
MONSTER: a Modular Neutron SpectromeTER for β-delayed neutron measurements

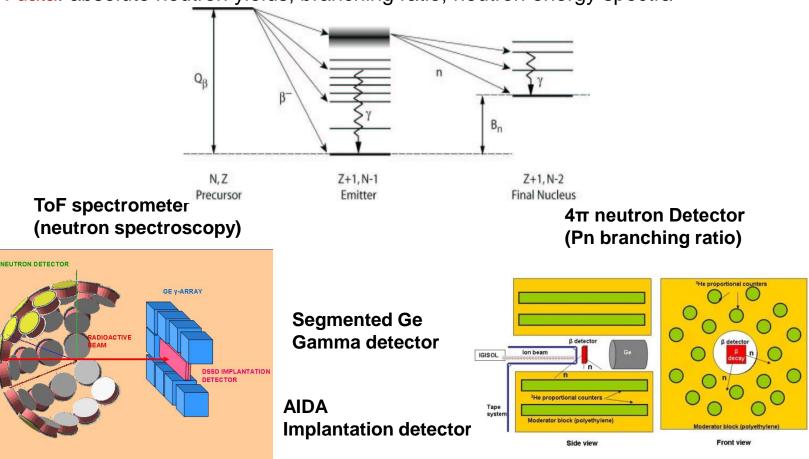
CIEMAT (Madrid, Spain)

IFIC – Valencia, University of Jyvaskyla, VECC – Kolkatta,

The FAIR facility

Primary beams:

Z= -1 to 92 I = 100-1000 fold Energies up to 30 GeV/u


Radioactive secondary beams Fission / Fragmentation Energies up 2 GeV/u I = 10000 fold

Nustar Collaboration RIB, S-FRS

High Energy Branch Low Energy Branch Ring Branch

DESPEC Experiment (decay properties)

DN data: absolute neutron yields, branching ratio, neutron energy spectra

MONSTER will be used to determine the energy spectra and emission probabilities of β delayed neutrons with high resolution

Ideal Neutron TOF spectrometer design

Requirements for neutron spectroscopy:

(Conclusion of "workshop on neutron detectors for decay experiments", Madrid, 2006)

- •n-γ discrimination, → reduce backgrounds,
- •High $\varepsilon_n \rightarrow$ large solid angle, thick detectors (identification when low emission probabilities)
- •Improved $\Delta E/E$, \rightarrow thin detectors, large flight path
- •Lowest threshold, → (down to 30 keVee?) allow increase efficiency
- •cross-talk rejection, → modular, high granularity >100 cell, identification of n,2n,3n
- •Digital electronics → control of systematics

Liquid organic scintillator NE213/BC501A/EJ301 best discrimination performance, (crystal organic as well as new scintillation materials)

Constraint: Cost

CIEMAT coordinates the design and construction of a demonstrator for DESPEC

Status of the Project

Work done / in progress:

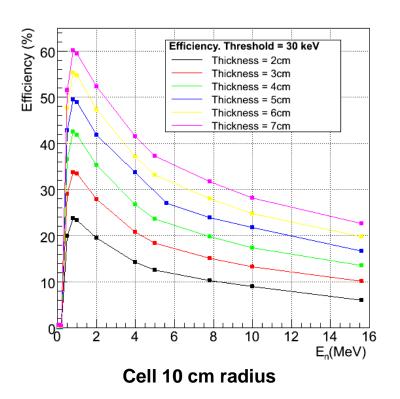
- Design of the spectrometer based on extensive Montecarlo simulations
- Purchase of cell prototype,
- \triangleright Characterization of prototype with γ -sources & mono-energetic neutron beams (PTB, CEA)
- Purchase of detector cells and PMTs (demonstrator)
- Construction and test of a prototype at VECC (India)
- Design and building of mechanical structure
- Development of digital electronics (waveform digitizer)
- Design DAQ system, hardware and software

Next to be done:

- Tests with assembled detectors demonstrator configuration, 30 cells
- Test of digitizers with detectors and sources
- Testing demonstrator with delayed neutrons precursors

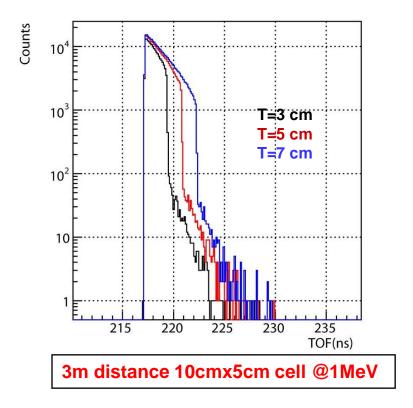
Monte Carlo simulation

Work already done:


- ➤ Simulation codes based on GEANT4 packages.
- ➤ Validation of neutron transport with other codes (MCNPX, NRESP)
- ➤ Nuclear cross section data from evaluated libraries (ENDF, JEFF, JENDL...)
- Implement light scintillation model based on Dekempeneer light functions (NIMA256(1987)489), with experimental resolution function.
- ➤ Implementation of geometry: Cylindrical cell and rectangular bar (NE213).
- Characterization of design parameters (efficiency, time and energy resolution) as a function of cell dimensions and detection energy threshold.
- Implement light collection processes.
- Optimization of prototype design.
- ➤ Influence of implantation setup in terms of attenuation, Tof/Energy resolution ...

Next:

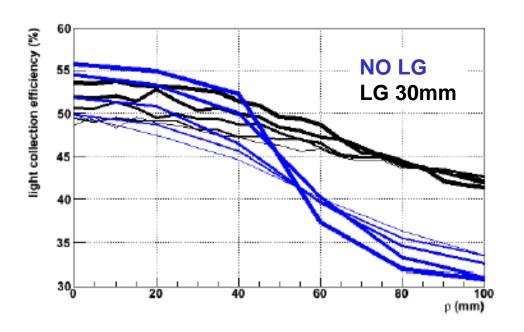
- Definition of cross-talk (optimization)
- Influence of complementary set-ups (Ge detectors) and mechanical structure
- Simulation of a complete experiment

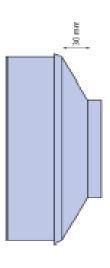

MC simulation: Intrinsic efficiency TOF resolution

The intrinsic efficiency of the cell is strongly affected by the detector volume and by the detection threshold

TOF depends:

- •Intrinsic time resolution ~1ns (+4ns)
- •Neutron transit time (thickness) ~7ns
- Multiple scattering (threshold) ~ms


Optimisation of the cell in terms of its performance and cost \rightarrow 20cm x 5cm

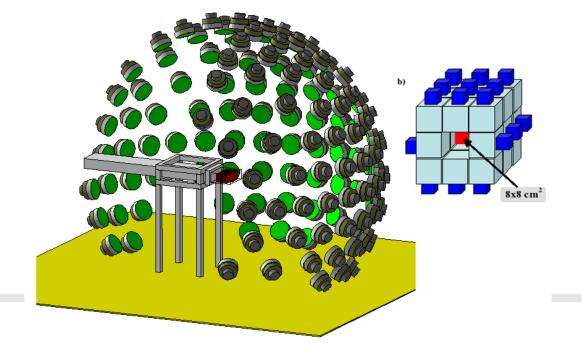

E. Reillo (Master Th))

Monte Carlo simulation: light collection uniformity

Coupling large cell to largest PMT 200 mm diameter cell to 127mm diameter PMT

Light guide of 30 mm thick and painted surface

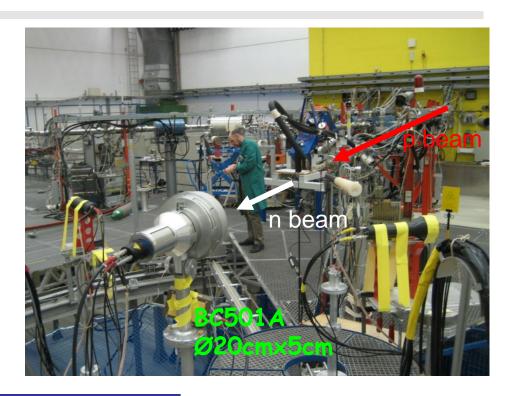
General characteristics of MONSTER


- Cylindrical cell of 20 x 5 cm filled with BC501A/EJ301
- •Reasonable intrinsic efficiency (~50% @ 1MeV)
- •Energy threshold ~ 30 keVee (E_n ~200 keV)
- •Reasonable energy resolution < 10% up to 5 MeV:
- •Good neutron timing ~1ns
- •Good β timing: < 4ns (?)
- Reasonable flight path 2-3 m TOF
- •Good total efficiency: 150 200 detectors

200 detectors, 10cm radius		ΔE/E @ 1 MeV	
TOF distance (m)	Geometric efficiency	1ns	4ns
2	12.5%	3.5%	6.0%
3	5.6%	2.5%	4.2%

Design similar to other projects (DESIR @ SPIRAL II)

 \emptyset =20cm x L=5cm



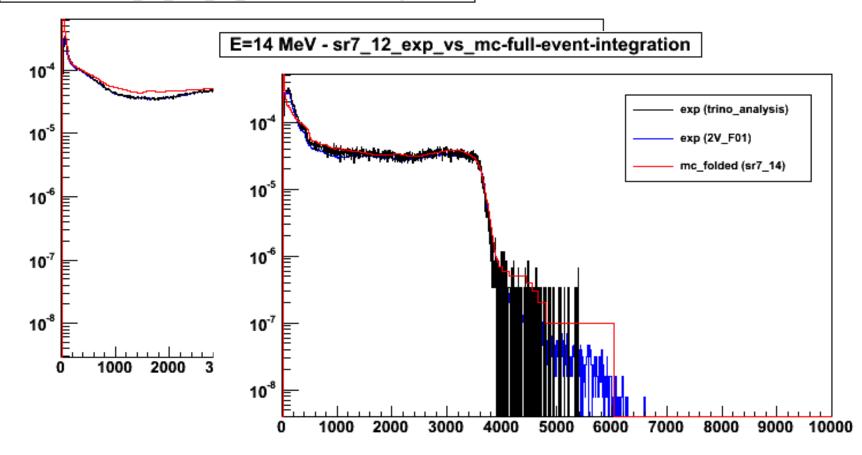
Characterization with reference neutron beams

@ PTB (EFNUDAT program)

Goals:

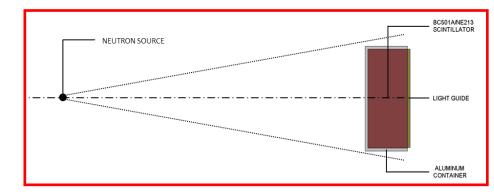
- ➤ Light output function for e and p, L=f(E)
- ➤ Light resolution ΔL/L(%)
- ➤ Absolute neutron detection efficiency
- ➤ Comparison with MonteCarlo simulation
- ➤ Performance of DAQ systems (flash ADC)

CIEMAT (Madrid), IFIC (Valencia), PTB and LNL (Legnaro) Cyclotron and Van de Graaf accelerator at PTB

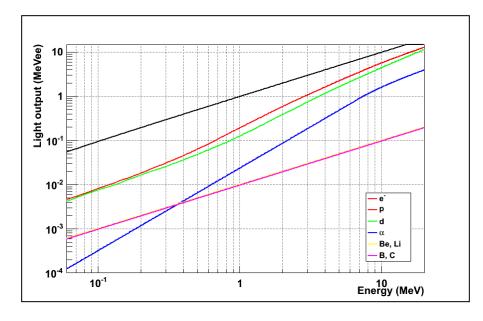

En= 0.144, 0.250, 0.565, 1.2 and 2.5 MeV

En= 8, 10, 12 and 14 MeV

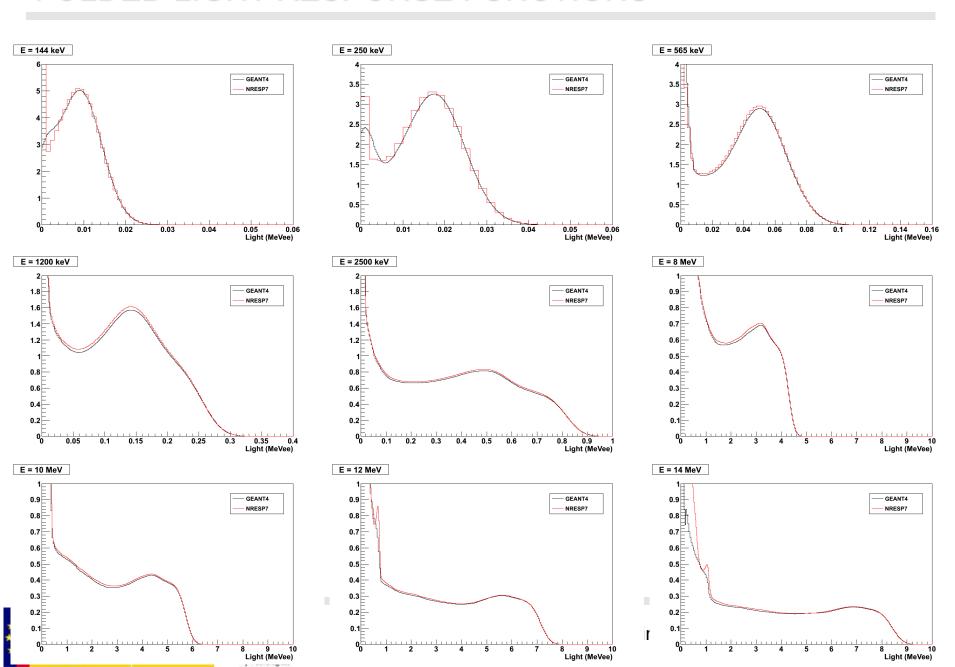
The data analysis



Validation of GEANT4 vs NRESP7 (coll. R. Nolte)


SIMPLE GEOMETRY

- Cylindrical BC501A (NE213) liquid scintillator DxL=20 cm x 5 cm
- 2 mm thick aluminum container: (ρ=2.7g/cm³)
- 2 mm thick cylindrical light pipe defined as an organic compound of ¹H and ¹²C:


H/C=1.100 ρ =1.180g/cm³

- Same light output functions (NRESP7).
- Same resolution function ΔL/L parameters (A=0.087, B=0.097, C=0.005)
- Same normalization factor

FOLDED LIGHT RESPONSE FUNCTIONS

MONSTER demonstrator Status

Detectors:

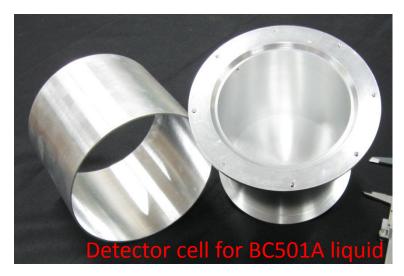
St. Gobain supplied detectors separately Cells 30 units, magnetic shielding

PMTs:

model R4144 Hamamatsu

Troubles:

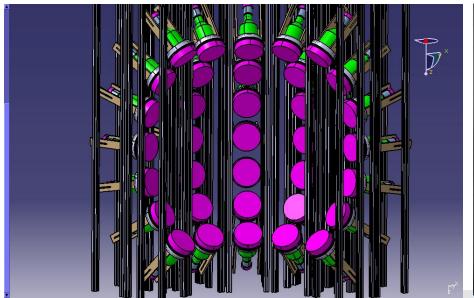
Initial problems with cell paint coating, has been solved. However, some cells shows a yellowish liquid (but still good n/g separation)

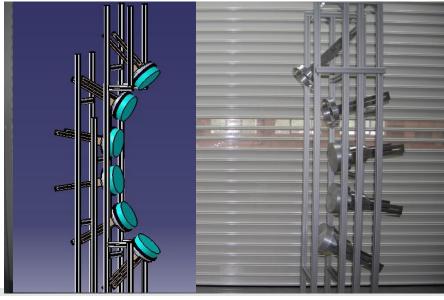


MONSTER prototype at VECC

VECC will contribute with 50 detector modules for MONSTER

Energéticas, Medioambientales

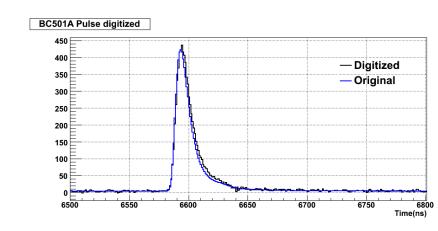

Detector support and Mechanical structure


CAD designed and machined at Ciemat workshops Aluminum based

Types: racks and sphere-like

Applied a reduction of material to both supports and structure, keeping stability.

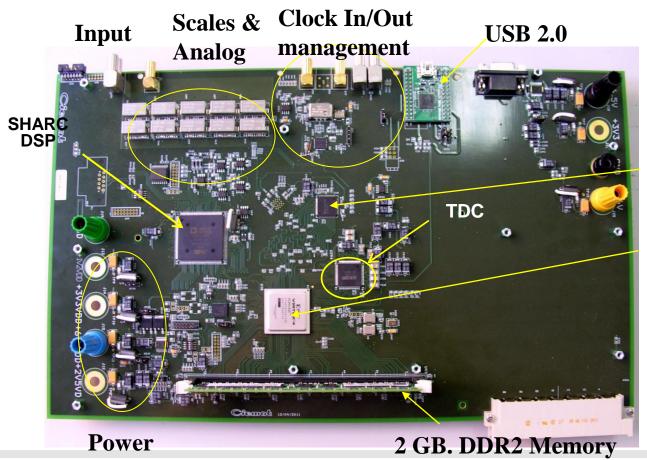

CIEMAT Digitizers


Digitizer design

- •ADC with 1Gsample/s and 12 bit resolution, 1GHz bandwidth, 2Vpp.
- •FPGA Virtex-4 for trigger, signal pre-processing
- •Fast DSP for pulse shape analysis
- TDC for precise timing
- •2 GB DDRII memory
- •Input ranges: 0.2, 0.5, 1, 2 & 5 V (FS)

Prototype Activities:

- Firmware and test of performances
- ➤ USB 2.0 tested and operational R/W @ 42MB/s
- ➤ Constant noise ~1.2 mV (@ full power load)
- Controller for Micron DDR2 module2 GB/s. bandwidth (1.5 needed @ 12 bits, 1 GHz))
- Clock management (Input 10 MHz clock to synchronize)
- ➤ DAC offset control between 0 2.5 Volts for pulse conditioning and analog triggering
- >SHARC DSP alive
- ➤TDC set up



Digitizer development: 2nd evolution of board

PCB updated to reduce the noise, modify the input ranges for analog signals improve the synchronization between boards, reduce the power consumption, add a 100 Mbytes/s transfer bus (besides the USB 2.0)

ADC 12 bit, 500 MHz 10,4 ENOB

FPGA Virtex 4

Front View

Measurement test @ JYFL

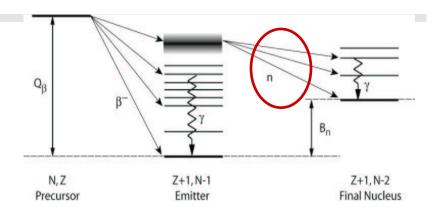
Delayed neutron data:

Pn, neutron energy spectra of known emitters ^{87,88} Br, ^{94,95} Rb, ¹³⁷ I

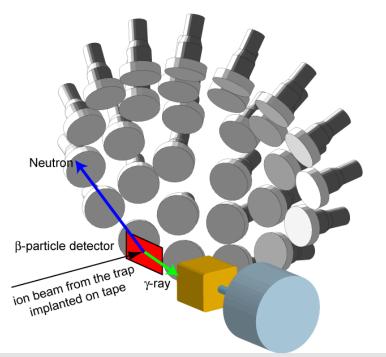
Nuclei production: IGISOL + Penning Trap

SET-UP:

MONSTER: 30 cells of BC501A (dim 20x5 cm)


Flight path: L ~100cm distance from the

implantation position $\Delta\Omega/\Omega \sim 7.4\%$


Si detector for β particles with 25-30% efficiency HpGe (Clover desirable)

Coincidences: β -n and β - γ -n (total and partial branching ratio)

Neutron event selection by time of flight and by pulse shape discrimination.

Neutron Time Of Flight Spectrometer

Summary and conclusions

- Accurate DN data are needed for design of new reactor systems (Gen-IV). New RIB facilities offer opportunity to perform required measurements
- A neutron TOF spectrometer has been designed for DESPEC, based on BC501A. Sensitive to $E_n > 200$ keV.
- A large amount of work has been dedicated to develop and improve Monte Carlo simulation codes GEANT4 and tools: cross sections data, light output, light collection...
- Prototype cell has been designed and tested (time resolution, n/γ discrimination, light collection uniformity).
- The prototype cell has been characterized with reference neutron beams. Analysis not yet concluded.
- Construction of MONSTER demonstrator is progressing. 30 new cells have been purchased to St-Gobain for spectrometer demonstrator. Problem with cells will be solved.
- Mechanical supports and structure have been design and is being constructed.
- High performance digital electronics is being designed for the TOF spectrometer. Prototypes are being tested
- •Experiment have been accepted at the Cyclotron Laboratory of the University of Jyvaskyla (Finland) for commissioning.

Involved Institutions:

FAIR

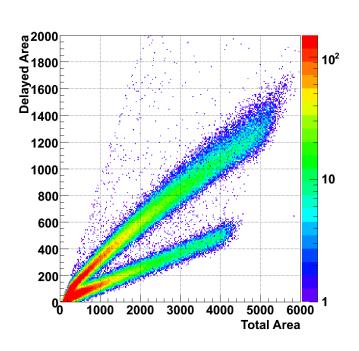
- CIEMAT (Madrid, Spain)
- Instituto de Física Corpuscular (Valencia, Spain)
- Universidad Politécnica de Cataluña (Barcelona, Spain)
- VECC (India)

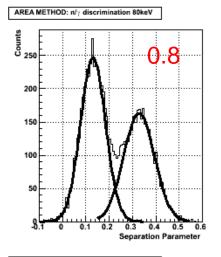
SPIRAL-II

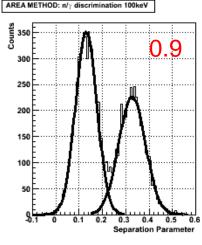
- LPC (Caen, France)
- ❖ Laboratori Nazionali di Legnaro (Italy) NEDA project
- University of Uppsala (Sweden) NEDA project

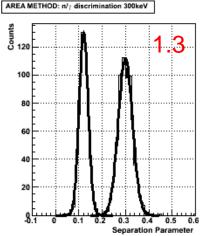
Acknowledgement:

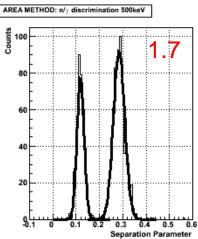
Ministry of Science and Innovation, Spanish Government EFNUDAT program, PTB staff ENRESA


Thanks for your attention!


n/γ discrimination


Digital Charge Integration method


Reasonable n/γ separation for $E_n>80$ keVee (AmBe)


FOM

