The LHC machine - present and future

Part 2

- Overview of the current machine, performance and limitations
- Upgrades towards ultimate luminosity
- Possibilities and challenges for higher energy

Mike Lamont with acknowledgements to the people whose material I've used

FOLLOW-UP TO QUESTIONS

HTS current leads

- The LHC HTS current leads operate in a temperature range between room temperature and the saturated liquid helium bath.
- They consist of a resistive section, convection cooled by helium gas available in the LHC machine at a nominal temperature of about 20 K, and a superconducting section, self-cooled by the vapour generated by the lead itself at 4.5 K. The two circuits are hydraulically separated.
- The warm end of the superconducting section, T_{HTS}, is maintained at 70 K in stand-by operation and at 50 K in operation with current.

Right of ATLAS

High field magnets

- The maximum field reached in an acceleratortype dipole is around 14 T at 4.5 K, using Nb₃Sn conductor, in an aperture similar to the HE-LHC requirements (40 mm).
- Due to the shape of the critical surface, the maximum field attainable with Nb₃Sn accelerator magnets is around 18 T.
- Superconducting cables based on HTS are able to withstand fields larger than 15 T: they have been successfully used in high-field solenoids but not in accelerator dipoles.

PERFORMANCE THUS FAR

Luminosity

$$L = \frac{N^2 k_b f}{4\rho s_x^* s_y^*} F = \frac{N^2 k_b f g}{4\rho e_n b^*} F$$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N	Number of particles per bunch
$\sigma^* \begin{array}{ccccccccccccccccccccccccccccccccccc$	k_b	Number of bunches
F Reduction factor due to crossing angle $\epsilon \text{Emittance}$ $\epsilon_n \text{Normalized emittance}$	f	Revolution frequency
ϵ Emittance ϵ_n Normalized emittance	σ*	Beam size at interaction point
ε _n Normalized emittance	F	Reduction factor due to crossing angle
	3	Emittance
	ϵ_{n}	Normalized emittance
Beta function at IP	β*	Beta function at IP

$$S^* = \sqrt{D^* \theta}$$

$$e_N = 2.5 \cdot 10^{-6} \text{ m.rad}$$
 $e = 3.35 \cdot 10^{-10} \text{ m.rad}$
 $S^* = 11.6 \cdot 10^{-6} \text{ m}$
 $(p = 7 \text{ TeV}, b^* = 0.4 \text{ m})$

Total for year: 50 pb⁻¹

3.5 TeV Beta* = 1.5 m

2011

Performance from injectors 2012

Bunch spacing [ns]	Protons per bunch [ppb]	Norm. emittance H&V [µm] Exit SPS
50	1.7 x 10 ¹¹	1.8
25	1.2 x 10 ¹¹	2.7
25 (design report)	1.15×10^{11}	3.75

Chose to stay with 50 ns:

- l_b^2
- lower total intensity
- less of an electron cloud challenge

Peak performance through the years

	2010	2011	2012	Nominal
Bunch spacing [ns]	150	50	50	25
No. of bunches	368	1380	1380	2808
beta* [m] ATLAS and CMS	3.5	1.0	0.6	0.55
Max bunch intensity [protons/bunch]	1.2 x 10 ¹¹	1.45 x 10 ¹¹	1.7 x 10 ¹¹	1.15 x 10 ¹¹
Normalized emittance [mm.mrad]	~2.0	~2.4	~2.5	3.75
Peak luminosity [cm ⁻² s ⁻¹]	2.1 x 10 ³²	3.7×10^{33}	7.7×10^{33}	1.0 x 10 ³⁴

Pb-Pb

- Good performance from the injectors bunch intensity and emittance
- Preparation, Lorentz's law: impressively quick switch from protons to ions
- Peak luminosity around 5 x 10^{26} cm⁻²s⁻¹ at 3.5Z TeV nearly twice design when scaled to 6.5Z TeV

Proton-lead

- Beautiful result
- Final integrated luminosity above experiments' request of 30 nb⁻¹
- Injectors: average number of ions per bunch was ~1.4x10⁸ at start of stable beams, i.e. around twice the nominal intensity

Beam orbits at top energy with RF frequencies locked to B1

LIMITATIONS

25 ns & electron cloud

Possible consequences:

- instabilities, emittance growth, desorption bad vacuum
- excessive energy deposition in the cold sectors

Electron bombardment of a surface has been proven to reduce drastically the secondary electron yield (SEY) of a material.

This technique, known as **scrubbing**, provides a mean to suppress electron cloud build-up.

25 ns & electron cloud

- During 25 ns scrubbing run last December the reduction in the secondary electron yield (SEY) flattened out
- A concentrated scrubbing run will probably be insufficient to fully suppress the EC from the arcs for 25 ns beams in future operation.

Evolution of $\delta_{\rm max}$ on the the beam screen in the dipole magnets in 2011

Instabilities

- Note: increased impedance from tight collimators in 2012 and near ultimate bunch intensity
- Instabilities have been observed:
 - on bunches with offset collisions in IP8 only
 - while going into collision
 - end of squeeze, few bunches: emittance blow-up and beam loss
- Defense mechanisms:
 - octupoles, high chromaticity, transverse damper, tune split, head-on collisions, understanding

Some other issues...

Beam induced heating

- Local non-conformities (design, installation)
 - Injection protection devices
 - Sync. Light mirrors
 - Vacuum assemblies

UFOs

- 20 dumps in 2012
- Timescale 50-200 μs
- Conditioning observed
- Worry about 6.5 TeV

Radiation to electronics

- Concerted program of mitigation measures (shielding, relocation...)
- Premature dump rate down from 12/fb⁻¹ in 2011 to 3/fb⁻¹ in 2012

UFO - introduction

Total Losses: 69.3650 [Gray / s]

Spatial and temporal loss profile of UFO at BSRT.B2 on 27.08.2012 at 4TeV.

LS1

wnat nappened on September 19th*

- Sector 3-4 was being ramped to 9.3 kA, the equivalent of 5.5 TeV
 - All other sectors had already been ramped to this level
 - Sector 3-4 had previously only been ramped to 7 kA (4.1 TeV)
- At 11:18AM, a quench developed in the splice between dipole C24 and quadrupole Q24
 - Not initially detected by quench protection circuit
 - Power supply tripped at .46 sec
 - Discharge switches activated at .86 sec
- Within the first second, an arc formed at the site of the quench
 - The heat of the arc caused Helium to boil.
 - The pressure rose beyond .13 MPa and ruptured into the insulation vacuum.
 - Vacuum also degraded in the beam pipe
- The pressure at the vacuum barrier reached ~10 bar (design value 1.5 bar).
 The force was transferred to the magnet stands, which broke.

^{*}Official talk by Philippe LeBrun, Chamonix, Jan. 2009

Pressure forces on SSS vacuum barrier

Collateral damage: magnet displacements

Collateral damage: secondary arcs

QBBI.B31R3 M3 line

QQBI.27R3 M3 line

Collateral damage: Beam Vacuum

Arc burned through beam vacuum pipe

What happened?

Theory: A resistive joint of about 220 n Ω with bad electrical and thermal contacts with the stabilizer

No electrical contact between wedge and U-profile

with the bus on at least 1 side of the joint

wedge

- Loss of clamping pressure on the joint, and between joint and stabilizer
- Degradation of transverse contact between superconducting cable and stabilizer
- Interruption of longitudinal electrical continuity in stabilizer

Problem: this is where the evidence used to be

Bad surprise

Copper stabilizer issue

Despite correct splice resistance between SC cables, a 13 kA joint can burn-out in case of a quench, if there would be a bad bonding between the SC cable and the copper bus, coinciding with a discontinuity in the copper stabilizer

 Resistance measurements and ①-ray pictures have shown the presence of many of such defective joints in the machine, limiting the safe operating current

2013 - 2014: LS1

Primary aim: consolidation for 6.5 to 7 TeV

- Measure all splices and repair the defective ones
- Consolidate interconnects with new design (clamp, shunt)
- Finish installation of pressure release valves (DN200)
- Magnet consolidation exchange of weak cryo-magnets
- Consolidation of the DFBAs
- Measures to further reduce SEE (R2E):
 - relocation, redesign, shielding...
- Install collimators with integrated button BPMs (tertiary collimators and a few secondary collimators)
- Experiments consolidation/upgrades

Installing shunts

AFTER LS1

Post LS1 energy

- Magnets coming from 3-4 do not show degradation of performance
- Our best estimates to train the LHC (with large errors)
 - $-\sim 30$ quenches to reach 6.25 TeV
 - $-\sim 100$ quenches to reach 6.5 TeV
- The plan
 - Try to reach 6.5 TeV in four sectors in JULY to SEPTEMBER 2014 (NB updated after Aspen)
 - Based on that experience, we decide if to go at 6.5
 TeV or step back to 6.25 TeV

Challenges of high energy

- Quenches
 - Less margin to critical surface
- Protons have higher energy
 - acceptable loss level is reduced (losses in ramp, UFOs...)
 - set-up beam limit reduced
- Magnets run into saturation
 - field quality (although this is modelled)
- Hardware nearer limits
 - Power converters, beam dump (higher voltages), cryogenics (synchrotron radiation...)

BLM signal at quench

50 versus 25 ns

	50 ns	25 ns
G005	Lower total beam currentHigher bunch intensityLower emittance	• Lower pile-up
BAD	 High pile-up Need to level Pile-up stays high High bunch intensity – instabilities 	 More long range collisions: larger crossing angle; higher beta* Higher emittance Electron cloud: need for scrubbing; emittance blow-up; Higher UFO rate Higher injected bunch train intensity Higher total beam current

Expect to move to 25 ns because of pile up...

β * & crossing angle

- β * reach depends on:
 - available aperture
 - collimator settings, orbit stability
 - required crossing angle which in turn depends on
 - emittance
 - bunch spacing

Working hypothesis $\beta^* = 40 \text{ cm}$

Beta* reach at 6.5 TeV

• Pessimistic scenario:

$$\Rightarrow \beta$$
* = 70cm at 25ns

$$\Rightarrow \beta$$
* = 57cm at 50ns

• Optimistic scenario:

$$\Rightarrow \beta$$
* = 37cm at 25ns

$$\Rightarrow \beta$$
* = 30cm at 50ns

Run II – post LS1

- Energy: 6.5 TeV
- Bunch spacing: 25 ns
 - pile-up considerations
- Injectors potentially able to offer nominal intensity with even lower emittance

	Number of bunches	Proton per Bunch [1e11]	ε _N [um]	Peak Lumi [cm-²s-¹]	~Pile-up	Int. Lumi per <mark>full</mark> year [fb ⁻¹]	
25 ns BCMS	2590	1.15	1.9	1.7e34	49	~45	

Baseline

	J	F	M	Α	M	J	J	Α	S	0	N	D
2011		1	2	3	4	5	6	7	8	9	IONS	
2012			1	2	3	4	5	6	7	8	9	
2013	IONS	IONS	LS1 - SPLI	CE CONSOLI	DATION							
2014												
2015	CHECK-OUT	RECOM	RECOM	1	2	3	4	5	6	7	IONS	
2016		RECOM	1	2	3	4	5	6	7	8	IONS	
2017		RECOM	1	2	3	4	5	6	7	8	IONS	
2018	LS2 (LIU U	PGRADE: LI	NAC4, BOOS	STER, PS, SP	S)							
					•			•		•		
2019	RECOM	RECOM	1	2	3	4	5	6	7	8	IONS	
2020		RECOM	1	2	3	4	5	6	7	8	IONS	
2021		RECOM	1	2	3	4	5	6	7	8	IONS	
2022	HL-LHC UP	GRADE										
2023	HL-LHC UP	GRADE										

Technical stop or shutdown Proton physics Ion Physics Recommissioning

Next 10 years

2012	Run I	4 TeV, peak luminosity 7.7e33	
2013	LS1	Splice consolidation, R2E, DN200	
2014	LSI	Experiments' consolidation and upgrades	
2015			
2016	Run II	6.5 to 7 TeV, peak luminosity 1.7e34	
2017			
2018 LS2		LHC phase 1 and injector upgrades	
2010	LSZ	Experiments' consolidation and upgrades	
2019			
2020	Run III	7 TeV, peak luminosity 2.0e34	
2021			
2022	LS3	HL-LHC upgrade (insertions, crab cavities)	
2023	LSS	Experiments' HL upgrades	

Review of LHC and Injectors Upgrade Plans this October – expect changes

"Baseline" luminosity evolution

Usual caveats apply

HL-LHC

- 3000 fb⁻¹ delivered in the order of 10 years
- High "virtual" luminosity with levelling anticipated
- Challenging demands on the injector complex
 - major upgrades foreseen (Linac 4, Booster 2 GeV, PS and SPS)

5 x 10³⁴ cm⁻²s⁻¹ levelled luminosity 3 fb⁻¹ per day ~250 fb⁻¹/year

HL-LHC: main thrusts

- Wide aperture Nb₃Sn triplet quadrupoles
 - Optics and layout: beta* = 15 cm
- 11 T Nb₃Sn dipoles
 - Used to make room for collimation in dispersion suppression region
- Large Aperture NbTi separator magnets
 - First twin aperture magnets near interaction
- Crab cavities
 - Reduce the effect of the crossing angle
- Enhanced collimation for 500 MJ beams

HL-LHC

Project firmly established under leadership of Lucio Rossi and Oliver Bruning

International collaboration with solid R&D program in place

HL-LHC: key 25 ns parameters

Protons per bunch	2.2 x 10 ¹¹
Normalized emittance	2.5 micron
Beta*	15 cm
Crossing angle	590 microrad
Geometric reduction factor	0.305
Peak luminosity	$7.4 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Virtual luminosity	24 x 10 ³⁴ cm ⁻² s ⁻¹
Levelled luminosity	5 x 10 ³⁴ cm ⁻² s ⁻¹
Levelled <pile-up></pile-up>	140

BEYOND

Options!

Large Hadron Electron Collider: LHeC

Foresees 60 GeV electrons on 7 TeV protons

LHeO

- Conceptual design report published in June 2012
- Two e⁻ options: linac-ring (LR) and ring-ring (RR)

High Energy LHC: HE-LHC

Re-equip existing LHC tunnel with high field magnets

Conceptual layout of 20 T dipole magnet (Nb₃Sn and HTS) Intense R&D required

L. Rossi and E. Todesco

Circumference	26.7 km
Maximum dipole field	20 T
Injection energy from SC-SPS	1.3 TeV
Maximum c.o.m. energy	33 TeV
Peak luminosity	5 x 10 ³⁴ cm ⁻² s ⁻¹

VHE-LHC

Circumference	80 or 100 km
Maximum dipole field	20 or 16 T
Injection energy	> 3.0 TeV
Maximum c.o.m. energy	100 TeV
Peak luminosity	5 x 10 ³⁴ cm ⁻² s ⁻¹
Stored beam energy	~5500 MJ

Among the many challenges:

- Synchrotron radiation heat load 33 W/m
- Collimation!
- IR quadrupoles
- Arc quadrupoles (naïve scaling gives 1593 T/m at 50 TeV beam energy)

Possible VHE-LHC with LER

"Pipetron" using transmission line magnets (W. Foster, H. Piekarz)

- Relatively cheap
- Limited cryogenic power HTS

	energy	field
	[TeV]	[T]
	0.026	0.117
SPS	↓	\downarrow
	0.450	2.03
injector	0.450	0.167
80 km tunnel	↓	\downarrow
ρ = 9.0 km	4.1	1.5

- Circular electron-positron collider in new 80 100 km tunnel
 - Storage ring has separate beam pipes for e⁺ and e⁻ for multi-bunch operation up to 350 GeV c.m.
 - top-up injection with an ancillary accelerator
 - Very high luminosity at Z pole and above WW threshold with operation up to tt threshold
- Using the tunnel before installation of the VHE-LHC

TLEP: parameters

Beam lifetime dominated by Bhabha scattering and bremstrahlung

	TLEP Z	TLEP W	TLEP H	TLEP t
E c.m. [GeV]	91	160	240	350
#bunches/beam	7500	3200	167	160
Peak luminosity [x 10 ³⁴ cm ⁻² s ⁻¹]	59	16	5	1.3
Beam lifetime to Bhabha [min.]	99	38	24	21
Beam lifetime to bremstrahlung [min.]	> 1025	>106	38	14

	TLH	leC	VHE-TLHeC		
species	e [±]	р	e [±]	p	
beam energy [GeV]	60/120	7000	60/120	50000	

Frank Zimmermann et al 58

Status of SC Transmission-Line Magnet

A 1.4 m long, 2 x 20 mm gap magnet was constructed at FNAL and successfully tested producing 2 T field with 88 kA current and 2.8 K temperature margin.

Conclusions

- Reasonably good performance from commissioning through run I
 - 2 years 3 months from first collisions to Higgs
- Foundations laid for run II and HL-LHC
- Some other interesting options under consideration

Acknowledgements

- LHC enjoying benefits of the decades long international design, construction, installation effort.
- Progress with beam represents phenomenal effort by all the teams involved, injectors included.
- On the accelerator physics side huge amount of experience & understanding gained
 - impressive work by various teams (collective effects, beambeam, optics, RF, beam transfer, beam loss, collimation...)
 - pushing diagnostics and instrumentation
 - backed by a vigorous MD program