - The n_TOF facility is active since 2001, with the aim of addressing the request of accurated nuclear data for nuclear astrophysics and nuclear technologies. - The **high quality** of its **neutron beam** makes **n_TOF** a unique facility in the world for cross section measurements of neutron induced reactions. - Several neutron detection systems based on standard reactions are used to measure neutrons flux with high accuracy. Results show a very nice agreement. - R&D activity is welcome... ### **Conclusions** - The n_TOF facility is active since 2001, with the aim of addressing the request of accurated nuclear data for nuclear astrophysics and nuclear technologies. - The **high quality** of its **neutron beam** makes **n_TOF** a unique facility in the world for cross section measurements of neutron induced reactions. - Several neutron detection systems based on standard reactions are used to measure neutrons flux with high accuracy. Results show a very nice agreement. - R&D activity is welcome....also for measurements in the second experimental area presently under construction. ### Conclusions EAR2 Experimental Area 2 will be placed at 20 m from the spallation target. **Higher fluence**, by a factor of 25, relative to EAR1. The **shorter flight path** implies a factor of 10 smaller time-of-flight. Global gain by a factor of **250 in the signal/background ratio** for radioactive isotopes! ### **Conclusions** - The n_TOF facility is active since 2001, with the aim of addressing the request of accurated nuclear data for nuclear astrophysics and nuclear technologies. - The **high quality** of its **neutron beam** makes **n_TOF** a unique facility in the world for cross section measurements of neutron induced reactions. - Several neutron detection systems based on standard reactions are used to measure neutrons flux with high accuracy. Results show a very nice agreement. - R&D activity is welcome....also for measurements in the second experimental area presently under construction. ## Thanks for your kind attention **Back-up slides** # **Back-up slide**