
Perturbative QCD and Jets

Lecture 2

Gudrun Heinrich
 Max Planck Institute for Physics, Munich

2013 CERN-Fermilab Hadron Collider Physics School



Historic example from Tevatron Run I    

Excess in inclusive jet cross section at high Et   

PDFs  

New Physics ! (?)  



after update of PDFs including high-Et jet data:  

problem: constraining the gluon PDFs,
especially at larger x values

DIS and fixed target experiments mostly cover low x

Gluon enters only at NLO in DIS structure functions



LHC data very important  to cover 
larger range in (x,Q^2) plane

Tevatron data as well !  
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Figure 1. The kinematical coverage of the experimental data used in the NNPDF2.3 PDF deter-
mination, from Reference [111].

is independently parametrized, but not the strange and antistrange separately) or five

(strangeness not fitted, and assumed to be a fixed fraction of the sea). The methodology

for uncertainty representation and determination is Hessian, based on a parametrization

of the form of Equation 2.22 for all groups except NNPDF, which uses a Monte Carlo

representation based on a neural network parametrization (see Section 2.2). In order to

determine confidence levels, CT and MSTW use dynamical tolerance, denoted in the table

as “DT” (recall Section 2.2), JR use simple tolerance, denoted by “T”, HERAPDF uses

∆χ2 = 1 but supplemented by an estimate of model and parametrization uncertainties,

and ABM just use ∆χ2 = 1. In each case the total number of free parameters at NNLO

is as given in the table; the number of parameters at NLO is the same for all groups but

CT10, which at NLO has 26 parameters, and HERAPDF1.5, which at NLO has only 10

parameters. MSTW08 uses 28 free parameters for the determination of the best fit, 8 of

which are fixed when determining uncertainties. JR09 introduces the further “dynamical”

assumption that PDFs are valence-like at a low scale Q2
0 < 1 GeV2. All groups but ABM

and JR use variable-flavor number schemes, with heavy-quark masses included using one

of the matching methods discussed in Section 2.1. The treatment of αS will be discussed

in more detail below.
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at LHC: 
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Inclusive jet cross sections @ 7 TeV

‣ exploring the kinematic range from 100 GeV to 
2 TeV and up to |y| = 2.5
- full 2011 dataset

‣ experimental and theoretical uncertainties of 
roughly the same size 
- exp. unc. dominated by jet energy scale
- th. unc. dominated by scale choice and PDFs

‣ NLO pQCD predictions compatible with data 
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Theory intermezzo
(What do I mean by DIS structure functions)Deep inelastic scattering

Easier than processes with two incoming hadrons is the scattering of a 

lepton on a (anti)-proton

Kinematics: 

Q2 = −q2 s = (k + p)2 xBj =
Q2

2p · q
y =

p · q

k · p

Partonic cross section: (just QED Feynman rules)

Partonic variables: 

p̂ = xp ŝ = (k + p̂)2 = 2k · p̂ ŷ =
p̂ · q

k · p̂
= y (p̂ + q)2 = 2p̂ · q −Q2 = 0

dσ̂

dŷ
= q2

l
ŝ

Q4
2 π αem

�
1 + (1− ŷ)2

�
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DIS: Deeply inelastic scattering    

kinematics:

f(z) smooth test function

Pqq(z)+ =

[

1 + z2

(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
αs

2π

∫

dk2
⊥

(k2
⊥)

1+ε
dz Pqq(z)+ σ̂0(zp)

absorb initial state collinear singularities by defining a renormalized par-
ton distribution function

fq/H(x, µ) =

∫ 1

0

dyfq/H(y)

∫ 1

0

dz fq/q′(z, µ) δ(x− yz)

fq/H(x, µ) =

∫ 1

x

dz

z

{

δ(1− z) +
αs

2π

∫ µ2

0

dk2
⊥

(k2
⊥)

1+ε
[Pqq(z)]+

}

fq/H(x/z)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fi/H(x, µ)

∂µ2
=

αs

2π

∑

j

∫ 1

x

dz

z
[Pij(z)]+ fj/H(x/z, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fi/H(x, µ)

∂µ2
=

∑

j

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fj/H(x/z, µ)

Pij(αs(µ), z) =
∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)

Pij(αs(µ), z) = P (0)
ij (z) +

αs(µ)

2π
P (1)
ij (z) +

(

αs(µ)

2π

)2

P (2)
ij (z) + . . .

Q2 = −q2 , x =
Q2

2p · q
, y =

p · q
p · k

=
Q2

xs



DIS (e-p scattering) convenient to extract quark PDFs:  

dσ

dxdQ2
=

4πα2
em

xQ4

[

xy2 F1(x,Q
2) + (1− y)F2(x,Q

2)
]

F2(x,Q
2) ∼

∑

i

e2i x fi/P (x,Q
2)

fq/H(x, µ
2) = f 0

q/H(x) +
αs

2π

∫ 1

x

dz

z

{

−
1

ε
Pqq(x/z) + C(x/z)

}

f 0
q/H(z)

dσ

dxdQ2
=

4πα2
em

xQ4

[

xy2 F1(x,Q
2) + (1− y)F2(x,Q

2)
]

F2(x,Q
2) ∼

∑

i

q2i x fi/P (x,Q
2)

fq/H(x, µ
2) = f 0

q/H(x) +
αs

2π

∫ 1

x

dz

z

{

−
1

ε
Pqq(x/z) + C(x/z)

}

f 0
q/H(z)

Data: F2
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Gluons crucial in driving the evolution
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ZEUS NLO QCD fit

tot. error

H1 94-00

H1 96/97

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5
x=0.000102

x=0.000161
x=0.000253

x=0.0004
x=0.0005

x=0.000632
x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

FNC
2 = x

∑

f

e2(f)
[
q(f) + q̄(f)

]

+ O(αS)

An excellent fit already at the NLO

(LO)

sum over quark flavours

important test of factorisation and 
“improved parton model” 

(Q^2 dependence) 



PDFs and DGLAP evolution  

At high scattering energies, the partons inside a hadron H 
can be considered as point-like particles, each carrying a 
fraction x of the hadronʼs longitudinal momentum P.

hadronic cross section:

5 DGLAP evolution

The phase space integral needed for the virtual diagrams, where only one
physical gluon line is cut, is given by

PSvirt = 2π z

∫
dmk

(2π)m
δ(x− z) δ((p− k)2) where (4)

(p− k)2 = −
k2
⊥

x
−

(1− x)

x
k2 =⇒ δ((p− k)2) = x δ(k2

⊥ + (1− x)k2)

Since the integrand has no angular dependence, the angular integral is trivial
here, so
∫

dmk = Km−2

∫

dk2 dx

2x
d|#k⊥| |#k⊥|m−3 = Km−2

∫

dk2 dx

2x

1

2
dk2

⊥

(

k2
⊥

)m−4

2

Km−2 = 2 π
m−2

2 /Γ(m−2
2 ) is the surface of a (m − 2) dimensional hyper-

sphere. Thus in m = 4 − 2ε dimensions, the phase space for the virtual
diagrams is given by

PSvirt = 2π z

∫
dmk

(2π)m
δ(x− z) δ((p− k)2)

=
2π

(2π)4−2ε

1

4
K2−2ε

∫

dk2 dk2
⊥

(

k2
⊥

)−ε
x δ(k2

⊥ + (1− x)k2)

=
1

16π2

(4π)ε

Γ(1− ε)

∫ Q2

0

d|k2| |k2|−ε x (1− x)−ε

The upper limit of the d|k2| integral (k2 < 0) is denoted by a large momentum
scale Q2 whose actual value is irrelevant since only the pole part of the
k2−integration is needed.

5.1 Gluon emission

At high scattering energies, the partons inside a hadron H can be considered
as pointlike particles, each carrying a fraction x of the hadron’s longitudinal
momentum P .

σH(P ) =
∑

i

∫ 1

0

dx fi/H(x) σ̂i(xP )

denotes the probability that parton i with 
momentum xP can be found in hadron H. 
It is a probability density in x-space.  

fi/H(x)The function

Consider the scattering of a hadron H with a high momentum probe 
(e.g. energetic electron ⇒  DIS).

The partonic cross section

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
extend the “naive parton model”.

σ̂(p) =
1

Φ(p)

∣
∣M̄0(p)

∣
∣
2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−εdk2

⊥

In the collinear limit k2
⊥ → 0:

dΦ
∣
∣M̄ real

1 (p, k)
∣
∣
2 ∼

αs

2π

dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε Pqq(z, ε)

1

Φ(zp)

∣
∣M̄0(zp)

∣
∣
2

︸ ︷︷ ︸

σ̂(zp)

Pqq(z, ε) = CF
1 + z2

1− z
− ε (1− z)

soft: z → 1 collinear: k2
⊥ → 0

Are these singularities cancelled by the virtual corrections?

dΦ
∣
∣M̄virt

1

∣
∣
2 ∼

αs

2π
CF

∣
∣M̄0(zp)

∣
∣
2 dk2

⊥

(k2
⊥)

1+ε
dz (1− z)−ε {

3

2
−

2

1− z
}

Soft singularities (z → 1) cancel between real and virtual
Collinear singularities do not cancel, but factorize from hard scattering

Plus distribution:

∫ 1

0

dz

[
p(z)

1− z

]

+

f(z) =

∫ 1

0

dz p(z)

(
f(z)− f(1)

1− z

)

will receive radiative corrections from initial state gluon emission 
⇒ need to extend the “naive parton model”.

The parton model
DGLAP equation

Inclusive hadron cross section in the parton model

Consider the hard scattering of a hadron H off a high momentum probe

We wish to study the fully inclusive cross section σH(P ), i.e. we include in the
measurement all possible final states

In the parton model, we compute first the inclusive partonic cross section σ̂i(xP )

Problem: the partonic cross section σ̂i(xP ) is not stable under radiative corrections

p = xP

p

P

Andrea Banfi Lecture 3



PDFs and DGLAP evolution  

Now consider the emission of one gluon in the initial state.

Phase space factor for one gluon emission:

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
extend the “naive parton model”.

σ̂(p) =
1

Φ(p)

∣

∣M̄0(p)
∣

∣

2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−εdk2

⊥

In the collinear limit k2
⊥ → 0:

dΦ
∣

∣M̄ real
1 (p, k)

∣

∣

2 ∼
αs

2π

dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε Pqq(z, ε)

∣

∣M̄0(zp)
∣

∣

2

Pqq(z, ε) = CF
1 + z2

1− z
− ε (1− z)

soft: z → 1 collinear: k2
⊥ → 0

Are these singularities cancelled by the virtual corrections?

dΦ
∣

∣M̄virt
1

∣

∣

2 ∼
αs

2π
CF

∣

∣M̄0(zp)
∣

∣

2 dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε

{

3

2
−

2

1− z

}

Soft singularities (z → 1) cancel between real and virtual
Collinear singularities do not cancel, but factorize from hard scattering

Plus distribution:

∫ 1

0

dz

[

p(z)

1− z

]

+

f(z) =

∫ 1

0

dz p(z)

(

f(z)− f(1)

1− z

)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|2
soft→ |Mqq̄|2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2Eω (1− v cos θ)

pµ nµ k⊥p = k⊥n = 0
z = E1

E1+Eg

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

In the collinear limit 

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
extend the “naive parton model”.

σ̂(p) =
1

Φ(p)

∣

∣M̄0(p)
∣

∣

2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−εdk2

⊥

In the collinear limit k2
⊥ → 0

dΦ
∣

∣M̄ real
1 (p, k)

∣

∣

2 ∼
αs

2π

dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε Pqq(z, ε)

∣

∣M̄0(zp)
∣

∣

2

Pqq(z, ε) = CF
1 + z2

1− z
− ε (1− z)

soft: z → 1 collinear: k2
⊥ → 0

Are these singularities cancelled by the virtual corrections?

dΦ
∣

∣M̄virt
1

∣

∣

2 ∼
αs

2π
CF

∣

∣M̄0(zp)
∣

∣

2 dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε

{

3

2
−

2

1− z

}

Soft singularities (z → 1) cancel between real and virtual
Collinear singularities do not cancel, but factorize from hard scattering

Plus distribution:

∫ 1

0

dz

[

p(z)

1− z

]

+

f(z) =

∫ 1

0

dz p(z)

(

f(z)− f(1)

1− z

)

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
extend the “naive parton model”.

σ̂(p) =
1

Φ(p)

∣

∣M̄0(p)
∣

∣

2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−εdk2

⊥

In the collinear limit k2
⊥ → 0

dΦ
∣

∣M̄ real
1 (p, k)

∣

∣

2 ∼
αs

2π

dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε Pqq(z, ε)

∣

∣M̄0(zp)
∣

∣

2

Pqq(z, ε) = CF
1 + z2

1− z
− ε (1− z)

soft: z → 1 collinear: k2
⊥ → 0

Are these singularities cancelled by the virtual corrections?

dΦ
∣

∣M̄virt
1

∣

∣

2 ∼
αs

2π
CF

∣

∣M̄0(zp)
∣

∣

2 dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε

{

3

2
−

2

1− z

}

Soft singularities (z → 1) cancel between real and virtual
Collinear singularities do not cancel, but factorize from hard scattering

Plus distribution:

∫ 1

0

dz

[

p(z)

1− z

]

+

f(z) =

∫ 1

0

dz p(z)

(

f(z)− f(1)

1− z

)

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
extend the “naive parton model”.

σ̂(p) =
1

Φ(p)

∣

∣M̄0(p)
∣

∣

2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−εdk2

⊥

In the collinear limit k2
⊥ → 0

dΦ
∣

∣M̄ real
1 (p, k)

∣

∣

2 ∼
αs

2π

dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε Pqq(z, ε)

∣

∣M̄0(zp)
∣

∣

2

Pqq(z, ε) = CF
1 + z2

1− z
− ε (1− z)

soft: z → 1 collinear: k2
⊥ → 0

Are these singularities cancelled by the virtual corrections?

dΦ
∣

∣M̄virt
1

∣

∣

2 ∼
αs

2π
CF

∣

∣M̄0(zp)
∣

∣

2 dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε

{

3

2
−

2

1− z

}

Soft singularities (z → 1) cancel between real and virtual
Collinear singularities do not cancel, but factorize from hard scattering

Plus distribution:

∫ 1

0

dz

[

p(z)

1− z

]

+

f(z) =

∫ 1

0

dz p(z)

(

f(z)− f(1)

1− z

)

(note soft limit is z 1)

Altarelli-Parisi splitting function

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
extend the “naive parton model”.

σ̂(p) =
1

Φ(p)

∣

∣M̄0(p)
∣

∣

2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−εdk2

⊥(k
2
⊥)

−ε

In the collinear limit k2
⊥ → 0

dΦ
∣

∣M̄ real
1 (p, k)

∣

∣

2 ∼
αs

2π

dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε Pqq(z, ε)

∣

∣M̄0(zp)
∣

∣

2

Pqq(z, ε) = CF
1 + z2

1− z
− ε (1− z)

soft: z → 1 collinear: k2
⊥ → 0

Are these singularities cancelled by the virtual corrections?

dΦ
∣

∣M̄virt
1

∣

∣

2 ∼
αs

2π
CF

∣

∣M̄0(zp)
∣

∣

2 dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε

{

3

2
−

2

1− z

}

Soft singularities (z → 1) cancel between real and virtual
Collinear singularities do not cancel, but factorize from hard scattering

Plus distribution:

∫ 1

0

dz

[

p(z)

1− z

]

+

f(z) =

∫ 1

0

dz p(z)

(

f(z)− f(1)

1− z

)



PDFs and DGLAP evolution  
Are these singularities cancelled by the virtual corrections?  

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
extend the “naive parton model”.

σ̂(p) =
1

Φ(p)

∣

∣M̄0(p)
∣

∣

2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−εdk2

⊥

In the collinear limit k2
⊥ → 0

dΦ
∣

∣M̄ real
1 (p, k)

∣

∣

2 ∼
αs

2π

dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε Pqq(z, ε)

∣

∣M̄0(zp)
∣

∣

2

Pqq(z, ε) = CF
1 + z2

1− z
− ε (1− z)

soft: z → 1 collinear: k2
⊥ → 0

Are these singularities cancelled by the virtual corrections?

dΦ
∣

∣M̄virt
1

∣

∣

2 ∼
αs

2π
CF

∣

∣M̄0(zp)
∣

∣

2 dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε

{

3

2
−

2

1− z

}

Soft singularities (z → 1) cancel between real and virtual
Collinear singularities do not cancel, but factorize from hard scattering

Plus distribution:

∫ 1

0

dz

[

p(z)

1− z

]

+

f(z) =

∫ 1

0

dz p(z)

(

f(z)− f(1)

1− z

)

The parton model
DGLAP equation

Virtual corrections
Also virtual corrections have a collinear and a soft singularity

|Mvirt
1 |2 = |M0(p)|2

Z
dk2

T

k2
T

αs

2π
CF

»
3

2
−

Z 1

0
dz

2

1 − z

–

p
p

Adding virtual corrections to the real emission contribution gives

σ̂(p) = σ̂0(p) +

Z
dk2

T

k2
T

Z 1

0
dz

αs

2π
P (z) [σ0(zp)

| {z }

real

− σ0(p)
| {z }

virt

]

Soft singularities (z → 1) cancel in the inclusive sum of real and virtual
Collinear singularities do not cancel, but factorise from hard scattering
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The parton model
DGLAP equation

Virtual corrections
Also virtual corrections have a collinear and a soft singularity

|Mvirt
1 |2 = |M0(p)|2

Z
dk2

T

k2
T

αs

2π
CF

»
3

2
−

Z 1

0
dz

2

1 − z

–

p
p

Adding virtual corrections to the real emission contribution gives

σ̂(p) = σ̂0(p) +

Z
dk2

T

k2
T

Z 1

0
dz

αs

2π
P (z) [σ0(zp)

| {z }

real

− σ0(p)
| {z }

virt

]

Soft singularities (z → 1) cancel in the inclusive sum of real and virtual
Collinear singularities do not cancel, but factorise from hard scattering
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 No !  Only the soft singularities cancel.  

 But   the collinear singularities factorise from the hard scattering cross section

 Defining the “plus distribution” as 

The function fi/H(x) denotes the probability that parton i with momen-
tum xP can be found in hadron H (parton density), mostly called parton
distribution function (PDF).

Consider the scattering of a hadron H with a high momentum probe (e.g.
energetic electron ⇒ deeply inelastic scattering DIS).

Partonic cross section
σ̂i(xP )

will receive radiative corrections from initial state gluon emission ⇒ need to
extend the “naive parton model”.

σ̂(p) =
1

Φ(p)

∣

∣M̄0(p)
∣

∣

2

Now consider the emission of one gluon:
Phase space factor for one gluon emission:

dΦ ∼
dD−1k

2k0
∼ dz (1− z)−1−εdk2

⊥

In the collinear limit k2
⊥ → 0

dΦ
∣

∣M̄ real
1 (p, k)

∣

∣

2 ∼
αs

2π

dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε Pqq(z, ε)

∣

∣M̄0(zp)
∣

∣

2

Pqq(z, ε) = CF
1 + z2

1− z
− ε (1− z)

soft: z → 1 collinear: k2
⊥ → 0

Are these singularities cancelled by the virtual corrections?

dΦ
∣

∣M̄virt
1

∣

∣

2 ∼
αs

2π
CF

∣

∣M̄0(zp)
∣

∣

2 dk2
⊥

(k2
⊥)

1+ε
dz (1− z)−ε

{

3

2
−

2

1− z

}

Soft singularities (z → 1) cancel between real and virtual
Collinear singularities do not cancel, but factorize from hard scattering

Plus distribution:

∫ 1

0

dz

[

p(z)

1− z

]

+

f(z) =

∫ 1

0

dz p(z)

(

f(z)− f(1)

1− z

)

 where  f(z) is a smooth test function, we obtain

f(z) smooth test function

Pqq(z)+ =

[

1 + z2

(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
αs

2π

∫

dk2
⊥

(k2
⊥)

1+ε
dz Pqq(z)+ σ̂0(zp)

absorb initial state collinear singularities by defining a renormalized par-
ton distribution function

fq/H(x, µ) =

∫ 1

0

dyfq/H(y)

∫ 1

0

dz fq/q′(z, µ) δ(x− yz)

fq/H(x, µ) =

∫ 1

x

dz

z

{

δ(1− z) +
αs

2π

∫ µ2

µ2
0

dk2
⊥

k2
⊥

[Pqq(z)]+

}

fq/H(
x

z
)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fq/H(x, µ)

∂µ2
=

αs

2π

∫ 1

x

dz

z
[Pqq(z)]+ fq/H(

x

z
, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fq/H(x, µ)

∂µ2
=

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fq/H(

x

z
, µ)

Pij(αs(µ), z) =
∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)

f(z) smooth test function

Pqq(z)+ =

[

1 + z2

(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
αs

2π

∫

dk2
⊥

(k2
⊥)

1+ε
dz Pqq(z)+ σ̂0(zp)

absorb initial state collinear singularities by defining a renormalized par-
ton distribution function

fq/H(x, µ) =

∫ 1

0

dyfq/H(y)

∫ 1

0

dz fq/q′(z, µ) δ(x− yz)

fq/H(x, µ) =

∫ 1

x

dz

z

{

δ(1− z) +
αs

2π

∫ µ2

µ2
0

dk2
⊥

k2
⊥

[Pqq(z)]+

}

fq/H(
x

z
)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fq/H(x, µ)

∂µ2
=

αs

2π

∫ 1

x

dz

z
[Pqq(z)]+ fq/H(

x

z
, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fq/H(x, µ)

∂µ2
=

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fq/H(

x

z
, µ)

Pij(αs(µ), z) =
∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)



PDFs and DGLAP evolution  The parton model
DGLAP equation

Non-cancellation of collinear singularities

Consider a fully inclusive partonic cross section

quark in the final state

1

z
1!z

1

1

Z
dk2

T

k2
T

dz
αs

2π
P (z)[σ̂0(p)

| {z }

real

− σ̂0(p)
| {z }

virtual

]

Cancellation of both soft and collinear singularities

quark in the initial state

1

1
1

z
1!z

Z
dk2

T

k2
T

dz
αs

2π
P (z)[σ̂0(zp)

| {z }

real

− σ̂0(p)
| {z }

virtual

]

Cancellation of soft singularities only
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The parton model
DGLAP equation

Non-cancellation of collinear singularities

Consider a fully inclusive partonic cross section

quark in the final state

1

z
1!z

1

1

Z
dk2

T

k2
T

dz
αs

2π
P (z)[σ̂0(p)

| {z }

real

− σ̂0(p)
| {z }

virtual

]

Cancellation of both soft and collinear singularities

quark in the initial state

1

1
1

z
1!z

Z
dk2

T

k2
T

dz
αs

2π
P (z)[σ̂0(zp)

| {z }

real

− σ̂0(p)
| {z }

virtual

]

Cancellation of soft singularities only
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Recap:

gluon emission in final state:

both soft and collinear singularities 
cancel between real and virtual 

corrections

The parton model
DGLAP equation

Non-cancellation of collinear singularities

Consider a fully inclusive partonic cross section

quark in the final state

1

z
1!z

1

1

Z
dk2

T

k2
T

dz
αs

2π
P (z)[σ̂0(p)

| {z }
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− σ̂0(p)
| {z }
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]

Cancellation of both soft and collinear singularities

quark in the initial state

1

1
1

z
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Z
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T
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]

Cancellation of soft singularities only
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The parton model
DGLAP equation

Non-cancellation of collinear singularities

Consider a fully inclusive partonic cross section

quark in the final state

1

z
1!z

1

1

Z
dk2

T

k2
T

dz
αs

2π
P (z)[σ̂0(p)

| {z }

real

− σ̂0(p)
| {z }

virtual

]

Cancellation of both soft and collinear singularities

quark in the initial state

1

1
1

z
1!z

Z
dk2

T

k2
T

dz
αs

2π
P (z)[σ̂0(zp)

| {z }

real

− σ̂0(p)
| {z }

virtual

]

Cancellation of soft singularities only
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gluon emission in initial state:

only soft singularities 
cancel between real and 

virtual corrections



PDFs and DGLAP evolution  
Absorb initial state singularities by defining a 

“renormalised” parton distribution function (PDF)

PDFs have to be determined from fits to data  
but evolution with  µ2 can be predicted by perturbative QCD. 

DGLAP equation  

Can be extended to all orders  

(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi)

f(z) smooth test function

Pqq(z)+ =

[

1 + z2

(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
αs

2π

∫

dk2
⊥

(k2
⊥)

1+ε
dz Pqq(z)+ σ̂0(zp)

absorb initial state collinear singularities by defining a renormalized par-
ton distribution function

fq/H(x, µ) =

∫ 1

0

dyfq/H(y)

∫ 1

0

dz fq/q′(z, µ) δ(x− yz)

fq/H(x, µ) =

∫ 1

x

dz

z

{

δ(1− z) +
αs

2π

∫ µ2

µ2
0

dk2
⊥

k2
⊥

[Pqq(z)]+

}

fq/H(
x

z
)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fi/H(x, µ)

∂µ2
=

αs

2π

∑

j

∫ 1

x

dz

z
[Pij(z)]+ fj/H(

x

z
, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fq/H(x, µ)

∂µ2
=

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fq/H(

x

z
, µ)

Pij(αs(µ), z) =
∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)

Pij(αs(µ), z) = P (0)
ij (z) +

αs(µ)

2π
P (1)
ij (z) +

(

αs(µ)

2π

)2

P (2)
ij (z) + . . .

f(z) smooth test function

Pqq(z)+ =

[

1 + z2

(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
αs

2π

∫

dk2
⊥

(k2
⊥)

1+ε
dz Pqq(z)+ σ̂0(zp)

absorb initial state collinear singularities by defining a renormalized par-
ton distribution function

fq/H(x, µ) =

∫ 1

0

dyfq/H(y)

∫ 1

0

dz fq/q′(z, µ) δ(x− yz)

fq/H(x, µ) =

∫ 1

x

dz

z

{

δ(1− z) +
αs

2π

∫ µ2

µ2
0

dk2
⊥

k2
⊥

[Pqq(z)]+

}

fq/H(
x

z
)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fi/H(x, µ)

∂µ2
=

αs

2π

∑

j

∫ 1

x

dz

z
[Pij(z)]+ fj/H(

x

z
, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fi/H(x, µ)

∂µ2
=

∑

j

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fj/H(

x

z
, µ)

Pij(αs(µ), z) =
∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)

Pij(αs(µ), z) = P (0)
ij (z) +

αs(µ)

2π
P (1)
ij (z) +

(

αs(µ)

2π

)2

P (2)
ij (z) + . . .

f(z) smooth test function

Pqq(z)+ =

[

1 + z2

(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
αs

2π

∫

dk2
⊥

(k2
⊥)

1+ε
dz Pqq(z)+ σ̂0(zp)

absorb initial state collinear singularities by defining a renormalized par-
ton distribution function

fq/H(x, µ) =

∫ 1

0

dyfq/H(y)

∫ 1

0

dz fq/q′(z, µ) δ(x− yz)

fq/H(x, µ) =

∫ 1

x

dz

z

{

δ(1− z) +
αs

2π

∫ µ2

µ2
0

dk2
⊥

k2
⊥

[Pqq(z)]+

}

fq/H(
x

z
)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fi/H(x, µ)

∂µ2
=

αs

2π

∑

j

∫ 1

x

dz

z
[Pij(z)]+ fj/H(

x

z
, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fi/H(x, µ)

∂µ2
=

∑

j

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fj/H(

x

z
, µ)

Pij(αs(µ), z) =
∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)

Pij(αs(µ), z) = P (0)
ij (z) +

αs(µ)

2π
P (1)
ij (z) +

(

αs(µ)

2π

)2

P (2)
ij (z) + . . .

LO (1974) NLO (1980) NNLO (2004)

f(z) smooth test function

Pqq(z)+ =

[

1 + z2

(1− z)

]

+

+
3

2
δ(1− z)

σ̂1(p) =
αs

2π

∫

dk2
⊥

(k2
⊥)

1+ε
dz Pqq(z)+ σ̂0(zp)

absorb initial state collinear singularities by defining a renormalized par-
ton distribution function

fq/H(x, µ) =

∫ 1

0

dyfq/H(y)

∫ 1

0

dz fq/q′(z, µ) δ(x− yz)

fq/H(x, µ) =

∫ 1

x

dz

z

{

δ(1− z) +
αs

2π

∫ µ2

0

dk2
⊥

(k2
⊥)

1+ε
[Pqq(z)]+

}

fq/H(x/z)

determine from data, mostly DIS
evolution with µ2 can be predicted by perturbative QCD:

µ2 ∂fi/H(x, µ)

∂µ2
=

αs

2π

∑

j

∫ 1

x

dz

z
[Pij(z)]+ fj/H(x/z, µ)

DGLAP equation, the kernel is the splitting function [Pqq(z)]+.
Can be extended to all orders and different parton identities (quark,

gluon)

µ2 ∂fi/H(x, µ)

∂µ2
=

∑

j

∫ 1

x

dz

z
[Pij(αs(µ), z)]+ fj/H(x/z, µ)

Pij(αs(µ), z) =
∞
∑

n=1

(

αs(µ)

2π

)n

P (n)
ij (z)

Pij(αs(µ), z) = P (0)
ij (z) +

αs(µ)

2π
P (1)
ij (z) +

(

αs(µ)

2π

)2

P (2)
ij (z) + . . .

Q2 = −q2 , x =
Q2

2p · q
, y =

p · q
p · k

=
Q2

xs



mass, s is the center-of-mass energy of the lepton–proton collision. Similar expressions

hold for charged-current scattering.

The factorized expression for the structure functions is

Fi(x,Q
2) = x

∑

a

∫ 1

x

dz

z
Ci,a

(x

z
,αS(Q

2)
)

fa(z,Q
2). (2.13)

Here, in the argument of the structure function x = Q2

2p·q is the standard Bjorken variable,

the hard coefficient function Ci,a is the structure function computed with an incoming

parton, and fa(z,Q2) is the distribution of the parton a in the only incoming hadron. Also

in this case at lowest O(α0
S), the coefficient function Ci,a is either zero (for incoming gluons)

or a constant (an electroweak charge) times a Dirac delta.

2.1.3 Perturbative Computations

The factorized expressions in Equations 2.1 and 2.13 express the hadronic cross section in

terms of PDFs at the same scale, M2
X orQ2, at which the hadronic cross section is evaluated.

However, PDFs at different scales are related by perturbative evolution equations, namely

the integro-differential equations

∂

∂ lnQ2

(

Σ(x,Q2)

g(x,Q2)

)

=

∫ 1

x

dy

y





PS
qq

(

x
y ,αS(Q2)

)

2nfPS
qg

(

x
y ,αS(Q2)

)

PS
gq

(

x
y ,αS(Q2)

)

PS
gg

(

x
y ,αS(Q2)

)





(

Σ(y,Q2)

g(y,Q2)

)

,

∂

∂ lnQ2
qNS
ij

(

x,Q2
)

=

∫ 1

x

dy

y
PNS
ij

(

x

y
,αS(Q

2)

)

qNS
ij (y,Q2), (2.14)

where g is the gluon distribution, Σ denotes the singlet quark distribution defined as

Σ(x,Q2) ≡
nf
∑

i=1

(

qi(x,Q
2) + q̄i(x,Q

2)
)

, (2.15)

and the nonsinglet quark distributions are defined as any linearly independent set of 2nf−1

differences of quark and antiquark distributions, qNS
ij (x,Q2) = qi(x,Q2) − qj(x,Q2). The

splitting functions Pab are perturbative series in αS , that start at order αS at LO.

There are some constraints on perturbative evolution due to conservation laws, which

hold at all scales: specifically the conservation of baryon number

∫ 1

0

dx
(

qi(x,Q
2)− q̄i(x,Q

2)
)

= ni (nu = 2, nd = 1, ns,c,b,t = 0), (2.16)

and the conservation of total energy-momentum

∫ 1

0

dxx

[ nf
∑

i=1

(

qi(x,Q
2) + q̄i(x,Q

2)
)

+ g(x,Q2)

]

= 1. (2.17)

Combining the factorized expressions in Equations 2.1 and 2.13 with the solution to the

evolution equations, physical observables can be written as the convolution of a prefactor,
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(flavour) singlet evolution equations:

mass, s is the center-of-mass energy of the lepton–proton collision. Similar expressions

hold for charged-current scattering.
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Process Subprocess Partons x range

!± {p, n} → !±X γ∗q → q q, q̄, g x ! 0.01

!± n/p → !±X γ∗ d/u → d/u d/u x ! 0.01

pp → µ+µ−X uū, dd̄ → γ∗ q̄ 0.015 " x " 0.35

pn/pp → µ+µ−X (ud̄)/(uū) → γ∗ d̄/ū 0.015 " x " 0.35

ν(ν̄)N → µ−(µ+)X W ∗q → q′ q, q̄ 0.01 " x " 0.5

νN → µ−µ+X W ∗s → c s 0.01 " x " 0.2

ν̄N → µ+µ−X W ∗s̄ → c̄ s̄ 0.01 " x " 0.2

e± p → e± X γ∗q → q g, q, q̄ 0.0001 " x " 0.1

e+ p → ν̄X W+ {d, s} → {u, c} d, s x ! 0.01

e±p → e± cc̄ X γ∗c → c, γ∗g → cc̄ c, g 0.0001 " x " 0.01

e±p → jet +X γ∗g → qq̄ g 0.01 " x " 0.1

pp̄ → jet +X gg, qg, qq → 2j g, q 0.01 " x " 0.5

pp̄ → (W± → !±ν)X ud → W, ūd̄ → W u, d, ū, d̄ x ! 0.05

pp̄ → (Z → !+!−)X uu, dd → Z d x ! 0.05

Table 1. The main processes included in the MSTW 2008 global PDF analysis ordered in three
groups: fixed-target experiments, HERA and the Tevatron. For each process we give an indication
of their dominant partonic subprocesses, the primary partons which are probed and the approximate
range of x constrained by the data.

• an accurate determination of the behavior of the gluon and quark at small x (where it

is dominated by the singlet in this region) and by individual light flavors at medium

x (where NC and CC data play a rôle in separating individual flavors) is found from

the very precise HERA NC and CC data;

• information on the flavor separation at small x comes from Tevatron Drell–Yan data

(in particular the W asymmetry, as discussed above);

• the flavor separation at medium x is mostly controlled by the Drell–Yan data for

fixed proton and nucleus targets;

• the total valence component is constrained by the neutrino inclusive DIS data;

• strangeness is controlled by neutrino dimuon data, as well as by the interplay of the

W and Z production data with lower-scale DIS and Drell–Yan data;

• the large x gluon, only weakly determined by DIS scaling violations, is further con-

strained by Tevatron jet data.

3 STATUS OF PDF SETS

Various fitting groups currently produce general-purpose sets of PDFs of the nucleon, with

most of the groups having a long history which goes back at least a couple of decades, as

summarized in the introduction. Six of these groups have been providing regular updates
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example: data set used for MSTW08

Q^2 evolution can be predicted using the DGLAP equations, 
x-dependence needs to be extracted from data 

PDFs and DGLAP evolution  

typical x values for Higgs production: x ∼ MH/
√
s ∼ 0.016 (at 8 TeV) 

Tevatron

HERA

fixed target

today: LHAPDF interface provides PDF sets in standardized form



Parton distribution functions (PDFs)  

Standard Model Theory for Collider Physics                Daniel de Florian

set H.O. data uncertainty HQ Comments

MSTW 
2008

NNLO DIS+DY+Jets 0.1171 Hessian (dynamical 
tolerance)

GM-VFN
(ACOT+TR’) old HERA DIS

CT10 NNLO DIS+DY+Jets 0.118 Hessian (dynamical 
tolerance)

GM-VFN
(SACOT-X)

New HERA 
DIS

NNPDF 
2.3

NNLO
DIS+DY+Jets

+LHC 0.1174 Monte Carlo
GM-VFN
(FONLL)

New HERA 
DIS

ABKM NNLO DIS+DY(f.t.) 0.1135 Hessian 
FFN

BMSN
New HERA 

DIS

(G)JR NNLO
DIS+DY(f.t.)+

some jet 0.1124 Hessian 
FFN
(VFN 

massless)

valence like 
input pdfs

HERA 
PDF

NNLO
only DIS 
HERA 0.1176 Hessian 

GM-VFN
(ACOT+TR’)

Latest HERA 
DIS

αs(MZ)@NNLO

PDFs

‣ Several groups provide pdf fits + uncertainties

‣ Differ by: data input, TH/bias, HQ treatment, coupling, etc
up to 5% ! >15% in Higgs cross section

4compiled by 
D.de Florian, 

EPS ’13

Jet data not used because no full 
NNLO calculation available



MSTW08 CT10 NNPDF2.3 HERAPDF1.5 ABM11 JR09

HERA DIS ! ! ! ! ! !

Fixed-target DIS ! ! ! " ! !

Fixed-target DY ! ! ! " ! !

Tevatron W+Z+jets ! ! ! " " "

LHC W+Z+jets " " ! " " "

Table 2. Data included in various NNLO PDF sets.

MSTW08 CT10 NNPDF2.3 HERAPDF1.5 ABM11 JR09

No. of PDFs 7 6 7 5 6 5

Statistics Hess.+DT Hess.+DT MC Hess.+Model+Parm. Hess. Hess.+T

PDF parms. 20+8 25 259 14 24 12

Heavy quarks VFN TR VFN ACOT VFN FONLL VFN TR FFN FFN

Table 3. Main features of various NNLO PDF sets (see text for details).

of their PDFs, and here we will discuss their most recent NNLO sets: MSTW08 [27],

CT10 [110], NNPDF2.3 [111], HERAPDF1.5 [40], ABM11 [35] and JR09 [33]. All of

these sets are publicly available though the standard lhapdf interface [54], though CT10

NNLO and HERAPDF1.5 have not been presented in a journal publication. We will not

discuss PDFs which are not available from lhapdf. Also, we will not discuss PDFs for

different kinds of targets or with more specialized or limited goals: PDFs for nuclei or other

hadrons (such as pions); PDFs partly or entirely determined based on models of hadrons

rather than (or in addition to) data; PDFs for medium-energy physics which incorporate

non-perturbative or higher-twist effects.

The main feature which distinguishes PDF sets is the data on which they are based.

These are summarized in Table 2. Only three groups (MSTW08 [27], CT10 [110], and

NNPDF2.3 [111]) make a fully global fit, defined here to be a fit including HERA and

fixed-target DIS data, fixed-target Drell-Yan production, and Tevatron data on W , Z and

jet production. The NLO version of the JR09 fit, GJR08 [32], does include some Tevatron

jet data. The NNPDF2.3 set is the only one to include LHC data; in order to assess the

impact of the additional LHC data, we will also compare to a variant of the NNPDF2.3

analysis without LHC data. Concerning HERA data, note that CT10 and NNPDF2.3

include the combined HERA I inclusive data [38], MSTW08 and JR09 instead include the

older separate data from H1 and ZEUS, ABM11 includes combined HERA I data but only

with the cut Q2 < 1000 GeV2, and HERAPDF1.5 additionally includes the preliminary

combined HERA II inclusive data [39]. The kinematical coverage of the NNPDF2.3 data

set is shown in Figure 1, with the x and Q2 values shown determined using leading-order

parton kinematics.

As discussed in Section 2, various alternative choices are possible in PDF determination

both in terms of theory and methodology. The main choices which underlie the PDF sets

we consider here are summarized in Table 3. All sets are now available at NLO and NNLO,

and all but HERAPDF also have a LO version, though, as mentioned in Section 2.1.3, LO

PDFs are often optimized for use with Monte Carlo event generators, and thus we will not

discuss them further. The number of independently parametrized PDFs varies between

seven (the three lighter quarks and antiquarks and the gluon), six (the total strangeness
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Figure 2. αS(M2
Z
) values for which NNLO PDFs are provided by various groups. The larger

symbols denote the values used in subsequent plots.

3.1 Values and Uncertainties of Strong Coupling

An important issue which distinguishes PDF sets is the treatment of the strong coupling

αS(M2
Z). Because the value of αS is strongly correlated with PDFs, one should always use

in cross-section calculations PDFs which have been determined with the same value of αS

that is adopted for the calculation itself.

The value of αS(M2
Z), and its uncertainty, can either be determined simultaneously

with the PDFs or imposed as an external constraint. Furthermore, if the value of αS is

determined simultaneously with the PDFs, the quoted value of the PDF uncertainties may

refer strictly to the PDF-only uncertainty as αS is kept fixed at its best-fit value, or it may

also include the uncertainty due to the variation of αS itself.

The values of αS(M2
Z) used by different NNLO PDF fitting groups are shown in Fig-

ure 2, where the larger symbols represent the default value used by each group, that is used

for the determination of PDF uncertainties. For MSTW08, ABM11 and JR09, this value

is determined from the fit with uncertainties shown by the horizontal error bars, while for

CT it is chosen as a fixed value close to the PDG world average [112], also shown in the

plot. NNPDF do not have a default value and provide a full Monte Carlo replica set for

each of the αS values shown, though they have also presented an αS determination [113]

based on their previous NNPDF2.1 set, with results consistent with the PDG average. For

NNPDF, which does not have a default value, we arbitrarily choose αS(M2
Z) = 0.119 as
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Figure 6: The gluon-gluon (upper plots) and quark-gluon (lower plots) luminosities, Eq. (2), for
the production of a final state of invariant mass MX (in GeV) at LHC 8 TeV. The left plots show
the comparison between NNPDF2.3, CT10 and MSTW08, while in the right plots we compare
NNPDF2.3, HERAPDF1.5 and MSTW08. All luminosities are computed at a common value of
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αs = 0.118
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‣ Good agreement for global fits but deviations as large as uncertainties
‣ Larger differences with “non-global” results
‣ 2x larger uncertainties for gluon 

PDF4LHC, Ball et al

gluon-gluon
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With the final version of the experimental covariance matrix, excellent description 
of the jet data by NLO QCD
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Impact of jet measurements on PDFs

Jet production probes below 1 TeV sensitive to the gluon and large-x: direct 
impact on Higgs production in gluon fusion

Above 1 TeV, 7 and 8 TeV data very sensitive to large-x quarks: direct impact on 
BSM high mass searches

Further quantification of PDF sensitivity with PDF correlations
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  A major improvement in PDF sets is use of LHC data to constrain quark and gluon PDFs

 NNPDF2.3 is  only publicly available PDF set that includes constrains from LHC jet and W,Z data

 Near future goal: PDFs sets based only on collider data
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LHC data included in NNPDF2.3

x~0.05-0.2

‣ ATLAS and CMS data public
‣ first attempts from PDF fitters 
to include the LHC jet data 

- preliminary studies: jet data 
constrain the gluon PDF up to 
x~0.6 but also the u,d PDFs 
at higher x

‣ ratios between c.m. energies 
can constrain the PDFs further 

The story of further constraining the gluon pdfs continues... 

K.Kousouris, 
EPS ’13
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Direct photon production

 Photon production directly sensitive to the gluon via QCD 
Compton scattering 

 Photon production was used in early PDF fits for gluon 
constraints, then replaced by jets due to poor data/theory 
agreement of some fixed-target data

 Recently reanalysis of all isolated collider photon data with the 
most updated theory, JetPhox+NNPDF2.1, and found overall 
agreement

 Moderate reduction of gluon PDF errors from LHC photon 
data, in the region relevant for Higgs production in gluon fusion

 Photon+jet data also studied, but need more precise data to 
impact on PDF uncertainties

7

(D’Enterria and Rojo, arXiv:1202.1762)

Quark-Gluon scattering
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(Carminati et al, arXiv:1212.5511)
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Quark-Gluon scattering

Juan Rojo                                                                                                             LHCP2013, Barcelona, 22/04/2013

(Carminati et al, arXiv:1212.5511)
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Figure 3: Kinematical region in the x − Q2 plane probed by experimental isolated-γ data at collider
energies (red circles and triangles) which enter into this analysis (Table 1) compared to the coverage of
DIS, Drell-Yan and jet datasets (squares) used in the NNPDF2.1 global fits.

3 Theoretical setup

In this section the basic ingredients of the jetphox program used to compute the isolated-photon
cross sections are discussed, and the NNPDF reweighting technique employed to quantify the
impact of new data on the proton PDFs is briefly recalled.

3.1 Isolated-photon cross sections

Two types of processes contribute at leading order to prompt photon production in p-p and p-p̄
collisions: the ‘direct’ contribution, where the photon is emitted directly from a pointlike coupling
to the hard parton-parton vertex, and the ‘fragmentation’ (called also ‘anomalous’ in the past)
contribution, in which the photon originates from the collinear fragmentation of a final-state
parton. Schematically, the differential photon cross section as a function of transverse energy Eγ

T

and rapidity yγ can be written as

dσ ≡ dσ
dir

+ dσ
frag

=
∑

a,b=q,q̄,g

∫

dxadxb fa(xa;µ
2
F
)fb(xb;µ

2
F
) × (1)

[

dσ̂γ
ab(pγ , xa, xb;µR

, µ
F
, µ

ff
) +

∑

c=q,q̄,g

∫ 1

zmin

dz

z2
dσ̂c

ab(pγ , xa, xb, z;µR
, µ

F
, µ

ff
)Dγ

c (z;µ
2
ff
)

]

where fa(xa;µ2
F
) is the parton distribution function of parton species a inside the incoming pro-

tons at momentum fraction xa; dσ̂ab are the parton-parton subprocess differential cross sections;
and Dγ/k(z;µ

2
ff
) is the fragmentation function of parton k to a photon carrying a fraction z of

the parent parton energy, integrated from zmin = x
T
cosh yγ to 1. The scaled momentum x

T
is

7

Nucl. Phys. B860 (2012) 311

‣ large amount of photon measurements 
accumulated over the years 
‣ not used so far in the PDF fits

- probably missing the correlation of 
uncertainties?

‣ first attempt to include the photon 
measurements

- in the NNPDF framework
- moderate impact on the gluon PDF

‣ more photon data needed
EPS 2013



Recommendations for PDF determinations 
   (from S.Forte, G.Watt, 1301.6754)

• The range of data sets must be as wide as possible. 

• The parametrization should be sufficiently general and demonstrably 
unbiased, either by using a sufficiently large number of parameters, or by 
careful a posteriori checks of parametrization independence.

• The experimental uncertainties should be understood and carefully propagated. 

• Computations should be performed at the highest available perturbative order, 
and in particular, at the order which is subsequently to be used in the 
computation of partonic cross sections.     

• The treatment of heavy quarks will have to include mass-suppressed terms. 

• The strong coupling, in addition to being determined simultaneously with 
PDFs, should also be decoupled from the PDF determination, with PDF sets 
available for a range of fixed        values, and full PDF uncertainty 
determination for each value of 

• An estimate of theoretical uncertainties should be performed 
together with PDF sets, and such uncertainties should be provided 
each time they become comparable with other sources of PDF 
uncertainty. This is presently an almost unexplored territory.

•  PDFs including electroweak corrections will have to be constructed.

αs
αs



Jets  

Jets

When low scales t~!QCD are reached, the hadrons will form 
observed experimentally.  Sprays of hadrons form the jets 
observed experimentally

Specify a jet 
algorithm for 
combining the 
observed particles 
into jets
The idea: the jets 
should reflect the 
primordial hard 
partons

• jets are bundles of  
hadrons observed 

experimentally

• a good jet algorithm 
should:

• reflect the parton dynamics  

• be infared safe (well defined at 
any order in perturbation theory) 

• clustering based on a  
jet algorithm

•  be efficient and fast to 
implement 



Jet algorithm development

Jet developments

Jet progress, G. Salam (p. 3)

Introduction Jet Definition History

! Periodic key developments in jet definitions spurred by
ever-increasing experimental sophistication.

! Approach of LHC provides motivation for taking a new,
fresh, systematic look at jets.

! This talk: some of the discoveries along the way

 1975  1980  1985  1990  1995  2000  2005

Tev Run II wkshp
(midpoint cone)Sterman

Weinberg

UA1+2 cones

Jade, seq. rec.
Snowmass (cone)

kt
Cambridge

Aachen

Definitions shown are those with widest exptl. impact

NB: also ARCLUS, OJF, . . .

fast-kt, SISCone, anti-kt, 
jet-areas, jet-flavour, non-

perturbative effects, 
quality measures, jet-
substructure as Higgs 
discovery channel ... 

QCD       Hadron Collider Summer School ’08      G.Zanderighi 

figure from G. Zanderighi“Snowmass accord on jets” (1995)

the objects (new particles, PDFs, etc.) that they help you visualise or discover. In the
context of the LHC, it is probably fair to say that jetography is still in its infancy, hence
the title of the review. Nevertheless some first results have emerged in the past couple of
years, notably (as discussed in section 5) with respect to simple dijet mass reconstructions,
hadronic decays of boosted heavy particles, and the question of limiting the effect of pileup.

One thing that this review does not do is examine the wide range of uses of jets in LHC
and other experiments’ analyses, aside from the brief discussion given above. This is a vast
subject, and to obtain a full overview probably requires that one consult the main ATLAS
and CMS physics analysis programme documents [16, 17] and the “LHC primer” [18], as
well as recent work by the Tevatron and HERA, summarised for example in [19, 20]. Other
reviews of jets in recent years include [21, 22]. Finally a topic that is barely touched upon
here is the nascent field of jet finding in heavy-ion collisions, for which the reader is referred
to [23, 24].

2 Jet algorithms

Jet algorithms provide a set of rules for grouping particles into jets. They usually involve
one or more parameters that indicate how close two particles must be for them to belong to
the same jet. Additionally they are always associated with a recombination scheme, which
indicates what momentum to assign to the combination of two particles (the simplest is the
4-vector sum). Taken together, a jet algorithm with its parameters and a recombination
scheme form a “jet definition”.

An accord as to some general properties of jet definitions, the “Snowmass accord”, was
set out in 1990 [25] by a group of influential theorists and experimenters, and reads as
follows

Several important properties that should be met by a jet definition are [3]:

1. Simple to implement in an experimental analysis;

2. Simple to implement in the theoretical calculation;

3. Defined at any order of perturbation theory;

4. Yields finite cross sections at any order of perturbation theory;

5. Yields a cross section that is relatively insensitive to hadronisation.

where ref. [3] is given below as [26]. It is revelatory that ref. [25] is entitled “Toward a
standardization of jet definitions” (my italics). If one reads the rest of the article, one
realises that it wasn’t evident at the time what the standard jet definition should actually
be, nor was there a clear path towards satisfying the Snowmass accords, at least for hadron
colliders.

When the next major community-wide discussion on jets took place, in 2000, in prepara-
tion for Run II of the Tevatron [21], new jet algorithms had been invented [27, 28, 29, 30, 31],
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• two main categories of jet algorithms: 

cone based sequential
e.g. midpoint, SISCone, ... e.g. Jade, Durham kt, Cambridge/Aachen, anti-kt, ...

cluster particles within a cone 
of radius R in rapidity and 
azimuthal angle space:

cluster particles  according to 
distance in momentum space

• take particle i (e.g. with 
largest pT) as a seed

• sum momenta of all particles 
j within a cone of radius R

we shall see below.

Cone algorithms have evolved substantially since [15] and are today mostly used at
hadron colliders. The changes reflect the fact that in hadron collisions it doesn’t make
sense to discuss the total energy (since most of it is not involved in the hard reaction,
and goes down the beam pipe), that it isn’t always obvious, physically or computationally,
where to place the cones, and that issues arise when trying to define events with more than
two jets (with the associated problem of “overlapping” cones).

2.1.1 Iteration

Let us first examine the question of where to place the cones. Most of today’s widely used
cone algorithms are “iterative cones” (IC). In such algorithms, a seed particle i sets some
initial direction, and one sums the momenta of all particles j within a circle (“cone”) of
radius R around i in azimuthal angle φ and rapidity y (or pseudorapidity η),1 i.e. taking
all j such that

∆R2
ij = (yi − yj)

2 + (φi − φj)
2 < R2 , (1)

where yi and φi are respectively the rapidity and azimuth of particle i. The direction of the
resulting sum is then used as a new seed direction, and one iterates the procedure until the
direction of the resulting cone is stable. The dimensionless parameter R here, known as the
jet radius, replaces the angular scale δ that was present in the original Sterman-Weinberg
proposal. The Sterman-Weinberg ε parameter is less-directly mirrored in hadron-collider
cone algorithms. Rather, most physics analyses will use a cone algorithm to obtain jets
without any specific energy cut, but then will consider only those jets that are above a
certain transverse-momentum threshold.

To be fully specified, seeded iterative jet algorithms must deal with two issues:

• What should one take as the seeds?

• What should one one do when the cones obtained by iterating two distinct seeds
“overlap” (i.e. share particles)?

Different approaches to these issues lead to two broad classes of cone algorithm.

2.1.2 Overlapping cones: the progressive removal approach

One approach is to take as one’s first seed the particle (or calorimeter tower) with the
largest transverse momentum. Once one has found the corresponding stable cone, one

1These are standard hadron-collider variables. Given a beam along the z-direction, a particle with
longitudinal momentum pz, energy E and angle θ with respect to the beam (longitudinal) direction has
rapidity y ≡ 1

2 ln
E+pz

E−pz
and pseudorapidity η ≡ − ln tan θ/2. Massless particles have y = η. Differences in

rapidity are invariant under longitudinal boosts, whereas differences in pseudorapidity are invariant only
for massless particles. Where an analysis in e+e− will use particles’ energies and the angles between the
particles, an analysis in a pp collider will often use pt (or Et) and ∆R2

ij (defined either with rapidities or
pseudorapidities).
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• take the resulting sum as 
a new seed and iterate

• iterate until stability is reached

1. For each pair of particles i, j work out the distance

yij =
2EiEj(1− cos θij)

Q2
(3)

where Q is the total energy in the event,7 Ei is the energy of particle i and θij the
angle between particles i and j. For massless particles, yij is the just the (normalised)
squared invariant mass of the pair.

2. Find the minimum ymin of all the yij.

3. If ymin is below some jet resolution threshold ycut, then recombine i and j into a single
new particle (or “pseudojet”) and repeat from step 1.

4. Otherwise, declare all remaining particles to be jets and terminate the iteration.

The number of jets that one obtains depends on the value of ycut, and as one reduces ycut,
softer and/or more collinear emissions get resolved into jets in their own right. Thus here
the number of jets is controlled by a single parameter rather than the two parameters
(energy and angle) of cone algorithms.

Quite often in e+e− analyses one examines the value of ycut that marks the transition
between (say) an event being labelled as having n and n + 1 jets, yn(n+1). Thus if y23 is
small, the event is two-jet like, while if it large then the event clearly has 3 (or more) jets.

The JADE algorithm is infrared and collinear safe, because any soft particle will get
recombined right at the start of the clustering, as do collinear particles. It was widely used
up to the beginning of the 1990s (and still somewhat beyond then), however the presence
of EiEj in the distance measure means that two very soft particles moving in opposite
directions often get recombined into a single particle in the early stages of the clustering,
which runs counter to the intuitive idea that one has of a jet being restricted in its angular
reach. As well as being physically disturbing, this leads to very non-trivial structure
(non-exponentiated double logarithms) in higher-order calculations of the distribution of
y23 [61, 62, 63] (later, this was also discussed in terms of a violation of something called
recursive infrared and collinear safety [64]).

2.2.2 The kt algorithm in e+e−

The e+e− kt algorithm [27] is identical to the JADE algorithm except as concerns the
distance measure, which is

yij =
2min(E2

i , E
2
j )(1− cos θij)

Q2
. (4)

In the collinear limit, θij " 1, the numerator just reduces to (min(Ei, Ej)θij)2 which is
nothing but the squared transverse momentum of i relative to j (if i is the softer particle)

7In experimental uses, it is often the total visible energy in the event.
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Quite often in e+e− analyses one examines the value of ycut that marks the transition
between (say) an event being labelled as having n and n + 1 jets, yn(n+1). Thus if y23 is
small, the event is two-jet like, while if it large then the event clearly has 3 (or more) jets.

The JADE algorithm is infrared and collinear safe, because any soft particle will get
recombined right at the start of the clustering, as do collinear particles. It was widely used
up to the beginning of the 1990s (and still somewhat beyond then), however the presence
of EiEj in the distance measure means that two very soft particles moving in opposite
directions often get recombined into a single particle in the early stages of the clustering,
which runs counter to the intuitive idea that one has of a jet being restricted in its angular
reach. As well as being physically disturbing, this leads to very non-trivial structure
(non-exponentiated double logarithms) in higher-order calculations of the distribution of
y23 [61, 62, 63] (later, this was also discussed in terms of a violation of something called
recursive infrared and collinear safety [64]).

2.2.2 The kt algorithm in e+e−

The e+e− kt algorithm [27] is identical to the JADE algorithm except as concerns the
distance measure, which is

yij =
2min(E2

i , E
2
j )(1− cos θij)

Q2
. (4)

In the collinear limit, θij " 1, the numerator just reduces to (min(Ei, Ej)θij)2 which is
nothing but the squared transverse momentum of i relative to j (if i is the softer particle)

7In experimental uses, it is often the total visible energy in the event.
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• If   
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is below some jet resolution threshold   
then  recombine i and j into a new pseudo-particle  and 
iterate the procedure 

• Otherwise declare all remaining particles as jets and stop 
the iteration   
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• The distance measure contains the total energy Q in the event.  

Therefore it is not applicable in this form to hadronic collisions.

• Different sequential algorithms mainly differ by their distance measure.
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•  Durham kt-algorithm in e+e- :

•  Durham kt-algorithm in hadronic collisions :

•  Anti-kt-algorithm :

(variables invariant under longitudinal boosts)

which, for small θiB, is just the squared transverse momentum of particle i with respect
to the beam. The algorithm then remains the same as in e+e−, except that if a diB is the
smallest, then the particle is recombined with the beam, to form part of the “beam-jet”.
If there are two beams, then one just introduces a measure for each beam.

In pp collisions it is standard to use variables that are invariant under longitudinal
boosts, however the dij and diB given above only satisfy this property approximately.
Thus ref. [28] introduced versions of the distance measures that were exactly longitudinally
invariant

dij = min(p2ti, p
2
tj)∆R2

ij , ∆R2
ij = (yi − yj)

2 + (φi − φj)
2 , (8a)

diB = p2ti , (8b)

(this variant does not distinguish between the two beam jets).9 It is straightforward to
verify that in the relevant collinear limits, these measures just reduce to relative transverse
momenta, like those in eqs. (6,7). Furthermore, since (yi − yj), the φi and pti are all
invariant under longitudinal boosts, the dij and diB are too. Nowadays the procedure
of section 2.2.1, with the distance measures of eqs. (8), is referred to as the exclusive kt
algorithm, in that every particle is assigned either to a beam-jet or to a final-state jet.

Inclusive kt algorithm. At about the same time that ref. [28] appeared, a separate
formulation was proposed in [29], which has almost the same distance measures as eq. (8),

dij = min(p2ti, p
2
tj)

∆R2
ij

R2
, ∆R2

ij = (yi − yj)
2 + (φi − φj)

2 , (9a)

diB = p2ti , (9b)

where the difference lies in the presence of a new parameter R (also called D) in the dij,
whose role is similar to R in a cone algorithm (see below). The other difference in this
version of the algorithm is in how the dij get used:

1. Work out all the dij and diB according to eq. (8).

2. Find the minimum of the dij and diB.

3. If it is a dij , recombine i and j into a single new particle and return to step 1.

4. Otherwise, if it is a diB, declare i to be a [final-state] jet, and remove it from the list
of particles. Return to step 1.

5. Stop when no particles remain.

9Ref. [28] also proposes a variant where ∆R2
ij ≡ 2(cosh(yi − yj) − cos(φi − φj)), more closely related

to the precise structure of the QCD matrix elements; however, to the author’s knowledge, it has not seen
extensive use.
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(particle-beam distance)2.2.5 The anti-kt algorithm

One can generalise the kt and Cambridge/Aachen distance measures as [33]:

dij = min(p2pti , p
2p
tj )

∆R2
ij

R2
, ∆R2

ij = (yi − yj)
2 + (φi − φj)

2 , (10a)

diB = p2pti , (10b)

where p is a parameter that is 1 for the kt algorithm, and 0 for C/A. It was observed in [33]
that if one takes p = −1, dubbed the “anti-kt” algorithm, then this favours clusterings that
involve hard particles rather than clusterings that involve soft particles (kt algorithm) or
energy-independent clusterings (C/A). This ultimately means that the jets grow outwards
around hard “seeds”. However since the algorithm still involves a combination of energy
and angle in its distance measure, this is a collinear-safe growth (a collinear branching
automatically gets clustered right at the beginning of the sequence).12 The result is an
IRC safe algorithm that gives circular hard jets, making it an attractive replacement for
certain cone-type algorithms (notably IC-PR algorithms).

One should be aware that, unlike for the kt and C/A algorithms, the substructure clas-
sification that derives from the clustering-sequence inside an anti-kt jet cannot be usefully
related to QCD branching (essentially the anti-kt recombination sequence will gradually
expand through a soft subjet, rather than first constructing the soft subjet and then re-
combining it with the hard subjet).

2.2.6 Other sequential recombination ideas

The flexibility inherent in the sequential recombination procedure means that a number of
variants have been considered in both past and recent work. Some of the main ones are
listed below.

Flavour-kt algorithms. If one is interested in maintaining a meaningful flavour for jets
(for example in purely partonic studies, or when discussing heavy-flavour jets), then one
may use a distance measure that takes into account the different divergences for quark and
gluon branching, as in [81, 82]. The essential idea is to replace eq. (4) with

y(F )
ij =

2(1− cos θij)

Q2
×
{

max(E2
i , E

2
j ) , softer of i, j is flavoured,

min(E2
i , E

2
j ) , softer of i, j is flavourless,

(11)

where gluonic (or non-heavy-quark) objects are considered flavourless. This reflects the
fact that there is no divergence for producing a lone soft quark, and correctly ensures that
soft quarks are recombined with soft antiquarks. In normal algorithms, in contrast, a soft
quark and anti-quark may end up in different jets, polluting the flavour of each one. Full

12If one takes p → −∞ then energy is privileged at the expense of angle and the algorithm then becomes
collinear unsafe, and somewhat like an IC-PR algorithm.
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p = -1   (p=1: kt)

(p=0: Cambridge-Aachen)



Recombination schemes 

need to define how to merge two particles  

basically two approaches  

• “E-scheme” : combine 4-vectors

• “Snowmass-scheme” :  

2.4 Recombination schemes

The most widespread recombination scheme nowadays is the E-scheme, or 4-vector re-
combination scheme. To merge two particles, it just adds their 4-vectors (and it produces
massive jets). This is the current recommendation according to [21].

A scheme that was widely used in the past at hadron-colliders was the Et weighted
recombination scheme, which had been put forward also in the Snowmass accord. To
recombine a set of particles into a jet, it uses the following procedure:

Et,jet =
∑

i

Eti , (16a)

ηjet =
1

Et,jet

∑

i

Etiηi , (16b)

φjet =
1

Et,jet

∑

i

Etiφi , (16c)

where the sum runs over the particles contained in the jet, and the jet is taken to be
massless. This procedure has the drawback that it is not invariant under longitudinal
boosts if the component particles are massive (though one can formulate boost-invariant
alternatives in terms of rapidity yi and and transverse momentum pti).

When other recombination schemes are used, this is usually stated explicitly in the cor-
responding publication. One should be aware that in some cases the recombination scheme
used during the clustering (e.g. in the iteration of stable cones) differs from the recombi-
nation scheme that is used to obtain the final jet momenta once the particle assignments
to the jets are known.

2.5 Summary

We have seen many different jet algorithms in this section. A summary of the main ones
in common use in hadron-collider studies is given in table 2. Many of the algorithms (and
all the IRC safe ones) are available from the FastJet [41] or SpartyJet [42] packages (the
latter provides access to the IRC safe algorithms via FastJet).

A general recommendation is that hadron-collider algorithms that are IR or collinear
unsafe should in future work be replaced by IRC safe ones, of which the inclusive kt, C/A
(possibly with “filtering”), anti-kt and SISCone are good choices. Specifically the xC-PR
class of algorithms is naturally replaced by the anti-kt algorithm (which produces circular
jets, as illustrated in figure 7, and has similar low-order perturbative properties), while
SISCone is very much like the IC-SM algorithms, but ensures that the stable-cone finding
is IRC safe.

Figure 7 illustrates the jets that are produced with the 4 “choice” IRC-safe algorithms
in a simple, parton-level event (generated with Herwig), showing among other things, the
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(not invariant under longitudinal 
boosts for massive particles)  



perturbation theory at work
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 Infrared Safety
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Collinear safe jet alg. Collinear unsafe jet alg

Figure 1: Illustration of collinear safety (left) and collinear unsafety in an IC-PR type algorithm
(right) together with its implication for perturbative calculations (taken from the appendix of
[33]). Partons are vertical lines, their height is proportional to their transverse momentum, and
the horizontal axis indicates rapidity.
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Figure 2: Configurations illustrating IR unsafety of IC-SM algorithms in events with a W and
two hard partons. The addition of a soft gluon converts the event from having two jets to just
one jet. In contrast to fig. 1, here the explicit angular structure is shown (rather than pt as a
function of rapidity).

to find a new stable cone. Once passed through the split–merge step this can lead to the
modification of the final jets, thus making the algorithm infrared unsafe. This is illustrated
in fig. 2: in an event (a) with just two hard partons (and a W , which balances momentum),
both partons act as seeds, there are two stable cones and two jets. The same occurs in the
(negative) infinite loop diagram (b). However, in diagram (c) where an extra soft gluon
has been emitted, the gluon provides a new seed and causes a new stable cone to be found
containing both hard partons (as long as they have similar momenta and are separated
by less than 2R). This stable cone overlaps with the two original ones and the result of
the split–merge procedure is that only one jet is found. So the number of jets depends
on the presence or absence of a soft gluon and after integration over the virtual/real soft-
gluon momentum the two-jet and one-jet cross sections each get non-cancelling infinite
contributions. This is a serious problem, just like collinear unsafety. A good discussion of
it was given in [39].
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to find a new stable cone. Once passed through the split–merge step this can lead to the
modification of the final jets, thus making the algorithm infrared unsafe. This is illustrated
in fig. 2: in an event (a) with just two hard partons (and a W , which balances momentum),
both partons act as seeds, there are two stable cones and two jets. The same occurs in the
(negative) infinite loop diagram (b). However, in diagram (c) where an extra soft gluon
has been emitted, the gluon provides a new seed and causes a new stable cone to be found
containing both hard partons (as long as they have similar momenta and are separated
by less than 2R). This stable cone overlaps with the two original ones and the result of
the split–merge procedure is that only one jet is found. So the number of jets depends
on the presence or absence of a soft gluon and after integration over the virtual/real soft-
gluon momentum the two-jet and one-jet cross sections each get non-cancelling infinite
contributions. This is a serious problem, just like collinear unsafety. A good discussion of
it was given in [39].
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A jet algorithm is called infrared unsafe when the addition of a soft particle 
changes the configuration of jets found by the algorithm.



examples of  infrared unsafe jet algorithms which were used at the Tevatron: 
Midpoint, JetClu

out the NLO prediction with two somewhat different jet algorithms (for example SISCone
and anti-kt, both discussed below), and use the difference between the NLO calculations
with the two algorithms as a measure of the uncertainty in the prediction due to IR safety
issues. The logic behind this is that SISCone behaves as would an IC-SM algorithm when
there are soft particles everywhere (combining hard partons into a common jet when they
are as far as 2R apart in some cases), while anti-kt behaves somewhat similarly to an
IC-SM algorithm when there are no soft particles present (hard partons separated by more
than R usually do not end up in the same jet). These differences are discussed in more
detail in section 4.1.

A comparison of SISCone and anti-kt was per-
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Figure 4: The ratio of the anti-kt and
SISCone results for the W + 3 jet cross
section, shown as a function of the trans-
verse momentum of the third hardest jet,
for two different R values and rapidity ac-
ceptances for the jets, as calculated with
MCFM [44]. This ratio provides a mea-
sure of the ambiguity in perturbative pre-
dictions for an IR unsafe IC-SM jet algo-
rithm such as JetClu.

formed for example in ref. [48]. It examined the
W +3 jets cross section at the Tevatron (measured
with JetClu, R = 0.4 for jets with |y| < 2 [43])
and found that the SISCone prediction was about
20% smaller than the anti-kt prediction at LO (the
difference is reduced at NLO), because in the SIS-
Cone case there is a higher likelihood that two of
the three LO partons will be combined into a single
jet, giving W +2 jets rather than W +3 jets. This
may not seem like an enormous effect compared
to typical experimental systematic uncertainties,
however one should remember that the size of the
difference depends also on the cuts and the choice
of R. For example, with a larger R value (e.g.
R = 0.7) or a smaller rapidity range, the differ-
ences between the algorithms increase noticeably,
as illustrated in figure 4.

In the long-run, an alternative approach might
be to use tools like MC@NLO [49] and POWHEG
[50], which may eventually include a range of jet
processes and thus provide both the NLO terms
and an acceptable estimate of the large higher-
order logarithms and the non-perturbative effects (with IRC jet safe algorithms another
advantage of tools like MC@NLO and POWHEG is that they provide a way of consistently
including both NLO corrections and non-perturbative hadronisation effects within a single
calculation).

2.1.5 Exact seedless cones

One full solution to the IRC safety issue avoids the use of seeds and iterations, and instead
finds all stable cones through some exact procedure. This type of algorithm is often called
a seedless cone (SC, thus SC-SM with a split–merge procedure).
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algorithms used at the LHC are infrared safe

Quantum Chromodynamics - John Campbell -

Jet algorithms for the LHC

• Two algorithms of most importance:

• Traditionally, cone algorithms have advantages when analyzing data while the 

kT algorithm (to which anti-kT is closely related) has better theoretical properties.

• with advent of SISCone and anti-kT, they are now on a more even footing.
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SISCone         Salam and Soyez (2007)

anti-kT             Cacciari, Salam and Soyez (2008); Delsart

Still jet algorithm can lead to sizable 
differences in some observables.

Example transverse momentum of 
third hardest jet
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Figure 7: A sample parton-level event (generated with Herwig [101]), together with many ran-
dom soft “ghosts”, clustered with four different jet algorithms, illustrating the “active” catchment
areas of the resulting hard jets (cf. section 4.4). For kt and Cam/Aachen the detailed shapes are
in part determined by the specific set of ghosts used, and change when the ghosts are modified.

degree of regularity (or not) of the boundaries of the resulting jets and their extents in the
rapidity-azimuth place.

3 Computational geometry and jet finding

It takes the human eye and brain a fraction of a second to identify the main regions of
energy flow in a calorimetric event such as fig. 7. A good few seconds might be needed to
quantify that energy flow, and to come to a conclusion as to how many jets it contains.
Those are timescales that usefully serve as a reference when considering the speed of jet
finders — if a jet finder takes a few seconds to classify an event it will seem somewhat
tedious, whereas a few milliseconds will seem fast. One can reach similar conclusions by
comparing to the time for a Monte Carlo event generator to produce an event (from tens
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Jet substructure 

interesting to control backgrounds in Higgs to bb: “fat jets”

highly boosted Higgs will produce a fat jet with two b-jets inside

Boosted massive particles → fat jets[Introduction]

Normal analyses: two quarks from
X → qq̄ reconstructed as two jets

jet 1

jet 2

X at rest
X

Gavin Salam (CERN/Princeton/CNRS) Theory of Fat Jets Higgs Hunting 2012-07-19 2 / 28

Boosted massive particles → fat jets[Introduction]

Normal analyses: two quarks from
X → qq̄ reconstructed as two jets

jet 1

jet 2

X at rest
X

High-pt regime: EW object X
is boosted, decay is collimated,

qq̄ both in same jet

single
fat jet

z

(1−z)

boosted X

Happens for pt ! 2m/R

pt ! 320 GeV for m = mW , R = 0.5

As LHC explores far above EW scale, such configurations
become of interest

Gavin Salam (CERN/Princeton/CNRS) Theory of Fat Jets Higgs Hunting 2012-07-19 2 / 28

Example improvement from boosted regime[Introduction]

Search for main decay of light Higgs boson in W/Z+H, H → bb̄

ATLAS TDR
(unboosted)

(boosted)

restricting search to ptH > 200 GeV,

using the method from Butterworth, Davison, Rubin & GPS ’08

Gavin Salam (CERN/Princeton/CNRS) Theory of Fat Jets Higgs Hunting 2012-07-19 5 / 28
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method pioneered by 
Butterworth, Davison, 

Rubin, Salam ’08

W/Z+H, H to bbar

Jet substructure

Recent interest in using substructure of jets to distinguish signal
from background.  For example, highly-boosted Higgs will 
produce a “fat jet” with two b subjets inside.

Boosted tops, W/Z bosons have been studied in various contexts

Undo last stage of clustering and look for 
significant mass drop, consistent with 
heavy particle decaying  to jets

Butterworth et al., 0802.2470

idea: Undo last stage of clustering and look 
for significant mass drop, consistent with 

heavy particle decaying to jets



Event shape observables 

• characterise global properties of hadronic events

• extensively studied at LEP, Petra (Jade coll.)

• can also be defined for hadronic collisions 
(have been measured at LHC already)

• are infrared safe

• free from uncertainties related to jet 
energy measurements

• have been used extensively for measurements of the 
strong coupling constant



     DETERMINATIONSαs
Table 1: World summary of measurements of αs (status of April 2006): DIS = deep inelastic scattering;
GLS-SR = Gross-Llewellyn-Smith sum rule; Bj-SR = Bjorken sum rule; (N)NLO = (next-to-)next-to-
leading order perturbation theory; LGT = lattice gauge theory; resum. = resummed NLO. New or
updated entries since the review of 2004 [69] are underlined.

Q ∆αs(MZ0)

Process [GeV] αs(Q) αs(MZ0) exp. theor. Theory refs.

DIS [pol. SF] 0.7 - 8 0.113 + 0.010
− 0.008 ±0.004 +0.009

−0.006 NLO [76]
DIS [Bj-SR] 1.58 0.375 + 0.062

− 0.081 0.121 + 0.005
− 0.009 – – NNLO [77]

DIS [GLS-SR] 1.73 0.280 + 0.070
− 0.068 0.112 + 0.009

− 0.012
+0.008
−0.010 0.005 NNLO [78]

τ -decays 1.78 0.345 ± 0.010 0.1215 ± 0.0012 0.0004 0.0011 NNLO [70]

DIS [ν; xF3] 2.8 - 11 0.119 + 0.007
− 0.006 0.005 +0.005

−0.003 NNLO [79]
DIS [e/µ; F2] 2 - 15 0.1166 ± 0.0022 0.0009 0.0020 NNLO [80, 81]
DIS [e-p → jets] 6 - 100 0.1186 ± 0.0051 0.0011 0.0050 NLO [67]

Υ decays 4.75 0.217 ± 0.021 0.118 ± 0.006 – – NNLO [82]
QQ states 7.5 0.1886 ± 0.0032 0.1170 ± 0.0012 0.0000 0.0012 LGT [73]

e+e− [Fγ
2 ] 1.4 - 28 0.1198 + 0.0044

− 0.0054 0.0028 + 0.0034
− 0.0046 NLO [83]

e+e− [σhad] 10.52 0.20 ± 0.06 0.130 + 0.021
− 0.029

+ 0.021
− 0.029 0.002 NNLO [84]

e+e− [jets & shps] 14.0 0.170 + 0.021
− 0.017 0.120 + 0.010

− 0.008 0.002 +0.009
−0.008 resum [85]

e+e− [jets & shps] 22.0 0.151 + 0.015
− 0.013 0.118 + 0.009

− 0.008 0.003 +0.009
−0.007 resum [85]

e+e− [jets & shps] 35.0 0.145 + 0.012
− 0.007 0.123 + 0.008

− 0.006 0.002 +0.008
−0.005 resum [85]

e+e− [σhad] 42.4 0.144 ± 0.029 0.126 ± 0.022 0.022 0.002 NNLO [86, 32]
e+e− [jets & shps] 44.0 0.139 + 0.011

− 0.008 0.123 + 0.008
− 0.006 0.003 +0.007

−0.005 resum [85]
e+e− [jets & shps] 58.0 0.132 ± 0.008 0.123 ± 0.007 0.003 0.007 resum [87]

pp̄ → bb̄X 20.0 0.145 + 0.018
− 0.019 0.113 ± 0.011 + 0.007

− 0.006
+ 0.008
− 0.009 NLO [88]

pp̄, pp → γX 24.3 0.135 + 0.012
− 0.008 0.110 + 0.008

− 0.005 0.004 + 0.007
− 0.003 NLO [89]

σ(pp̄ → jets) 40 - 250 0.118 ± 0.012 + 0.008
− 0.010

+ 0.009
− 0.008 NLO [90]

e+e− Γ(Z → had) 91.2 0.1226+ 0.0058
− 0.0038 0.1226+ 0.0058

− 0.0038 ±0.0038 +0.0043
−0.0005 NNLO [91]

e+e− 4-jet rate 91.2 0.1176 ± 0.0022 0.1176 ± 0.0022 0.0010 0.0020 NLO [92]
e+e− [jets & shps] 91.2 0.121 ± 0.006 0.121 ± 0.006 0.001 0.006 resum [32]
e+e− [jets & shps] 133 0.113 ± 0.008 0.120 ± 0.007 0.003 0.006 resum [32]

e+e− [jets & shps] 161 0.109 ± 0.007 0.118 ± 0.008 0.005 0.006 resum [32]
e+e− [jets & shps] 172 0.104 ± 0.007 0.114 ± 0.008 0.005 0.006 resum [32]

e+e− [jets & shps] 183 0.109 ± 0.005 0.121 ± 0.006 0.002 0.005 resum [32]
e+e− [jets & shps] 189 0.109 ± 0.004 0.121 ± 0.005 0.001 0.005 resum [32]

e+e− [jets & shps] 195 0.109 ± 0.005 0.122 ± 0.006 0.001 0.006 resum [81]
e+e− [jets & shps] 201 0.110 ± 0.005 0.124 ± 0.006 0.002 0.006 resum [81]
e+e− [jets & shps] 206 0.110 ± 0.005 0.124 ± 0.006 0.001 0.006 resum [81]
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Other “classical” event shape observables

These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
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2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
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ever, this degeneracy is lifted at next-to-leading order.
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• jet broadenings 

(c) Jet Broadening, BW and BT [21]

Taking a plane perpendicular to !nT through the coordinate origin, one defines two

event hemispheres H1,2. In each of them, one determines the hemisphere broadening:

Bi =

∑

k∈Hi

| !pk × !nT |

2
∑

k

| !pk|
. (2.5)

The wide and total jet broadening are then defined as

BW = max(B1, B2) , (2.6)

BT = B1 + B2 . (2.7)

In the two-particle limit BW → 0 and BT → 0. The maximum broadening for a

three-particle event is BT = BW = 1/(2
√

3).

The narrow jet broadening,

BN = min(B1, B2) , (2.8)

is another four-jet observable and vanishes when only three particles are in the event.

(d) The C parameter, [22]

The linearised momentum tensor

Θαβ =
1

∑

k | !pk|
∑

k

pα
kpβ

k

| !pk|
, (α,β = 1, 2, 3) , (2.9)

has three eigenvalues λi, which are used to construct the C-parameter:

C = 3 (λ1λ2 + λ2λ3 + λ3λ1) . (2.10)

This definition is equivalent to

C = 3
(

Θ11Θ22 + Θ22Θ33 + Θ33Θ11 − Θ12Θ12 − Θ23Θ23 − Θ31Θ31
)

. (2.11)

The related four-jet observable is the D-parameter,

D = 27λ1λ2λ3 . (2.12)

(e) The jet transition variable, Y3 [23]

The jet transition variable Y3 is defined as the value of the jet resolution parameter

ycut for which an event changes from a three-jet to a two-jet configuration with some

jet defining scheme.
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• jet transition variable Y3: the value  of the jet resolution parameter  

1. For each pair of particles i, j work out the distance

yij =
2EiEj(1− cos θij)

Q2
(3)

where Q is the total energy in the event,7 Ei is the energy of particle i and θij the
angle between particles i and j. For massless particles, yij is the just the (normalised)
squared invariant mass of the pair.

2. Find the minimum ymin of all the yij.

3. If ymin is below some jet resolution threshold ycut, then recombine i and j into a single
new particle (or “pseudojet”) and repeat from step 1.

4. Otherwise, declare all remaining particles to be jets and terminate the iteration.

The number of jets that one obtains depends on the value of ycut, and as one reduces ycut,
softer and/or more collinear emissions get resolved into jets in their own right. Thus here
the number of jets is controlled by a single parameter rather than the two parameters
(energy and angle) of cone algorithms.

Quite often in e+e− analyses one examines the value of ycut that marks the transition
between (say) an event being labelled as having n and n + 1 jets, yn(n+1). Thus if y23 is
small, the event is two-jet like, while if it large then the event clearly has 3 (or more) jets.

The JADE algorithm is infrared and collinear safe, because any soft particle will get
recombined right at the start of the clustering, as do collinear particles. It was widely used
up to the beginning of the 1990s (and still somewhat beyond then), however the presence
of EiEj in the distance measure means that two very soft particles moving in opposite
directions often get recombined into a single particle in the early stages of the clustering,
which runs counter to the intuitive idea that one has of a jet being restricted in its angular
reach. As well as being physically disturbing, this leads to very non-trivial structure
(non-exponentiated double logarithms) in higher-order calculations of the distribution of
y23 [61, 62, 63] (later, this was also discussed in terms of a violation of something called
recursive infrared and collinear safety [64]).

2.2.2 The kt algorithm in e+e−

The e+e− kt algorithm [27] is identical to the JADE algorithm except as concerns the
distance measure, which is

yij =
2min(E2

i , E
2
j )(1− cos θij)

Q2
. (4)

In the collinear limit, θij " 1, the numerator just reduces to (min(Ei, Ej)θij)2 which is
nothing but the squared transverse momentum of i relative to j (if i is the softer particle)

7In experimental uses, it is often the total visible energy in the event.

19

where an event changes from a 2-jet to a 
3-jet configuration  



Figure 5: First moments of six event shape variables. The bands show the scale variations obtained
by using µ = 2Q and µ = Q/2. The data are from the JADE and OPAL experiments, taken
from [61].
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The constant K2 is given by [47–49]

K2 =
1

4

[

−
3

2
C2

F + CF CA

(

123

2
− 44ζ3

)

+ CF TRNF (−22 + 16ζ3)

]

, (2.4)

where the QCD colour factors are

CA = N, CF =
N2 − 1

2N
, TR =

1

2
(2.5)

for N = 3 colours and NF light quark flavours.

The perturbative QCD expansion of 〈yn〉 is then given by

〈yn〉(s, µ2 = s) =
(αs

2π

)

Āy,n +
(αs

2π

)2
B̄y,n +

(αs

2π

)3
C̄y,n + O(αs)

4 . (2.6)

In practice, we compute the perturbative coefficients An, Bn and Cn, which are all

normalised to σ0:

1

σ0

∫ ymax

0

dy yn dσ

dy
=

(αs

2π

)

Ay,n +
(αs

2π

)2
By,n +

(αs

2π

)3
Cy,n + O(α4

s) . (2.7)

Ay,n, By,n and Cy,n are straightforwardly related to Āy,n, B̄y,n and C̄y,n by

Āy,n = Ay,n ,

B̄y,n = By,n −
3

2
CF Ay,n ,

C̄y,n = Cy,n −
3

2
CF By,n +

(

9

4
C2

F − K2

)

Ay,n . (2.8)

These coefficients are computed at a renormalisation scale fixed to the centre-of-mass en-

ergy, and are therefore just dimensionless numbers for each observable and each value of

n.

The computation of the coefficients is carried out using the parton-level event gener-

ator program EERAD3 [3, 50], which contains the relevant matrix elements with up to five

external partons [51–54], combined using an infrared antenna subtraction method [55]. A

recently discovered inconsistency in the treatment of large-angle soft radiation terms [6]

in the original EERAD3 implementation has been corrected. They account for an initially

observed discrepancy between the EERAD3 results and the logarithmic contributions (com-

puted within SCET) to the thrust distribution to NNLO [56], which are now in full agree-

ment.

In terms of the running coupling αs(µ2), the NNLO expression for an event shape

moment measured at centre-of-mass energy squared s becomes:

〈yn〉(s, µ2) =

(

αs(µ)

2π

)

Āy,n +

(

αs(µ)

2π

)2 (

B̄y,n + Āy,nβ0 log
µ2

s

)

+

(

αs(µ)

2π

)3 (

C̄y,n + 2B̄y,nβ0 log
µ2

s
+ Āy,n

(

β2
0 log2 µ2

s
+ β1 log

µ2

s

) )

+O(α4
s) . (2.9)
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n=1 means first moment of the observable y :

comparison to JADE and OPAL data

resummation and hadronisation 
corrections are still important

Gehrmann-De Ridder, 
Gehrmann, Glover, GH 

2009



Determinations of        from event shapes αsαs fit based on event shapes at NNLO

!s

NNLO

!s

NLO

!s

NLO+NLLA

T

MH

C

BW

BT

y3

0.11
0.12
0.13
0.14
0.15

0.11
0.12
0.13
0.14
0.15

0.11
0.12
0.13
0.14
0.15

[G. Dissertori, A. Gehrmann-De Ridder,
T. Gehrmann, N. Glover,
GH, H. Stenzel, Dec ’07]

αs(MZ) = 0.1240 ± 0.0008 (stat) ± 0.0010 (exp)

± 0.0011 (had) ± 0.0029 (theo)

reduction of theory error on αs from new fit to LEP data
by a factor of 2 (1.3) compared to NLO (NLO+resum.)
scatter in different shapes greatly reduced
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αs fit based on NNLO+NLLA resummed event shapes

!s

NNLO+NLLA

!s

NNLO

!s

NLO+NLLA

T

MH

C

BW

BT

-lny3

0.11
0.115
0.12
0.125
0.13
0.135

0.11
0.115
0.12
0.125
0.13
0.135

0.11
0.115
0.12
0.125
0.13
0.135

[G. Dissertori, A. Gehrmann-De Ridder,
T. Gehrmann, N. Glover,
GH, G. Luisoni, H. Stenzel ’09]

αs(MZ) = 0.1224 ± 0.0009 (stat) ± 0.0009 (exp)

± 0.0012 (had) ± 0.0035 (theo)

next-to-leading logarithmic approximation (NLLA) re-introduces larger scale dependence
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αs fit based on NNLO+NLLA resummed event shapes

next-to-leading logarithmic approximation (NLLA) re-introduces larger scale dependence 
than pure NNLO -- why ?



 In the two-jet region the NLLA+NLO and NLLA+NNLO predictions agree by 
construction, because the matching suppresses any fixed order terms.  

The PYTHIA result is obtained with tuned parameters, where 
the tuning to data had been performed at the hadron level. 

This tuning results in a rather large effective coupling in the parton shower. 

C-parameter and jet broadenings give a parton level prediction with 
PYTHIA, which is about 10% higher than the NNLO+NLLA prediction.  

Another interesting observation:

  Renormalisation scale uncertainty dominated by NLLA in this region .

However, since the tuning has been performed at hadron level: 
hadronisation corrections come out to be smaller than what would have been found 
by tuning a hypothetical Monte Carlo prediction with a parton level corresponding 
to the NNLO+NLLA prediction.  

 The PYTHIA hadronisation corrections, applied in the alpha_s fit, might 
be too small, resulting in a larger alpha_s value.  



αs fit based on 3-jet rates
!

s(M
Z)

ln(ycut)

Q=MZ

central result with stat. uncertainty

total uncertainty

total error perturbative hadronisation
experimental statistical

ln(ycut)

"
!

s(M
Z)

0.1
0.1025
0.105

0.1075
0.11

0.1125
0.115

0.1175
0.12

0.1225
0.125

-6 -5 -4 -3 -2 -1

0

0.001

0.002

0.003

0.004

0.005

-6 -5 -4 -3 -2 -1

[G. Dissertori, A. Gehrmann-De Ridder,
T. Gehrmann, N. Glover,
GH, G. Luisoni, H. Stenzel, Oct ’09]

αs(MZ) = 0.1175 ± 0.0020 (ex) ± 0.0015 (theo)

theory error smaller than combined experimental errors !
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