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What do these plots mean?

98

0

1

2

3

4

5

6

10030 300
mH [GeV]

6
r2

Excluded

6_had =6_(5)

0.02750±0.00033
0.02749±0.00010
incl. low Q2 data

Theory uncertainty
July 2011 mLimit = 161 GeV

80.3

80.4

80.5

155 175 195

mH [GeV]
114 300 1000

mt  [GeV]

m
W

  [
G

eV
]

68% CL

6_

LEP1 and SLD
LEP2 and Tevatron

July 2011



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

Other examples of Confidence Intervals
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14 11. CKM quark-mixing matrix

γ

γ

α

α

dm∆
Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at CL > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL. Color
version at end of book.

These values are obtained using the method of Refs. [6,95]. Using the prescription
of Refs. [102,118] gives λ = 0.2246 ± 0.0011, A = 0.832 ± 0.017, ρ̄ = 0.130 ± 0.018,
η̄ = 0.350± 0.013 [119]. The fit results for the magnitudes of all nine CKM elements are.

VCKM =




0.97428± 0.00015 0.2253 ± 0.0007 0.00347+0.00016

−0.00012

0.2252 ± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045



 , (11.27)

and the Jarlskog invariant is J = (2.91+0.19
−0.11) × 10−5.

Fig. 11.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements and
the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region, though the consistency of |Vub/Vcb| and sin 2β is not very good.

July 30, 2010 14:36
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Confidence Interval

What is a “Confidence Interval?
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
68% of the time
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What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
68% of the time

‣ remember, the contour is a function of 
the data, which is random.  So it moves 
around from experiment to experiment
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Confidence Interval

What is a “Confidence Interval?
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‣Bayesian “credible interval” does 
mean probability parameter is 
in interval.  The procedure is 
very intuitive:
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Joke

101

“Bayesians address the question everyone is 
interested in, by using assumptions no-one 
believes”

“Frequentists use impeccable logic to deal 
with an issue of no interest to anyone”

-L. Lyons
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Discovery in pictures
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b-only p-valueobs
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Discovery: test b-only (null: s=0 vs. alt: s>0)
• note, one-sided alternative.  larger N is “more discrepant” 

aka “CLb”
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Upper limits in pictures
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aka “CLs+b”

What is meant by “95% upper limit” ?

See the picture below?
‣ ie. increase s, until the probability to have 

data “more discrepant” is < 5%
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The sensitivity problem
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N events

P(
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 s
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 )

b-only

5%

s95+b

The physicist’s worry about limits in general is that if there is a strong 
downward fluctuation, one might exclude arbitrarily small values of s
‣ with a procedure that produces proper frequentist 95% confidence 

intervals, one should expect to exclude the true value of s 5% of the time, 
no matter how small s is!

‣ This is not a problem with the procedure, but an undesirable consequence of the Type I / Type 
II error-rate setup
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N events
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"CLs+b"

"CLb"

CLs

To address the sensitivity problem, CLs was introduced
‣ common (misused) nomenclature: CLs = CLs+b/CLb

‣ idea: only exclude if CLs<5%  (if CLb is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%

● Note: CLs is NOT a probability

105

http://inspirehep.net/record/599622
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How do we generalize?
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14 11. CKM quark-mixing matrix
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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL. Color
version at end of book.

These values are obtained using the method of Refs. [6,95]. Using the prescription
of Refs. [102,118] gives λ = 0.2246 ± 0.0011, A = 0.832 ± 0.017, ρ̄ = 0.130 ± 0.018,
η̄ = 0.350± 0.013 [119]. The fit results for the magnitudes of all nine CKM elements are.

VCKM =




0.97428± 0.00015 0.2253 ± 0.0007 0.00347+0.00016

−0.00012

0.2252 ± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045



 , (11.27)

and the Jarlskog invariant is J = (2.91+0.19
−0.11) × 10−5.

Fig. 11.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements and
the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region, though the consistency of |Vub/Vcb| and sin 2β is not very good.

July 30, 2010 14:36
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Neyman Construction example
For each value of   consider 
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Neyman Construction example

Let’s focus on a particular point 

109

x

f(x|�0)

f(x|�o)
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Neyman Construction example
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x

f(x|�0)

Let’s focus on a particular point 
‣ we want a test of size 
‣ equivalent to a                   confidence interval on 
‣ so we find an acceptance region with        probability

f(x|�o)
�

1� �

100(1� �)% �
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Neyman Construction example
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Let’s focus on a particular point 
‣No unique choice of an acceptance region
‣ here’s an example of a lower limit

f(x|�o)

1� �

x

f(x|�0)
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Neyman Construction example
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x

f(x|�0)

�/2

1� �

Let’s focus on a particular point 
‣No unique choice of an acceptance region
‣ and an example of a central limit

f(x|�o)
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x

f(x|�0)

f(x|�0)
f(x|�best(x))

= k�

Neyman Construction example

113

Let’s focus on a particular point 
‣ choice of this region is called an ordering rule
‣ In Feldman-Cousins approach, ordering rule is the 
likelihood ratio.  Find contour of L.R. that gives size 

f(x|�o)

1� �

�
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Neyman Construction example
Now make acceptance region for every value of

114
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Neyman Construction example

This makes a confidence belt for θ
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Neyman Construction example

116

x

�

�0

This makes a confidence belt for θ
the regions of data in the confidence belt can be 
considered as consistent with that value of θ



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

Neyman Construction example

117

x0

��

�+

x
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Now we make a measurement
the points   where the belt intersects    a part of the 
confidence interval in   for this measurement    
eg. 

x0

� x0

�
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For every point   , if it were true, the data would fall in its 
acceptance region with probability  
If the data fell in that region, the point   would be in the 
interval
So the interval            covers the true value with probability 
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Neyman Construction example



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

A Point about the Neyman Construction
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x0
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x
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This is not Bayesian... it doesn’t mean the probability 
that the true value of   is in the interval is        !� 1� �

�true
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Inverting Hypothesis Tests
There is a precise dictionary that explains how to move from from 
hypothesis testing to confidence intervals
‣ Type I error: probability interval does not cover true value of the 

parameters (eg. it is now a function of the parameters)
‣ Power is probability interval does not cover a false value of the 

parameters (eg. it is now a function of the parameters)
● We don’t know the true value, consider each point      as if it were true

What about null and alternate hypotheses?
‣ when testing a point     it is considered the null 
‣ all other points considered “alternate” 

So what about the Neyman-Pearson lemma & Likelihood ratio?
‣ as mentioned earlier, there are no guarantees like before 
‣ a common generalization that has good power is:

120

�0

f(x|�0)
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Coverage
Coverage is the probability that the interval covers the true 
value.

Methods based on the Neyman-Construction always cover.... by 
construction.
‣ sometimes they over-cover (eg. “conservative”)

Bayesian methods, do not necessarily cover
‣ but that’s not their goal.
‣ but that also means you shouldn’t interpret a 95% Bayesian 
“Credible Interval” in the same way

Coverage can be thought of as a calibration of our statistical 
apparatus. [explain under-/over-coverage]

121
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Discrete Problems

122

In discrete problems (eg. number counting analysis with counts 
described by a Poisson) one sees:
‣ discontinuities in the coverage (as a function of parameter)
‣ over-coverage (in some regions)
‣ Important for experiments with few events.  There is a lot of 

discussion about this, not focusing on it here

n
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Coverage

Coverage can be different 
at each point in the 
parameter space

Example:

123

coverage

Max coverage

Max 

�

µ

Coverage

G. Punzi - PHYSTAT 05 - Oxford, UK �
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Neyman Construction with Nuisance parameters
In the strict sense, one wants coverage for µ for all values of the nuisance 
parameters (here ε)
‣ The “full construction” one nuisance parameter

Challenge for full Neyman Construction is computational time (scan in 50-D 
isn’t practical) and to avoid significant over-coverage 
‣ note: projection of nuisance parameters is a union (eg. set theory) not an 

integration (Bayesian)

124

, but some overcoverage may just be a natural

µ

�

µ
min

µ
max

(x0,e0)

ideal shape of conf. region

�

Figure 1: The Neyman construction for a test statistic x,
an auxiliary measurement M , and a nuisance parameter
b. Vertical planes represent acceptance regions Wb for H0

given b. The condition for discovery corresponds to data
(x0, M0) that do not intersect any acceptance region.
The contours of L(x, M |H0, b) are in color.

where b̂ conditionally maximizes L(x, M |H1, b) and ˆ̂b
conditionally maximizes L(x, M |H0, b).

Now let us take s = 50 and ∆ = 5%, both of which
could be determined from Monte Carlo. In our toy ex-
ample, we collect data M0 = 100. Let α = 2.85 ·10−7,
which corresponds to 5σ. The question now is how
many events x must we observe to claim a discovery?1

The condition for discovery is that (x0, M0) do not lie
in any acceptance region Wb. In Fig. 1 a sample of
acceptance regions are displayed. One can imagine a
horizontal plane at M0 = 100 slicing through the var-
ious acceptance regions. The condition for discovery
is that x0 > xmax where xmax is the maximal x in the
intersection.

There is one subtlety which arises from the or-
dering rule in Eq. 5. The acceptance region Wb =
{(x, M) | l > lα} is bounded by a contour of the
likelihood ratio and must satisfy the constraint of size:∫

Wb
L(x, M |H0, b) = (1 − α). While it is true that

the likelihood is independent of b, the constraint on
size is dependent upon b. Similar tests are achieved
when lα is independent of b. The contours of the like-
lihood ratio are shown in Fig. 2 together with con-
tours of L(x, M |H0, b). While tests are roughly sim-
ilar for b ≈ M , similarity is violated for M # b.
This violation should be irrelevant because clearly
b # M should not be accepted. This problem can
be avoided by clipping the acceptance region around
M = b ± N∆b, where N is sufficiently large (≈ 10)
to have negligible affect on the size of the acceptance

1In practice, one would measure x0 and M0 and then ask,
“have we made a discovery?”. For the sake of explanation, we
have broken this process into two pieces.

20

40

60

80

100

120

140

0 50 100 150 200 250

M

x

Figure 2: Contours of the likelihood L(x, M |H0, b) are
shown as concentric ellipses for b = 32 and b = 80.
Contours of the likelihood ratio in Eq. 5 are shown as
diagonal lines. This figure schematically illustrates that if
one chooses acceptance regions based solely on contours
of the likelihood ratio, that similarity is badly violated.
For example, data M = 80, x = 130 would be considered
part of the acceptance region for b = 32, even though it
should clearly be ruled out.

region. Fig. 1 shows the acceptance region with this
slight modification.

In the case where s = 50, ∆ = 5%, and M0 = 100,
one must observe 167 events to claim a discovery.
While no figure is provided, the range of b consis-
tent with M0 = 100 (and no constraint on x) is
b ∈ [68, 200]. In this range, the tests are similar to
a very high degree.

7. THE COUSINS-HIGHLAND
TECHNIQUE

The Cousins-Highland approach to hypothesis test-
ing is quite popular [4] because it is a simple smear-
ing on the nuisance parameter [5]. In particular, the
background-only hypothesis L(x|H0, b) is transformed
from a compound hypothesis with nuisance parameter
b to a simple hypothesis L′(x|H0) by

L′(x|H0) =
∫

b
L(x|H0, b)L(b)db, (6)

where L(b) is typically a normal distribution. The
problem with this method is largely philosophical:
L(b) is meaningless in a frequentist formalism. In a
Bayesian formalism one can obtain L(b) by consider-
ing L(M |b) and inverting it with the use of Bayes’s
theorem and the a priori likelihood for b. Typically,
L(M |b) is normal and one assumes a flat prior on b.

In the case where s = 50, L(b) is a normal distribu-
tion with mean µ = M0 = 100 and standard deviation
σ = ∆M0 = 5, one must observe 161 events to claim a
discovery. Initially, one might think that 161 is quite

PHYSTAT2003,  SLAC, Stanford, California, September 8-11, 2003
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G. Punzi - PHYSTAT 05 - Oxford, UK K. Cranmer - PHYSTAT 03 - SLAC
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Profile Construction

The profile construction means that one does 
not need to scan each nuisance parameter (keeps 
dimensionality constant)
‣ easier computationally (in RooStats)

This approximation does not guarantee exact 
coverage, but
‣ tests indicate impressive performance
‣ one can expand about the profile construction to 

improve coverage, with the limiting case being 
the full construction
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Gary Feldman presented an approximate Neyman 
Construction, based on the profile likelihood 
ratio as an ordering rule, but only performing the 
construction on a subspace (eg. their conditional 
maximum likelihood estimate)
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Profile Construction: professional literature
While I have been calling it the “profile construction”, it has been called 
a “hybrid resampling” technique by professional statisticians
‣ Note: ‘hybrid’ here has nothing to do with Bayesian-Frequentist Hybrid, but 

a connection to “boot-strapping”
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Figure 2.1. Confidence limits for θ/s as a function of y/s when r = 10 and
α = 0.1. Observe that the upper limit starts to increase as y decreases for
y < 0.

3. Angles

In Astronomy, “proper motion” refers to the angular velocity of an object in
the plane perpendicular to the line of sight. An object’s proper motion is given by
X = (X1,X2), where X1 and X2 are orthogonal components and are measured
independently. In certain applications astronomers are more concerned with the
direction than the magnitude of the proper motion vector. An example is the
motion of a satellite galaxy whose stellar orbits may be disrupted by the tidal
influence exerted by a larger parent system. Due to outward streaming of its
stars, a disrupting satellite will elongate spatially and exhibit a radial velocity
gradient along the direction of elongation. N-body simulations indicate that
the orientations of both the elongation and velocity gradient correlate with the
direction of the satellite’s proper motion vector (e.g., Oh, Lin and Aarseth (1995)
and Piatek and Pryor (1995)). Constraining the direction of the satellite’s proper
motion can therefore help determine whether or not a satellite is undergoing
disruption, which in turn places constraints on applicable dynamical models.

Suppose X1 and X2 are normally distributed random variables with unknown
means µ1 and µ2 and known variance σ2. Write µ1 and µ2 in polar coordinates
as µ1 = ρ cos(θ) and µ2 = ρ sin(θ), where −π < θ ≤ π. We consider confidence
intervals for θ when ρ is the nuisance parameter.

In this example, the likelihood function

L(θ, ρ|x) =
1

2πσ2
exp

{

−
1

2σ2

[

(x1 − ρ cos(θ))2 + (x2 − ρ sin(θ))2
]

}
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ON THE UNIFIED METHOD WITH

NUISANCE PARAMETERS
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Abstract: In this paper we consider the problem of constructing confidence intervals
in the presence of nuisance parameters. We discuss a generalization of the unified
method of Feldman and Cousins (1998) with nuisance parameters. We demonstrate
our method with several examples that arise frequently in High Energy Physics
and Astronomy. We also discuss the hybrid resampling method of Chuang and Lai
(1998, 2000), and implement it in some of the problems.

Key words and phrases: Confidence intervals, EM algorithm, hybrid resampling
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1. Introduction

Confidence regions consisting of parameter values with high relative likeli-
hood have a long tradition in Statistics and have generated a large literature,
much of which emphasizes asymptotic calculations. See Reid (2003) for a re-
cent survey article and Reid and Fraser (2003) for a relevant application. In an
influential paper, Feldman and Cousins (1998) showed how to implement con-
struction with exact coverage probabilities in problems, with moderate sample
sizes and boundary effects, like a positive normal mean or a Poisson rate that
is known to exceed a background value, that are of interest in High Energy
Physics. They called the construction the unified method because it makes a
natural transition from a one-sided confidence bound to a two-sided confidence
interval. This method has since attracted wide interest among high energy physi-
cists, see Mandelkern (2002). Only problems without nuisance parameters were
considered in Feldman and Cousins (1998). Here we retain the interest in prob-
lems with boundary effects and moderate sample sizes, but focus on problems
with nuisance parameters in addition to the parameter of primary interest.

To describe the unified method and understand the issues, suppose that
a data vector X has a probability density (or mass function, in the discrete
case) fθ,η where θ is the parameter of interest and η is a nuisance parameter.
For example, if a mass θ is measured with normally distributed error with an
unknown standard deviation, then θ is of primary interest and the standard
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1

θ

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W) − 1 = 0,

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W)

{

1

σ2 + σ2
i

(U3i − µ)

}

= 0,

N
∑

i=1

Pθ̂n,η̂n
(Yi = 0|W)

{

(U3i − µ)2

2(σ2 + σ2
i )

2
−

1

2(σ2 + σ2
i )

}

= 0.

The first two equations can be solved easily to give b̂n+1 =
∑N

i=1 Pθ̂n,η̂n
(Yi =

1|W) and θ̂n+1 =
∑N

i=1 Pθ̂n,η̂n
(Yi = 0|W). The last two equations can be slightly

modified to give the following (closed form) estimates of µ and σ2:

µ̂n+1 =

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

1+σ2
i /σ̂2

(n)
U3i

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

1+σ2
i /σ̂2

(n)

and σ̂2
(n+1) =

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

(1+σ2
i /σ̂2

(n)
)2

(U3i − µ̂n+1)2

∑N
i=1

P
θ̂n,η̂n

(Yi=0|W)

1+σ2
i /σ̂2

(n)

,

where σ̂2
(n) is the n’th step estimate of σ2. These estimates (η̂n) stabilize after a

few iterations yielding the MLE’s of η with the incomplete data. An interesting
feature of this solution is that at the end of the algorithm we get estimated
probabilities that the i’th star is a signal star, namely, Pθ̂n,η̂n

(Yi = 1|W).
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SUMMARY
Resampling methods are introduced for the construction of confidence intervals for

treatment effects associated with the primary and secondary endpoints of a clinical trial
whose stopping rule is specified by a group sequential test. These methods are non-
parametric and compare favourably with the exact methods that assume the responses to
be normally distributed.

Some key words: Bootstrap; Clinical trial; Coverage probability; Edgeworth expansion; Group sequential test

1. I N T R O D U C T I O N

The past two decades have witnessed important developments in group sequential
methods for interim analysis of clinical trials. Although these methods allow for early
termination while preserving the overall significance level of the test, they introduce sub-
stantial difficulties in constructing confidence intervals for parameters of interest following
the test. Siegmund (1978) proposed an exact method, based on ordering the sample space
in a certain way, to construct exact confidence intervals for the mean of a normal popu-
lation with known variance following a repeated significance test. Tsiatis, Rosner & Mehta
(1984) extended Siegmund's method to the group sequential tests of Pocock (1977) and
O'Brien & Fleming (1979). Alternative orderings of the sample space were subsequently
introduced by Chang & O'Brien (1986), Rosner & Tsiatis (1988), Chang (1989) and
Emerson & Fleming (1990).

For samples of fixed size, an important methodology for constructing confidence inter-
vals without distributional assumptions is Efron's (1981, 1982, 1987) bootstrap method.
Section 2 studies bootstrap confidence intervals for a population mean in a group sequen-
tial setting as an alternative to the exact methods. We show that, since the stopping rule
makes the approximate pivots in nonsequential bootstrap methods highly 'non-pivotal',
the bootstrap method does not yield reliable confidence intervals in a group sequential
setting. However, by integrating the main ideas behind the exact and bootstrap methods,
we develop a resampling method for the construction, after a group sequential test, of
confidence intervals whose coverage probabilities are nearly equal to the nominal ones.
Although one may argue that approximate normality is typically assumed for the construe-
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1. Introduction

Confidence regions consisting of parameter values with high relative likeli-
hood have a long tradition in Statistics and have generated a large literature,
much of which emphasizes asymptotic calculations. See Reid (2003) for a re-
cent survey article and Reid and Fraser (2003) for a relevant application. In an
influential paper, Feldman and Cousins (1998) showed how to implement con-
struction with exact coverage probabilities in problems, with moderate sample
sizes and boundary effects, like a positive normal mean or a Poisson rate that
is known to exceed a background value, that are of interest in High Energy
Physics. They called the construction the unified method because it makes a
natural transition from a one-sided confidence bound to a two-sided confidence
interval. This method has since attracted wide interest among high energy physi-
cists, see Mandelkern (2002). Only problems without nuisance parameters were
considered in Feldman and Cousins (1998). Here we retain the interest in prob-
lems with boundary effects and moderate sample sizes, but focus on problems
with nuisance parameters in addition to the parameter of primary interest.

To describe the unified method and understand the issues, suppose that
a data vector X has a probability density (or mass function, in the discrete
case) fθ,η where θ is the parameter of interest and η is a nuisance parameter.
For example, if a mass θ is measured with normally distributed error with an
unknown standard deviation, then θ is of primary interest and the standard
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Quick Announcement
Luc Demortier has done first coverage study (that I have seen) of our 
standard approach (the profile construction) for dealing with 
nuisance parameters in the Neyman Construction when Asymptotics 
are not necessarily valid.
‣ results are very good: no significant undercoverage even for 

small counts.  Good news for SUSY and exotics

127

C
ov

er
ag

e 
R

an
ge

 fo
r 0

 ≤
 ν

 ≤
 2

0

θ

Profile Bootstrap LR Test Inversion
τ=3, α=0.9



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

Asymptotic Properties of likelihood based tests 

& 

Likelihood-based methods
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Likelihood-based Intervals

Wilks’s theorem tells us how the profile 
likelihood ratio evaluated at θ is 
“asymptotically” distributed when θ is true
‣ asymptotically means there is sufficient 

data that the log-likelihood function is 
parabolic

‣ does NOT require the model f(x|θ) to be 
Gaussian

So we don’t really need to go to the 
trouble to build its distribution by using 
Toy Monte Carlo or fancy tricks with 
Fourier Transforms

We can go immediately to the threshold 
value of the profile likelihood ratio
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Likelihood-based Intervals
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And typically we only show the likelihood 
curve and don’t even bother with the 
implicit (asymptotic) distribution
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Likelihood-based Intervals
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Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2lnL = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)

And typically we only show the likelihood 
curve and don’t even bother with the 
implicit (asymptotic) distribution



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

Likelihood-based Intervals

130

�
2

lo
g

⇥
(�

)

f(�2log⇥(�)|�) �

�
2

lo
g

⇥
(�

)
⇥

⇤
2 n

Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2lnL = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)

And typically we only show the likelihood 
curve and don’t even bother with the 
implicit (asymptotic) distribution
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Feldman-Cousins with and without constraint
Wilks’s theorem gives a short-cut for the Monte Carlo procedure used to  find 
threshold on test statistic ⇒ MINOS is asymptotic approximation of Feldman-Cousins

‣ With a physical constraint (µ>0) the confidence band changes
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In many analyses, the contribution of the signal process to the mean number of events is
assumed to be non-negative. This condition e�ectively implies that any physical estimator
for µ must be non-negative. Even if we regard this to be the case, however, it is convenient
to define an e�ective estimator µ̂ as the value of µ that maximizes the likelihood, even this
gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This
will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can
determine the distributions of the test statistics that we consider. Therefore in the following
we will always regard µ̂ as an e�ective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = �2 ln�(µ)

From the definition of ⇥(µ) in Eq. (7), one can see that 0 ⇥ ⇥ ⇥ 1, with ⇥ near 1 implying good
agreement between the data and the hypothesized value of µ. Equivalently it is convenient
to use the statistic

tµ = �2 ln⇥(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-
ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly
as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute
the p-value,

pµ =
� �

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the
pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and
other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed
tµ and also with the significance Z are illustrated in Fig. 1.

(a) (b)

Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of
the test statistic tµ. (b) The standard normal distribution ⇧(x) = (1/

⌅
2⌅) exp(�x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:
the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a
specified threshold � may lie to either side of those values not rejected, i.e., one may obtain
a two-sided confidence interval for µ.

5

2.2 Test statistic t̃µ for µ ⇥ 0

Often one assumes that the presence of a new signal can only increase the mean event rate
beyond what is expected from background alone. That is, the signal process necessarily has
µ ⇥ 0, and to take this into account we define an alternative test statistic below called t̃µ.

Even for when considering models for which µ ⇥ 0, however, we will not restrict the
e�ective estimator µ̂ to be positive, and if the data fluctuate low relative to the expected
background one can find µ̂ < 0. By defining µ̂ in this way we will see in Sec. 3.1 that its
sampling distribution can be approximated by a Gaussian, which in turn allows one to obtain
simple approximations for the pdfs of the test statistics considered.

For a model where µ ⇥ 0, if one finds data such that µ̂ < 0, then the best level of
agreement between the data and any physical value of µ occurs for µ = 0. We therefore
define

�̃(µ) =

�
⌅⌅⇤

⌅⌅⇥

L(µ,ˆ̂✓(µ))

L(µ̂,✓̂)
µ̂ ⇥ 0,

L(µ,ˆ̂✓(µ))

L(0,ˆ̂✓(0))
µ̂ < 0 .

(10)

Here ˆ̂✓(0) and ˆ̂✓(µ) refer to the conditional ML estimators of ✓ given a strength parameter
of 0 or µ, respectively.

The variable �̃(µ) can be used instead of �(µ) in Eq. (8) to obtain the corresponding test
statistic, which we denote t̃µ. That is,

t̃µ = �2 ln �̃(µ) =

�
⌅⌅⇤

⌅⌅⇥

�2 ln L(µ,ˆ̂✓(µ))

L(0,ˆ̂�(0))
µ̂ < 0 ,

�2 ln L(µ,ˆ̂✓(µ))

L(µ̂,✓̂)
µ̂ ⇥ 0 .

(11)

As was done with the statistic tµ, one can quantify the level of disagreement between the
data and the hypothesized value of µ with the p-value, just as in Eq. (9). An approximate
formula for the distribution of t̃µ needed to do this is given in Sec. 3.4.

Also similar to the case of tµ, values of µ both above and below µ̂ may be excluded by a
given data set, i.e., one may obtain either a one-sided or two-sided confidence interval for µ.
For the case of no nuisance parameters, the test variable t̃µ is equivalent to what is used in
constructing confidence intervals according to the procedure of Feldman and Cousins [8].

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃µ described above is used to test µ = 0 in a class
of model where we assume µ ⇥ 0. Rejecting the µ = 0 hypothesis e�ectively leads to the
discovery of a new signal. For this important case we use the special notation q0 = t̃0. Using
the definition (11) with µ = 0 one finds

q0 =

�
⇤

⇥

�2 ln�(0) µ̂ ⇥ 0 ,

0 µ̂ < 0 ,
(12)

where �(0) is the profile likelihood ratio for µ = 0 as defined in Eq. (7).

6
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Modified test statistic for 1-sided upper limits
For 1-sided upper-limit the threshold on the test statistic is different

‣ and with physical boundaries, it is again more complicated
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We may contrast this to the statistic t0, i.e., Eq. (8), used to test µ = 0. In this case
one may reject the µ = 0 hypothesis for either an upward or downward fluctuation of the
data. This is appropriate if the presence of a new phenomenon could lead to an increase or
decrease in the number of events found. In an experiment looking for neutrino oscillations,
for example, the signal hypothesis may predict a greater or lower event rate than the no-
oscillation hypothesis.

When using q0, however, we consider the data to show lack of agreement with the
background-only hypothesis only if µ̂ > 0. That is, a value of µ̂ much below zero may
indeed constitute evidence against the background-only model, but this type of discrepancy
does not show that the data contain signal events, but rather points to some other systematic
error. For the present discussion, however, we assume that the systematic uncertainties are
dealt with by the nuisance parameters ✓.

If the data fluctuate such that one finds fewer events than even predicted by background
processes alone, then µ̂ < 0 and one has q0 = 0. As the event yield increases above the
expected background, i.e., for increasing µ̂, one finds increasingly large values of q0, corre-
sponding to an increasing level of incompatibility between the data and the µ = 0 hypothesis.

To quantify the level of disagreement between the data and the hypothesis of µ = 0 using
the observed value of q0 we compute the p-value in the same manner as done with tµ, namely,

p0 =
⇥ �

q0,obs
f(q0|0) dq0 . (13)

Here f(q0|0) denotes the pdf of the statistic q0 under assumption of the background-only
(µ = 0) hypothesis. An approximation for this and other related pdfs are given in Sec. 3.5.

2.4 Test statistic qµ for upper limits

For purposes of establishing an upper limit on the strength parameter µ, we consider two
closely related test statistics. First, we may define

qµ =

�
�2 ln�(µ) µ̂ ⇥ µ ,

0 µ̂ > µ ,
(14)

where �(µ) is the profile likelihood ratio as defined in Eq. (7). The reason for setting qµ = 0
for µ̂ > µ is that when setting an upper limit, one would not regard data with µ̂ > µ as
representing less compatibility with µ than the data obtained, and therefore this is not taken
as part of the rejection region of the test. From the definition of the test statistic one sees that
higher values of qµ represent greater incompatibility between the data and the hypothesized
value of µ.

One should note that q0 is not simply a special case of qµ with µ = 0, but rather has a
di�erent definition (see Eqs. (12) and (14)). That is, q0 is zero if the data fluctuate downward
(µ̂ < 0), but qµ is zero if the data fluctuate upward (µ̂ > µ). With that caveat in mind, we will
often refer in the following to qµ with the idea that this means either q0 or qµ as appropriate
to the context.

As with the case of discovery, one quantifies the level of agreement between the data and
hypothesized µ with p-value. For, e.g., an observed value qµ,obs, one has

7

pµ =
⇧ ⇥

qµ,obs
f(qµ|µ) dqµ , (15)

which can be expressed as a significance using Eq. (1). Here f(qµ|µ) is the pdf of qµ assuming
the hypothesis µ. In Sec. 3.6 we provide useful approximations for this and other related
pdfs.

2.5 Alternative test statistic q̃µ for upper limits

For the case where one considers models for which µ ⇤ 0, the variable �̃(µ) can be used
instead of �(µ) in Eq. (14) to obtain the corresponding test statistic, which we denote q̃µ.
That is,

q̃µ =

�
⇤

⇥
�2 ln �̃(µ) µ̂ ⇥ µ

0 µ̂ > µ
=

�
⌅⌅⌅⌅⇤

⌅⌅⌅⌅⇥

�2 ln L(µ,ˆ̂✓(µ))

L(0,ˆ̂�(0))
µ̂ < 0

�2 ln L(µ,ˆ̂✓(µ))

L(µ̂,✓̂)
0 ⇥ µ̂ ⇥ µ

0 µ̂ > µ .

(16)

We give an approximation for the pdf f(q̃µ|µ�) in Sec. 3.7.

In numerical examples we have found that the di�erence between the tests based on qµ
(Eq. (14)) and q̃µ usually to be negligible, but use of qµ leads to important simplifications.
Furthermore, in the context of the approximation used in Sec. 3, the two statistics are equiv-
alent. That is, assuming the approximations below, qµ can be expressed as a monotonic
function of q̃µ and thus they lead to the same results.

3 Approximate sampling distributions

In order to find the p-value of a hypothesis using Eqs. (13) or (15) we require the sampling
distribution for the test statistic being used. In the case of discovery we are testing the
background-only hypothesis (µ = 0) and therefore we need f(q0|0), where q0 is defined by
Eq. (12). When testing a nonzero value of µ for purposes of finding an upper limit we need
the distribution f(qµ|µ) where qµ is defined by Eq. (14), or alternatively we require the pdf
of the corresponding statistic q̃µ as defined by Eq. (16). In this notation the subscript of q
refers to the hypothesis being tested, and the second argument in f(qµ|µ) gives the value of
µ assumed in the distribution of the data.

We also need the distribution f(qµ|µ�) with µ ⌅= µ� to find what significance to expect and
how this is distributed if the data correspond to a strength parameter di�erent from the one
being tested. For example, it is useful to characterize the sensitivity of a planned experiment
by quoting the median significance, assuming data distributed according to a specified signal
model, with which one would expect to exclude the background-only hypothesis. For this one
would need f(q0|µ�), usually with µ� = 1. From this one can find the median q0, and thus the
median discovery significance. When considering upper limits, one would usually quote the
value of µ for which the median p-value is equal to 0.05, as this gives the median upper limit
on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).

In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large
sample limit. This allows one to obtain approximations for all of the required distributions,
which are given in Sections 3.3 through 3.6 The approximations become exact in the large
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being tested. For example, it is useful to characterize the sensitivity of a planned experiment
by quoting the median significance, assuming data distributed according to a specified signal
model, with which one would expect to exclude the background-only hypothesis. For this one
would need f(q0|µ�), usually with µ� = 1. From this one can find the median q0, and thus the
median discovery significance. When considering upper limits, one would usually quote the
value of µ for which the median p-value is equal to 0.05, as this gives the median upper limit
on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).

In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large
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Figure 7: The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+b hypothesis (for H→ γγ), for mH = 120
GeV with an integrated luminosity of (a) 2 fb−1 and (b) 10 fb−1. A χ21 distribution is superimposed.

3.2 H →W+W−

The H�W+W− search is divided into two topologies, production of a Higgs with no jets (H+0 j) and
with two additional jets (H+ 2 j), using in both cases the decay mode H�WW � eνµν . The present
study does not yet consider the final states eνeν or µνµν , nor those with hadronic W decays. Future
inclusion of these channels is expected to improve the search sensitivity particularly for the high Higgs
mass region. The search is described in detail in Ref. [5].

3.2.1 H+0 j

The analysis of the H + 0 j channel uses a two dimensional maximum-likelihood fit of the transverse
mass and the transverse momentum of the WW system in two bins of the dilepton opening angle in the
transverse plane. The fit includes control samples to measure the backgrounds from tt and Z� ττ .
The QCD WW background requires particular attention. Its distributions of Higgs-candidate trans-

verse mass and pT are described with functions containing several adjustable (nuisance) parameters, and
several others whose values are determined from a full Monte Carlo simulation and thereafter treated as
fixed. The distribution of the test statistic q0 under the background-only (µ = 0) hypothesis is shown in
Fig. 8(a) for mH = 150 GeV for an integrated luminosity of 10 fb−1. The same fixed QCD WW shape
parameters are used both to generate the data and for calculating the likelihood ratio. A 12χ21 distribution
is superimposed, showing the level of agreement of the asymptotic approximation.
For this channel, further investigation of the systematic uncertainties was carried out. For the fixed

shape parameters related to pT and transverse mass distributions for the QCD WW background, the val-
ues used to generate the data were varied relative to what was used when determining the likelihood ratio.
This was done in a manner that minimized the sensitivity of the resulting q0 distribution to variations in
other fixed parameters such as the QCD Q2 scale. The resulting distributions of q0 are thus no longer
expected to follow the 12χ21 form, as can be seen in Fig. 8(b).
Because the chi-square approximation is not valid in this case, the p-values are calculated using the

q0 distribution obtained directly from the Monte Carlo. An exponential is fitted to the tail region in
order to extrapolate to large q0 values, and the median value of q0 under the hypothesis of signal plus
background is determined using the same variation of the background parameters. It was found that the
median p-value of the background-only hypothesis, with the median computed under assumption of the
s+b hypothesis, is very similar to the original case where the QCD shape parameters are not varied and
the 12χ21 distribution is used.
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We now can describe
effect of the boundary on
the distribution of the
test statistic.

The p-value of the hypothesized µ is

pµ = 1− F (qµ|µ) = 1− Φ
(√

qµ

)

(59)

and therefore the corresponding significance is

Zµ = Φ−1(1 − pµ) =
√

qµ . (60)

As with the statistic tµ above, if the p-value is found below a specified threshold α (often
one takes α = 0.05), then the value of µ is said to be excluded at a confidence level (CL) of
1− α. The upper limit on µ is the largest µ with pµ ≤ α. Here this can be obtained simply
by setting pµ = α and solving for µ. Using Eqs. (54) and (59) one finds

µu p = µ̂ + σΦ−1(1− α) . (61)

For example, α = 0.05 gives Φ−1(1−α) = 1.64. Also as noted above, σ depends in general on
the hypothesized µ. Thus in practice one may find the upper limit numerically as the value
of µ for which pµ = α.

3.7 Distribution of q̃µ (upper limits)

Using the alternative statistic q̃µ defined by Eq. (16) and assuming the Wald approximation
we find

q̃µ =



















µ2

σ2 − 2µµ̂
σ2 µ̂ < 0 ,

(µ−µ̂)2
σ2 0 ≤ µ̂ ≤ µ ,

0 µ̂ > µ .

(62)

The pdf f(q̃µ|µ′) is found to be

f(q̃µ|µ′) = Φ
(

µ

′ − µ

σ

)

δ(q̃µ)

+
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(63)

The special case µ = µ

′ is therefore

f(q̃µ|µ) =
1

2
δ(q̃µ) +
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e
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(64)

The corresponding cumulative distribution is
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where �C = min[µ� µ�, µ+ � µ]/� and �F = max[µ� µ�, µ+ � µ]/�.
The corresponding cumulative distribution is

F (t̃µ|µ0) = FL(t̃µ|µ0) + FR(t̃µ|µ0) (7)
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where �(x) is the cumulative probability distribution of the standard normal distribution.
The special case µ = µ
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Coverage & Likelihood principle
Methods based on the Neyman-Construction always cover.... by 
construction.

‣ this approach violates the likelihood principle
Bayesian methods obey likelihood principle, but do not 
necessarily cover
‣ that doesn’t mean Bayesians shouldn’t care about coverage

Coverage can be thought of as a calibration of our statistical 
apparatus. [explain under-/over-coverage]

Bayesian and Frequentist results answer different questions
‣ major differences between them may indicate severe coverage 
problems and/or violations of the likelihood principle
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Jim Berger:

Bob Cousins, CosmoStats 2009 31

-Jim Berger
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Monte Carlo, asymptotic, Bayesian
Here we see comparisons of explicit ensembles generated with 
Monte Carlo techniques, the asymptotic results, and Bayesian 
results using MCMC and nested sampling with a uniform prior on µ
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P (� � V ) =
⇥

V
⇥(�|x) =

⇥

V
d�

f(x|�)⇥(�)�
d�f(x|�)⇥(�)

Bayesian “credible interval” V does mean 
that there is a 95% that the probability 
parameter is in interval.  

The procedure is very intuitive:
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Figure 1: The 2-dim relative probability density functions in the planes spanned by the CMSSM
parameters: m1/2, m0, A0 and tanβ for µ > 0. The pdf’s are normalized to unity at their peak.
The inner (outer) blue solid contours delimit regions encompassing 68% and 95% of the total
probability, respectively. All other basis parameters, both CMSSM and SM ones, in each plane
have been marginalized over.

blue (dark) solid contours delimit regions of 68% and 95% of the total probability, respec-

tively, and remain well within the assumed priors, except for m0. In all the 2-dim plots,

the MC samples have been divided into 70 × 70 bins, with a mild smoothing across adja-

cent bins to improve the quality of the presentation (this has not impact on our statistical

conclusions). Jagged contours are a result of a finite resolution of the MC chains.

In the case of µ > 0 (fig. 1) we can see a strong preference for large m0 ∼> 1 TeV. On

the other hand, the peak of probability for m1/2 is around 0.5 TeV, although the 68% range

of total probability is rather wide, increases with m0 and exceeds 1.5 TeV for m0 # 4 TeV.

Additionally, at smaller m0 ∼< 1 TeV there are a few confined 68% total probability regions.

The strong preference for large m0 $ m1/2 is primarily the result of the sizable shift

in the SM value of BR(B → Xsγ), as can be seen by comparing fig. 1 with fig. 2 in ref. [14]

(or fig. 8 of ref. [15]) where the previous value of BR(B → Xsγ) has been used. (While

the other CMSSM parameters also experience some shift in their most probable values, it

is not as dramatic as that of m0 towards larger values.) The underlying reason is that,

at fairly small m1/2 the charged Higgs mass remains relatively light, in the few hundred

– 9 –
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Markov Chain Monte Carlo (MCMC) is a nice technique which will produce a 
sampling of a parameter space which is proportional to a posterior
‣ it works well in high dimensional problems
‣ Metropolis-Hastings Algorithm: generates a sequence of points 

● Given the likelihood function         & prior        , the posterior is 
proportional to 

● propose a point     to be added to the chain according to a proposal 
density            that depends only on current point 

● if posterior is higher at    than at   , then add new point to chain
● else: add     to the chain with probability 

● (appending original point      with complementary probability) 
‣ RooStats works with any         ,         
‣ can use any RooFit PDF as proposal function   

‣ Helper for forming custom multivariate Gaussian, Bank of Clues, etc.
‣ New Sequential Proposal function similar to BAT
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Physicist Sir Harold Jeffreys had the clever 
idea that we can “objectively” create a flat 
prior uniform in a metric determined by 

Adds “minimal information” in a precise 
sense, and results in:

The Jeffreys Prior

141

It has the key feature that it is invariant under reparameterization of the 
parameter vector . In particular, for an alternate parameterization      we 
can derive

I(�)

Unfortunately, the Jeffreys 
prior in multiple 
dimensions causes some 
problems, and in certain 
circumstances gives 
undesirable answers.
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Reference Priors

Reference priors are another 
type of “objective” priors, that 
try to save Jeffreys’ basic 
idea.
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http://physics.rockefeller.edu/luc/proceedings/phystat2005_refana.ps
See Luc Demortier’s PhyStat 2005 proceedings
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  RooWorkspace w("w");
  w.factory("Uniform::u(x[0,1])");
  w.factory("mu[100,1,200]");
  w.factory("ExtendPdf::p(u,mu)");

  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  //  w.defineSet("obs2","n");

  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));
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where the final equality above exploits the fact that the estimators for the parameters are
equal to their hypothesized values when the likelihood is evaluated with the Asimov data set.

A standard way to find σ is by estimating the matrix of second derivatives of the log-
likelihood function (cf. Eq. (18)) to obtain the inverse covariance matrix V −1, inverting to
find V , and then extracting the element V00 corresponding to the variance of µ̂. The second
derivative of lnL is
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. (27)

From (27) one sees that the second derivative of lnL is linear in the data values ni and mi.
Thus its expectation value is found simply by evaluating with the expectation values of the
data, which is the same as the Asimov data. One can therefore obtain the inverse covariance
matrix from

V −1
jk = −E

[

∂2 lnL

∂θj∂θk

]

= −
∂2 lnLA

∂θj∂θk
=

N
∑

i=1

∂νi
∂θj

∂νi
∂θk

1

νi
+

M
∑

i=1

∂ui
∂θj

∂ui
∂θk

1

ui
. (28)

In practice one could, for example, evaluate the the derivatives of lnLA numerically, use this
to find the inverse covariance matrix, and then invert and extract the variance of µ̂. One can
see directly from Eq. (28) that this variance depends on the parameter values assumed for
the Asimov data set, in particular on the assumed strength parameter µ′, which enters via
Eq. (22).

Another method for estimating σ (denoted σA in this section to distinguish it from the
approach above based on the second derivatives of lnL) is to find find the value that is neces-
sary to recover the known properties of −λA(µ). Because the Asimov data set corresponding
to a strength µ′ gives µ̂ = µ′, from Eq. (17) one finds

− 2 lnλA(µ) ≈
(µ− µ′)2

σ2
= Λ . (29)

That is, from the Asimov data set one obtains an estimate of the noncentrality parameter Λ
that characterizes the distribution f(qµ|µ′). Equivalently, one can use Eq. (29) to obtain the
variance σ2 which characterizes the distribution of µ̂, namely,

σ2
A =

(µ− µ′)2

qµ,A
, (30)

where qµ,A = −2 lnλA(µ). For the important case where one wants to find the median
exclusion significance for the hypothesis µ assuming that there is no signal, then one has
µ′ = 0 and therefore

σ2
A =

µ2

qµ,A
, (31)

11

Jeffreys’s Prior is an “objective” prior based on formal rules
(it is related to the Fisher Information and the Cramér-Rao bound]

Eilam, Glen, Ofer, and I showed in arXiv:1007.1727 that the Asimov 
data provides a fast, convenient way to calculate the Fisher Information

Use this as basis to calculate 
Jeffreys’s prior for an arbitrary PDF! Validate on a Poisson

Analytic
RooStats numerical
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The Bayesian Solution
Bayesian solution generically have a prior for the parameters of 
interest as well as nuisance parameters
‣ 2010 recommendations largely echoes the PDG’s stance.

Recommendation: When performing a Bayesian analysis one should separate 
the objective likelihood function from the prior distributions to the extent possible. 

Recommendation: When performing a Bayesian analysis one should investigate 
the sensitivity of the result to the choice of priors. 

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading 
results. 

Recommendation: When performing a Bayesian analysis for a single parameter 
of interest, one should attempt to include Jeffreys's prior in the sensitivity analysis.
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