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What do these plots mean?
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Other examples of Confidence Intervals ) ‘T”
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Confidence Interval ) e e ]
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Confidence Interval ) e e ]
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What is a “Confidence Interval?

> you see them all the time:

>
Want to say there is a 68% chance & 4, ,]
that the true value of (mw, mt) is in N

this interval
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Confidence Interval ) e e ]
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Want to say there is a 68% chance & 4, ,]
that the true value of (mw, mt) is in N
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Confidence Interval ) GT”

[

What is a “Confidence Interval? ] —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)
> you see them all the time: 1 68%CL

that the true value of (mw, mt) is in

this interval < _
- but that's P(theory|data)!

>

Want to say there is a 68% chance & 4, ,]
=
=

Correct frequentist statement is that 150 175 200

the interval covers the true value m, [GeV]
68% of the time

- remember, the contour is a function of
the data, which is random. So it moves
around from experiment to experiment
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PARTICLE PHYSICS

Confidence Interval ) e Y

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

> you see them all the time: 1 68%CL

Want to say there is a 68% chance
that the true value of (mw, mt) is in

this interval < _
- but that's P(theory|data)!

Correct frequentist statement is that 150 175 200

the interval covers the true value m, [GeV]

5 .
68% of the time -Bayesian “credible interval” does

mean probability parameter is
in interval. The procedure is
very intuitive:

) ) /(@) (0)
POeV)= /‘/W(e\x) ) defdgf(x|9)7r(9)

- remember, the contour is a function of
the data, which is random. So it moves
around from experiment to experiment
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“‘Bayesians address the question everyone is
Interested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”

-L. Lyons
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Discovery in pictures ) (‘T’
Discovery: test b-only (null: s=0 vs. alt: s>0)
- note, one-sided alternative. larger N is “more discrepant”
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b-only stb
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Upper limits in pictures ) @Tﬁ
What is meant by “95% upper limit” ?
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The sensitivity problem ) (‘Tﬁ
The physicist’'s worry about limits in general is that if there is a strong
downward fluctuation, one might exclude arbitrarily small values of s

» with a procedure that produces proper frequentist 95% confidence
intervals, one should expect to exclude the true value of s 5% of the time,
no matter how small s is!

» This is not a problem with the procedure, but an undesirable consequence of the Type | / Type
|l error-rate setup

P(N | s+b)

e

~-
_——
I ———

N events
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CLs > (479
To address the sensitivity problem, CLs was introduced http://inspirehep.net/record/599622
» common (misused) nomenclature: CLs = CLs+/CLyp
» idea: only exclude if CLs<5% (if CLp is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%
» Note: CLs is NOT a probability

IICLbII

P(N | s+b)

*

[T
—
I iy

N events
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Thumbnail of the statistical procedure
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Follow LHC-HCG Combination Procedures
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How do we generalize? ) ‘T”
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Neyman Construction example ) (‘Tf’
For each value of gconsider f(x|0)

f(x|0)
A

y
s )
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Neyman Construction example ) (‘T’

Let’s focus on a particular point f(z|6,)
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Neyman Construction example ) (‘T’

Let’s focus on a particular point f(z|0,)
» we want a test of size o
» equivalent to a 100(1 — )% confidence interval ong
» so we find an acceptance region with1l — o probability

A

f(x|6o)
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Neyman Construction example ) (‘T’

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
» here’s an example of a lower limit
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Neyman Construction example ) (‘T’

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
»and an example of a central limit

v’oz/2”
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Neyman Construction example ) @?

Let’s focus on a particular point f(z|6,)
» choice of this region is called an ordering rule

» In Feldman-Cousins approach, ordering rule is the
likelihood ratio. Find contour of L.R. that gives size o

A A

f(x|6o)
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Neyman Construction example ) “T”

Now make acceptance region for every value of ¢

f(x|0)
A

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 114




Neyman Construction example ) (‘T’

This makes a confidence belt for 6

f(x|0)
A
v
0o /FJ >

0, [ < .
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Neyman Construction example ) (‘T’
This makes a confidence belt for 6

the regions of data in the confidence belt can be
considered as consistent with that value of 6
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Neyman Construction example ) (‘T’
Now we make a measurement o

the points ¢ where the belt intersects zo a part of the
confidence interval in 4 for this measurement

€g. [9—7 H-I-]
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: cenren ror ),
Neyman Construction example ) commeroer e Y
For every point @, if it were true, the data would fall in its
acceptance region with probability 1 — «
If the data fell in that region, the pointgd would be in the
interval [§_, 6. ]
So the interval[f_, 61| covers the true value with probability 1 — «

118
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A Point about the Neyman Construction ) (‘Tﬁ

This is not Bayesian... it doesn’t mean the probability
that the true value ofg is in the interval is1 — a!

Ay A
2ra
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Inverting Hypothesis Tests ) e A |
There is a precise dictionary that explains how to move from from
hypothesis testing to confidence intervals

» Type | error: probability interval does not cover true value of the
parameters (eq. it is now a function of the parameters)

» Power is probability interval does not cover a false value of the
parameters (eq. it is now a function of the parameters)

- We don’t know the true value, consider each point 90 as if it were true

What about null and alternate hypotheses?
» when testing a point 0y it is considered the null
» all other points considered “alternate”
So what about the Neyman-Pearson lemma & Likelihood ratio?
- as mentioned earlier, there are no guarantees like before
>~ @ common generalization that has good power is:
f(x|Hy)
f(x|Hy)
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Coverage ) @T*

PPPPPPPPPPPPPPP

Coverage is the probability that the interval covers the true
value.

Methods based on the Neyman-Construction always cover.... by
construction.

- sometimes they over-cover (eg. “conservative”)
Bayesian methods, do not necessarily cover
» but that’s not their goal.

» but that also means you shouldn’t interpret a 95% Bayesian
“Credible Interval” in the same way

Coverage can be thought of as a calibration of our statistical
apparatus. [explain under-/over-coverage]
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Discrete Problems ) covrenron (Y

PARTICLE PHYSICS

In discrete problems (eg. number counting analysis with counts
described by a Poisson) one sees:

» discontinuities in the coverage (as a function of parameter)
» over-coverage (in some regions)

» Important for experiments with few events. There is a lot of
discussion about this, not focusing on it here

@Vé’?’)ﬂ CoVERAGE oF ‘[’%FOUENTQT ?0.%
prek Linits pr Suace Poissen Senst

| e

‘ffve VALVE OF /u——->

o (¢ e
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Coverage ). @

Coverage can be different
at each point in the
parameter space

1

0.98% b9 7 T

00. 996;1 = 7 / . 2
Example: s _

G. Punzi - PHYSTAT 05 - Oxford, UK 0

15

Poisson(+background), with a systematic uncertainty on etticiency:

x ~ Pois(euL+b) e~ G(g,0)

e is a measurement of the unknown efficiency €, with resolution ¢

€ 1s the efficiency (a “normalization factor”, can be larger than 1).
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Neyman Construction with Nuisance parameters ) §:§¢;‘;‘;G;;;';?CS?
In the strict sense, one wants coverage for u for all values of the nuisance
parameters (here €)

» The “full construction” one nuisance parameter

Challenge for full Neyman Construction is computational time (scan in 50-D
isn’t practical) and to avoid significant over-coverage

» note: projection of nuisance parameters is a union (eg. set theory) not an
integration (Bayesian)

ideal shape of conf. region full construction
A
] &
X T
G. Punzi - PHYSTAT 05 - Oxford, UK K. Cranmer - PHYSTAT 03 - SLAC
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Profile Construction )

Gary Feldman presented an approximate Neyman profile gonsiraint
Construction, based on the profile likelihood bs)*,_
ratio as an ordering rule, but only performing the "y

CENTER FOR
COSMOLOGY AND L
PARTICLE PHYSICS

Ay

—~_

construction on a subspace (eg. their conditional

maximum likelihood estimate) /’\/

A Subtlety, [Hustrated

b known exactly

the full construction

Gary Feldman 12 Formidab Workshop

EEREERERC0) . .
EEEEEEOO00 The profile construction means that one does
n | HERBROOO0O0 .
EEREOO00000 not need to scan each nuisance parameter (keeps
ERERCOO0O0000 . . ;
b r=1 dimensionality constant)
S EE NS » easier computationally (in RooStats)
n | HEBRBROOO0O0 . . .
OOooOoo00oo This approximation does not guarantee exact
0000000000
b r<<t coverage, but
—_— » tests indicate impressive performance
5
n » one can expand about the profile construction to
' Improve coverage, with the limiting case being

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013
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Profile Construction: professional literature ) ggzme;;;;f‘{

While | have been calling it the “profile construction”, it has been called
a “hybrid resampling” technique by professional statisticians

» Note: ‘hybrid’ here has nothing to do with Bayesian-Frequentist Hybrid, but
a connection to “boot-strapping”

Statistica Sinica 19 (2009), 301-314

ON THE UNIFIED METHOD WITH
NUISANCE PARAMETERS

Bodhisattva Sen, Matthew Walker and Michael Woodroofe

: : : The University of Michi
Resampling methods for confidence intervals in group ¢ University of Michigan

sequential trials 6
By CHIN-SHAN CHUANG
Department of Statistics, University of Wisconsin at Madison, Madison, Wisconsin 53706, 51
US.A.
cchuang@stat.wisc.edu 4l
AND TZE LEUNG LAI
Department of Statistics, Stanford University, Stanford, California 94305, U.S.A. .
lait@leland.stanford.edu 3r
Chuang, C. and Lai, T. L. (1998). Resampling methods for confidence intervals in group se-

quential trials. Biometrika 85, 317-332. 2r

Chuang, C. and Lai, T. L. (2000). Hybrid resampling methods for confidence intervals. Statist.

Sinica 10, 1-50.
0 ) T ) T ! ‘
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Quick Announcement ﬁAA(‘T’
Luc Demortier has done first coverage study (that | have seen) of our
standard approach (the profile construction) for dealing with
nuisance parameters in the Neyman Construction when Asymptotics
are not necessarily valid.

» results are very good: no significant undercoverage even for
small counts. Good news for SUSY and exotics

1

Profile Bootstrap LR Test Inversiol
=3, 0=0.9

(=]

O
©

Coverage Range for 0 < v <20

o
o0

L e B L L ) L B BB BB B
0 2 4 6 8 10 12 14 16 18 20

0
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Asymptotic Properties of likelihood based tests

&

Likelihood-based methods
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Likelihood-based Intervals ) CosmoLaaY AND (‘T’

PPPPPPPPPPPPPPP

Wilks’s theorem tells us how the profile —2log A(0) ~ x?
likelihood ratio evaluated at 8 is "

“asymptotically” distributed when 0 is true

» asymptotically means there is sufficient
data that the log-likelihood function is
parabolic

» does NOT require the model f(x|0) to be
Gaussian

f(—2log A(0)|0)

So we don't really need to go to the
trouble to build its distribution by using
Toy Monte Carlo or fancy tricks with
Fourier Transforms

We can go immediately to the threshold
value of the profile likelihood ratio
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Likelihood-based Intervals ) coeren, @Y

f(=2log A(0)[0)
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Likelihood-based Intervals ) e, @0

a\
>
.
VN
)
N—"
~
a0
o
pr—{
N S
| ~<
Q0
2
R

(l(p)x Sorg—)f

And typically we only show the likelihood
curve and don’t even bother with the

implicit (asymptotic) distribution
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Likelihood-based Intervals ) e, @0

[ | | | | ]
6 - @ 1
5 - -

B =2 1In L(ne=31 ) ]
0 E B
R . s
2 b — B
e —
0 - A EE N R NN N N N N N R N -

0 3 6 9 12 15

f
Figure from R. Cousins, And typically we only show the likelihood

Am. J. Phys. 63 398 (1995) curve and don't even bother with the
implicit (asymptotic) distribution
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Likelihood-based Intervals ) «Tﬁ

7 : | | | | : 6 July 2011 — mLir.nit =:161 GeV
6 (d) 5__ . Aagy = |
— = — 0.02750+0.00033
5 _ 1 31+ 0.02749=0.00010
B i 4 - “3-+ incl. low Q° data —
B =2 1In L(ne=31 ) ] _ o
0 E 1o,
- 1 3 ]
3 e ]
i ] 2 - n
= _]
B ] 1- 3 —
[y - 0 | Excluded \ s A
0 I SR AT A AT NN NN N N N R R 30 100 300
0 3 6 " 9 12 15 m, [GeV]
Figure from R. Cousins, And typically we only show the likelihood

Am. J. Phys. 63 398 (1995) curve and don't even bother with the
implicit (asymptotic) distribution
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Feldman-Cousins with and without constraint) gg:,;«;;«;e;;;;f?

Wilks’s theorem gives a short-cut for the Monte Carlo procedure used to find
threshold on test statistic = MINOS is asymptotic approximation of Feldman-Cousins

- With a physical constraint (u>0) the confidence band changes
—oqn HeO) 5

t, = —21In )\(,u) t,=—2InA(p) = L(0,0(0))
K p
—21n W i>0.

Two-sided Two-sided
- unconstrained R constrained
3.p 1 =
s A ’ N—’
< | " <
B I ! =
S T
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Modified test statistic for 1-sided upper limits ) f::fg;‘;‘f;;:;;‘;cs((%
For 1-sided upper-limit the threshold on the test statistic is different
> and with physical boundaries, it is again more complicated

o He8w) 4
—2In A 0 <, o L(0,0(0))
qu:{ () < p qM—<_21nW 0<i<p
. f1,0)
0 >, 0 Q>
. One-sided
One-sided

. constrained
unconstrained | !

-2 In M(pn)
-2 In AM(p)
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Some non-trivial tests: boundaries ) (‘T”
Monte Carlo test of asymptotic formulae

Same message for test based on g "

q,and g, give similar tests to
the extent that asymptotic
formulae are valid.

. Cowan Using the Profile Likelihood in Searches for New Physics / Banff 2010 24
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Some non-trivial tests: boundaries ) «Tﬁ

Monte Carlo test of asymptotic formulae

fah) = o () s

Same message for test based on g, ) {M%ﬂexp L3 (va-)] o<azun
m exp [_1? (éu*(l?z;fgig)ﬂﬂb} g > u2/0-2 .

q,and g, give similar tests to
the extent that asymptotic =~ T T T

[ [ [ [ [
. — 1_i| T T | T T T é T T |= T |= I | |__ T T | T T T
formulae are valid. v B aras 0P 9,1=1 By y

H=2fb

We now can describe
effect of the boundary on

the distribution of the L dg
test statistic.

—3 1 | | 1 1 | 1 1 1 | 1 1 1 | 111
1 6‘33 ——14 2 ! {:l'_ ! & E L . =
O 2 4 6 8 % 10 12
1
. Cowan Using the Profile Likelihood in Searches for New Physics / Banff 2010 24
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2-sided boundaries on physical parameter . (‘f’

Consider a parameter of interest u € [0, 1]
» branching ratio, CKM matrix element, etc.
And a measurement x € (—00,00)
And a model relating the two G(z|w, o)
»whatdoyoudoif x < () or © > 1

-2 In A(p)

134

Stat Forum, Election Day, 2012
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2-sided boundaries on physical parameter ((T"
Asymptotic distribution for two-sided tests with lower and

upper boundaries on the parameter of interest
Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells

with
2
o g ()] ase
foltull) = (4)
£,—(62—25_5))? c
i%exp {7%0# ((}Ef)z 2)) } > 02
and
~ ’ 2 ~
o Lo [—% (o+e2) } <
frEulid) = Z 5)
(Fut(02 —2646'))2 . -
Aedrew [1UTEEEE] A a
where the dimensionless variables 6_ = (u — p—)/o, 0" = (W' — p—)/o , 64 = (p — p4)/o, and X' - 1 2 1 0 694 8
0", = (¢ — py)/o are used to simplify the expressions. a. r IV- u
= —— Toys
B —— Observed
i — 1(§ l0.91)
= Overflows in last bin
10 =
102
10°® =
B 7
7
7
4 | | | | | E% | l]l] | Hl
10°
0 2 10

-2InA
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Bayesian methods
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Coverage & Likelihood principle S S |
Methods based on the Neyman-Construction always cover.... by
construction.

- this approach violates the likelihood principle

Bayesian methods obey likelihood principle, but do not
necessarily cover

» that doesn’t mean Bayesians shouldn’t care about coverage

Coverage can be thought of as a calibration of our statistical
apparatus. [explain under-/over-coverage]

What shevll be Lthe Wiew Codoy;

Olvjec'éivg. | 5-=yesr‘sn ?H?f‘rffs is the

best Fiequeatist Loel 2revmd. -Jim Berger
Bayesian and Frequentist results answer different questions

- major differences between them may indicate severe coverage
problems and/or violations of the likelihood principle
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Monte Carlo, asymptotic, Bayesian ) “T”

Here we see comparisons of explicit ensembles generated with
Monte Carlo techniques, the asymptotic results, and Bayesian
results using MCMC and nested sampling with a uniform prior on y

l 1 1 4 | ] 1 1 1 ! I | 1 | L ]’ 1 1 1 I [ | | 1 '
61— ATLAS — Observed Asymptotic |
5 4 e Expected Asymptotic |
Ldt=1.04-491b oo ; .
. 7 TeV + 26 Asymptotic =
e I £ 16 Asymptotic ]
7 « Observed Ensemble .

« Observed Bayes

llllllllllllllilil

—

o

CL Upper Limit on (c/c,,) at 95% CL

l

1 A | | 1
qOO 200

L l l
300

500 600
my, [GeV]

| | l | |

400

| | 1

Kyle Cranmer (NYU) Applied Math Seminar, Courant, Feb. 22, 2013 138




CENTER FOR m

Bayesian credible intervals o Y

Roszkowski, Ruiz & Trotta (2007)

Bayesian “credible interval” V does mean
that there is a 95% that the probability
parameter is in interval.

m. (TeV)

The procedure is very intuitive:

tanp

Relative probability density
0 0;2 0.4 0.6 0.8 1

- B f(x|0)m(0)
PO eV)= /v?T(H\fL') )y defdef(x|9)7r(9)
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Markov Chain Monte Carlo ) comenren @Y

PARTICLE PHYSICS

Markov Chain Monte Carlo (MCMC) is a nice technique which will produce a
sampling of a parameter space which is proportional to a posterior

» it works well in high dimensional problems
» Metropolis-Hastings Algorithm: generates a sequence of points {&(t)}

- Given the likelihood function L(&) & prior P(&), the posterior is
proportional to L(&) - P(d)

- propose a point ' to be added to the chain according to a proposal
density Q(a’'|@) that depends only on current point &

. if posterior is higher at @'than at @, then add new point to chain
- else: add &’ to the chain with probability
L(a') - P(a’) Q(ald)
L(a)-P(a) Q(a’|d)
- (appending original point @ with complementary probability)
» RooStats works with any L(&), P()
» can use any RooFit PDF as proposal function Q(a'|&)

» Helper for forming custom multivariate Gaussian, Bank of Clues, etc.

p:

» New Sequential Proposal function similar to BAT
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The Jeffreys Prior

Physicist Sir Harold Jeffreys had the clever
idea that we can “objectively” create a flat
prior uniform in a metric determined by 1(6)

Adds “minimal information” in a precise
sense, and results in: 1)(5) o ](g’)_

It has the key feature that it is invariant under reparameterization of the

—

parameter vectorgin particular, for an alternate parameterization ) we

can derive ( 96, )
det
dy;

plP )—])IHI
- (e)du-(‘)g)
V ‘)Yl
(l)ek) ( [,ﬁ-nnL(t-)luLD (()o,) Unfortunately, the Jeffreys
— (l(t det , : det . . .
Vo ;. 00, ) prior in multiple

J 1 ( (')Ok(')lnL(’)lnL(')O,]) dimensions causes some
= det | E
circumstances gives

Zf’v‘f A 90 Op; problems, and in certain
/l(t( {()lnL()luL])_ e .
R dp: Op; |) V¥ undesirable answers.

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 141




Reference Priors ) ((Tﬁ

Reference priOrS are another Ideally, such a method should be very general,

oL C : applicable to all kinds of measurements regardless

type of ObJeCtlve priors, that of the number and type of parameters and data in-

try {o save Jeffreys’ basic volved. Tt should make use of all available informa-

: tion, and coherently so, in the sense that if there is
idea. .

more than one way to extract all relevant informa-

tion from data, the final result will not depend on the

Noninformative priors have been studied for a long chosen way. The desiderata of generality, exhaustive-

time and most of them have been found defective in ness and coherence are satisfied by Bayesian proce-

more than one way. Reference analysis arose from dures, but that of objectivity is more problematic

this study as the only general method that produces Jye to the Bayesian requirement of specifying prior

priors that have the required invariance properties, 1, .ohabjlities in terms of degrees of belief. Reference

analysis?, an objective Bayesian method developed

deal successfully with the marginalization paradoxes,

and have consistent sampling properties. )
PHRg PIOP over the past twenty-five years, solves this problem

by replacing the question “what is our prior degree
of belief?” by “what would our posterior degree of
belief be, if our prior knowledge had a minimal effect,
relative to the data, on the final inference?”

See Luc Demortier’s PhyStat 2005 proceedings
http://physics.rockefeller.edu/luc/proceedings/phystat2005_refana.ps
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Jeffreys’s Prior > e |
Jeffreys’s Prior is an “objective” prior based on formal rules
(it is related to the Fisher Information and the Cramer-Rao bound]

7(6) \/detI (67). (Z(0),; =—E [ae?gej lnf(X;9)| e] .

Eilam, Glen, Ofer, and | showed in arXiv:1007.1727 that the Asimov
data provides a fast, convenient way to calculate the Fisher Information

9%In L 9%In L ov; 0V ou; Ou;
-1 1 7 ) L
Vil = —E[ ] — _ E : E :

Use this as basis to calculate

£
5 F
Jeffreys’s prior for an arbitrary PDF! 5% . .
yss P y 3, E Validate on a Poisson
o
Q.

RooWorkspace w("w");
w.factory("Uniform::u(x[0,1])");
w.factory("mu[100,1,200]1");
w.factory("ExtendPdf::p(u,mu)");

Analytic
RooStats numerical

w.defineSet("poi","mu");
w.defineSet("obs","x"); 3
// w.defineSet("obs2","n"); A R TP P! P LPI WP

3 3 1 | l D 4 l 1 3 1 ] 4 | '
20 40 60 80 100 120 140 160 180 200
mu

RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 143




- - CENTER FOR m
The Bayesian Solution ) comereey e 3
Bayesian solution generically have a prior for the parameters of
Interest as well as nuisance parameters

» 2010 recommendations largely echoes the PDG's stance.

Recommendation: When performing a Bayesian analysis one should separate
the objective likelihood function from the prior distributions to the extent possible.

Recommendation: \When performing a Bayesian analysis one should investigate
the sensitivity of the result to the choice of priors.

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading
results.

Recommendation: When performing a Bayesian analysis for a single parameter
of interest, one should attempt to include Jeffreys's prior in the sensitivity analysis.
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(The Exd

(Thank V!
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