Perturbative QCD and Jets

Gudrun Heinrich Max Planck Institute for Physics, Munich

Lecture 3

2013 CERN-Fermilab Hadron Collider Physics School

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The NLO revolution

Why revolution?

Enormous progress in the last few years in the calculation of NLO corrections for high-multiplicity final states (i.e. beyond $2 \rightarrow 2$ scattering)

- driven to a large extent by the development of unitarity inspired (numerical) methods
- lead to large efforts (and achievements) in the automation of NLO corrections
- merging of NLO with parton showers is well on its way

Why NLO?

(already saw a few examples in the last lectures)

- reduction of scale uncertainties (first reliable error estimate)
- corrections can be quite large (e.g. Higgs)
- more accurate predictions for normalisation and shapes of distributions
- new partonic channels can open up
- large sensitivity to cuts at LO as extra radiation is not taken
 into account well enough

Status Les Houches 2009

pp ightarrow W W jet	Dittmaier/Kallweit/Uwer; Campbell/Ellis/Zanderighi
	Binoth/Guillet/Karg/Kauer/Sanguinetti
pp ightarrow Z Z jet	Binoth/Gleisberg/Karg/Kauer/Sanguinetti; Dittmaier/Kallweit
$pp ightarrow t ar{t} b ar{b}$	Bredenstein/Denner/Dittmaier/Pozzorini;
	Bevilacqua/Czakon/Papadopoulos/Pittau/Worek
$pp ightarrow t ar{t} + 2 { m jets}$	Bevilacqua/Czakon/Papadopoulos/Worek
pp ightarrow Z Z Z	Lazopoulos/Melnikov/Petriello; Hankele/Zeppenfeld
pp ightarrow V V V	Binoth/Ossola/Papadopoulos/Pittau; Zeppenfeld et al.
$pp ightarrow V V b ar{b}$	
${\it pp} ightarrow {\it W} \gamma$ jet	Campanario/Englert/Spannowsky/Zeppenfeld
$pp ightarrow V V + 2 { m jets}$	VBF: Bozzi/Jäger/Oleari/Zeppenfeld, VBFNLO coll.
pp ightarrow W + 3 jets	*BlackHat coll.; Ellis/Giele/Kunszt/Melnikov/Zanderighi
$pp ightarrow Z + 3 { m jets}$	BlackHat collaboration
$pp ightarrow bar{b}bar{b}$	Binoth/Greiner/Guffanti/Guillet/Reiter/Reuter

• done • partial results * leading colour only

- pp → W⁺W⁻bb Denner, Dittmaier, Kallweit, Pozzorini '10; Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11
 pp → W/Z + 4 jets, W + 5 j BlackHat coll. '10/'11/'12
 pp → W/Z/γ + 3 jets BlackHat collaboration '09/'10
 pp → tt̄ +2 jets Bevilacqua, Czakon, Papadopoul., Worek '10
 pp → tt̄ bb̄ Bredenstein, Denner, Dittmaier, Pozzorini '09; Bevilacqua, Czakon, Papadopoulos, Worek '09
 pp → W γ γ j Campanario, Englert, Rauch, Zeppenfeld '11
- $pp \rightarrow W^+W^+jj$ Melia, Melnikov, Rontsch, Zanderighi '10;
- $pp \rightarrow W^+W^-jj$ Melia, Melnikov, Rontsch, Zanderighi '11; GOSAM '12
- $pp \rightarrow 4 b$ Binoth et al '09; GoSAM '11
- NGluon ($N < \sim 14$) Badger, Biedermann, Uwer '11 (public)
- $e^+e^- \rightarrow 5$ jets Frederix, Frixione, Melnikov, Zanderighi '10
- $e^+e^- \rightarrow \leq 7$ jets Weinzierl et al '11
- also: BIG advances in automation

Les Houches NLO wishlist today

Not quite true!

(fulfilled wished generate bigger ones)

Les Houches fixed order NLO wishlist has been replaced by something much better (and much larger)

NNLO QCD+NLO EW wishlist

Process	known	desired	details
Н	d σ @ NNLO QCD	$d\sigma$ @ NNNLO QCD + NLO EW	H branching ratios
	d σ @ NLO EW	MC@NNLO	and couplings
	finite quark mass effects @ NLO	finite quark mass effects @ NNLO	
H + j	d σ @ NNLO QCD (g only)	$d\sigma$ @ NNLO QCD + NLO EW	H p_T
	d σ @ NLO EW	finite quark mass effects @ NLO	
	finite quark mass effects @ LO		
H + 2j	$\sigma_{\rm tot}({\rm VBF})$ @ NNLO(DIS) QCD	$d\sigma$ @ NNLO QCD + NLO EW	H couplings
	$d\sigma(gg)$ @ NLO QCD		
	$d\sigma(VBF)$ @ NLO EW		
H + V	d σ @ NNLO QCD	with $H \to b\bar{b}$ @ same accuracy	H couplings
	d σ @ NLO EW		
tīH	$\mathrm{d}\sigma(\mathrm{stable \ tops})$ @ NLO QCD	$d\sigma$ (top decays)	top Yukawa coupling
		@ NLO QCD + NLO EW	
HH	$d\sigma @ LO QCD (full m_t dependence)$	$d\sigma @ NLO QCD (full m_t dependence)$	Higgs self coupling
	d σ @ NLO QCD (infinite m_t limit)	$d\sigma @ NNLO QCD (infinite m_t limit)$	

Table 1: Wishlist part 1 - Higgs (V = W, Z)

N. Glover, S. Dittmaier

add a column here for current exp precision and that expected at 14 TeV

> Joey Huston, Les Houches '13 summary talk

NNLO QCD + NLO EWK wishlist

Process	known	desired	details
tī	$\sigma_{\rm tot}$ @ NNLO QCD	$d\sigma$ (top decays)	precision top/QCD,
	$d\sigma$ (top decays) @ NLO QCD	@ NNLO QCD + NLO EW	gluon PDF, effect of extra
	$d\sigma$ (stable tops) @ NLO EW		radiation at high rapidity,
			top asymmetries
$t\bar{t}+j$	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)	precision top/QCD
		@ NNLO QCD + NLO EW	top asymmetries
single-top	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)	precision top/QCD, V_{tb}
		@ NNLO QCD (t channel)	
dijet	$d\sigma$ @ NNLO QCD (g only)	$\mathrm{d}\sigma$	Obs.: incl. jets, dijet mass
	$\mathrm{d}\sigma$ @ NLO weak	@ NNLO QCD + NLO EW	\rightarrow PDF fits (gluon at high x)
			$\rightarrow \alpha_s$
			CMS http://arxiv.org/abs/1212.6660
3ј	$d\sigma$ @ NLO QCD	$\mathrm{d}\sigma$	Obs.: $R3/2$ or similar
		@ NNLO QCD + NLO EW	$\rightarrow \alpha_s$ at high scales
			dom. uncertainty: scales
			CMS http://arxiv.org/abs/1304.7498
$\gamma + j$	d σ @ NLO QCD	d σ @ NNLO QCD	gluon PDF
	$d\sigma$ @ NLO EW	+NLO EW	$\gamma + b$ for bottom PDF

Table 2: Wishlist part 2 – jets and heav quarks

NNLO QCD + NLO EWK wishlist

Process	known	desired	details
V	$d\sigma$ (lept. V decay) @ NNLO QCD	$d\sigma$ (lept. V decay)	precision EW, PDFs
	$d\sigma$ (lept. V decay) @ NLO EW	@ NNNLO QCD + NLO EW	
		MC@NNLO	
V + j	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	Z + j for gluon PDF
	$d\sigma$ (lept. V decay) @ NLO EW	@ NNLO QCD + NLO EW	$\rm W+c$ for strange PDF
V + jj	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	study of systematics of
		@ NNLO QCD + NLO EW	H + jj final state
VV′	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	off-shell leptonic decays
	$d\sigma$ (stable V) @ NLO EW	@ NNLO QCD + NLO EW	TGCs
$\rm gg \rightarrow \rm VV$	$d\sigma(V \text{ decays}) @ LO QCD$	$d\sigma(V \text{ decays})$	bkg. to $H \to VV$
		@ NLO QCD	TGCs
$V\gamma$	$d\sigma(V decay)$ @ NLO QCD	$d\sigma(V decay)$	TGCs
	$d\sigma$ (PA, V decay) @ NLO EW	@ NNLO QCD + NLO EW	
$Vb\bar{b}$	$d\sigma$ (lept. V decay) @ NLO QCD	$\mathrm{d}\sigma(\mathrm{lept.}\ \mathrm{V}\ \mathrm{decay})$ @ NNLO QCD	bkg. for VH $\rightarrow b\bar{b}$
	massive b	massless b	
$VV'\gamma$	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs
		@ NLO QCD + NLO EW	
VV'V"	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs, EWSB
		@ NLO QCD + NLO EW	
VV' + j	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	bkg. to H, BSM searches
		@ NLO QCD + NLO EW	
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs, EWSB
		@ NLO QCD + NLO EW	
$\gamma\gamma$	dσ @ NNLO QCD		bkg to $H \to \gamma \gamma$

Table 3: Wishlist part 3 – EW gauge bosons (V = W, Z)

NLO in a cartoon

exploit modular structure

ingredients for *m*-particle observable at NLO

virtual part (one-loop integrals): $\mathcal{A}_{NLO}^{V} = A_2/\epsilon^2 + A_1/\epsilon + A_0^{(v)}$ $d\sigma^{V} \sim Re\left(\mathcal{A}_{LO}^{\dagger} \mathcal{A}_{NLO}^{V}\right)$

real radiation part: soft/collinear emission of massless particles \Rightarrow need subtraction terms

$$\Rightarrow \int_{\text{sing}} d\sigma^{S} = -A_{2}/\epsilon^{2} - A_{1}/\epsilon + A_{0}^{(r)}$$

$$\sigma^{NLO} = \underbrace{\int_{m+1} \left[d\sigma^{R} - d\sigma^{S} \right]_{\epsilon=0}}_{\text{numerically}} + \underbrace{\int_{m} \left[\underbrace{d\sigma^{V}}_{\text{cancel poles}} + \underbrace{\int_{s} d\sigma^{S}}_{\text{analytically}} \right]_{\epsilon=0}}_{\text{numerically}}$$

MC may also provide other nice tools, Note: e.g. for plotting, link to Rivet analysis, event files, ...

for cross-talk between MC and OLP:

need standards

Binoth Les Houches Accord (BLHA) (worked out at Les Houches 2009) BLHA has been used by several groups meanwhile \Rightarrow update August 2013

OLP: distinguish two approaches:

- generate one-loop amplitude "on the fly" or
- hard coded library of pre-generated processes
- MC: needs to be able to provide subtraction terms for NLO real radiation commonly used methods (at NLO):
 - phase space slicing Giele, Glover, Kosower '93
 - FKS subtraction Frixione, Kunszt, Signer '96
 - Catani-Seymour dipole subtraction Catani, Seymour '96
 - antenna subtraction Kosower, A.Gehrmann, T.Gehrmann, Glover '98, '05

automation of subtraction for IR divergent real radiation:

- MadDipole (public) Frederix, Greiner, Gehrmann 08
- Dipole subtraction in Sherpa (public) Gleisberg, Krauss 08
- TevJet (public) Seymour Tevlin 08
- AutoDipole (public) Hasegawa, Moch, Uwer 08,09
- Helac-Phegas (public) Czakon, Papadopoulos, Worek 09; polarized
- MadFKS Frederix, Frixione, Maltoni, Stelzer 09

- FeynArts/FormCalc/LoopTools (public) Thomas Hahn et al
- GRACE Fujimoto et al.
- BlackHat Bern et al
- Rocket Zanderighi et al
- Helac-NLO (public) Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worek
- MadLoop/aMC@NLO Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau uses CutTools (public) [Ossola, Papadopoulos, Pittau] and MadFKS
- GOSAM (public) Cullen, Greiner, GH, Luisoni, Mastrolia, Ossola, Reiter, Tramontano, uses
 Samurai (public) [Mastrolia, Ossola, Reiter, Tramontano], golem95 (public) [Binoth et al]
- NJET Badger, Biedermann, Uwer, Yundin (public)
- OpenLoops Pozzorini, Maierhöfer, Cascioli
- Recola Denner et al
- POWHEG-Box Alioli, Nason, Oleari, Re et al
- MCFM Campbell et al
- VBFNLO Zeppenfeld et al

Advantage of the interface: OLP can tea (and vice versa)

- GOSAM + MadDipole/MadGraph
 - NLO QCD corrections to $pp \rightarrow$

[Greiner, GH, Mastrolia, Ossola, Reiter, Tramonta

- SUSY QCD corrections to pp —
- QCD corrections to $pp \rightarrow \gamma \gamma + 1$
- $pp \rightarrow H+3$ jets (gluon fusion)

Mastrolia, Mirabella, Ossola, Peraro, Tramontano

- $pp
 ightarrow t \overline{t} H$ jet [van Deurzen, Luisoni, Ma
- QCD corrections to graviton (–)

Reichel, von Soden-Fraunhofen '13]

• GOSAM + SHERPA

• $pp \rightarrow H+2jets$ (gluon fusion) [van Deurzen, Greiner, Luisoni, Mastrolia,

Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano '13]

- $pp
 ightarrow W^+W^- \, bb$ [GH, Schlenk, Winter, to appear]
- $pp
 ightarrow t \overline{t} + 0,1$ jet [Hoeche, Huang, Luisoni, Schoenherr, Winter '13]
- GOSAM + POWHEG [Luisoni, Nason, Oleari, Tramontano '13]
 - $pp \rightarrow HW/HZ$ +0,1 jet

Merging NLO with Parton Showers

Allows to carry NLO precision to full chain of experimental analysis two **methods**

POWHEG

MCONLO Frixione, Webber

 can be interfaced to Pythia, Herwig, Sherpa

• formally same logarithmic accuracy (but some numerical differences)

Nason, Frixione, Oleari, Re

N.Chanon

Prompt photons (= high-pt photons)

Two mechanisms for photon production

fragmentation: described by convolution with non-perturbative fragmentation function (analogous to PDFs, but in final-state), not well constrained at high z

try to suppress fragmentation component by γ photon isolation $E_T^{had}(\delta) \leq E_T^{had}$

two categories of isolation prescriptions $(\delta) \leq E_{\text{press}}^{had}(\delta)$

 $\frac{\chi(\delta)}{\operatorname{standard}} = \left(\frac{1 - \cos(\delta)}{1 \operatorname{cons}(R_{5})} \right)^{n} \operatorname{lation} (\eta - \eta^{\gamma})^{2} + (\phi^{\leq 1} \phi^{\gamma})^{2} \leq \delta^{2}$

 $E_T^{had}(\delta) \le E_{T\,max}^{had}$

 $E_{T}^{had}(\mathfrak{g}) E_{T}^{had} \mathbb{E}_{max}^{had} \mathfrak{e}_{\mathfrak{c}}(\mathfrak{g})$ (or fixed energy in the cone \mathcal{F}_{Tmax}^{had} 2 GeV 3 GeV good for experimentalists! 4 GeV they will always have some hadronic energy near the photon $0.5 \, \text{pt}$ $E_T^{had}(\delta) \leq E_{T\,max}^{had}$ smooth isolation (Frixione)

$$E_T^{had}(\delta) \le E_{T\,max}^{had} \ \chi(\delta)$$
$$\chi(\delta) = \left(\frac{1 - \cos(\delta)}{1 - \cos(R_0)}\right)^n$$

standard/smpRtbon EcallineanPolicengences < 1% 6% $\Rightarrow 1\%$ 6% $\Rightarrow 1\%$ of fragmentation component 1% good for theorists? 3% they do not have to calculate this < 1% component at higher orders 1% 52% $\chi(\delta) = \left(\frac{1 - \cos(\delta)}{1 - \cos(R_0)}\right)^n$ Photon isolation

Comparing the two isolation criteria (on theory level) with a program that has implemented both criteria and contains fragmentation at NLO:

Diphox

 $R_0 = 0.4$ n = 1

	E_{Tmax}^{had}	standard/smooth
CMS cuts, 7 TeV	2 GeV	< %
$B_0 = 0.4$	3 GeV	< %
100 - 0.1	4 GeV	١%
n = 1	5 GeV	3%
	0.05 рт	< %
	0.5 рт	11%

Daniel de Florian, Leandro Cieri, Les Houches 2013

if isolation is very tight, difference between standard and smooth cone is small

Check less inclusive observables: any significant difference?

Diphoton production $\sqrt{s} = 8 \text{ TeV}$ **CTEQ6M** $\mu_F = \mu_R = M_{\gamma\gamma}$

 $p_T^{\gamma \, hard} \ge 40 \,\text{GeV}$ $p_T^{\gamma \, soft} \ge 30 \,\text{GeV}$ $100 \,\text{GeV} \le M_{\gamma\gamma} \le 160 \,\text{GeV}$ $|\eta^{\gamma}| \le 2.5$ $R_{\gamma\gamma} \ge 0.45$

full NLO Cone (DIPHOX) vs Cone with LO fragmentation vs NLO Smooth

Daniel de Florian, Les Houches 2013

however, very tight isolation can have pitfalls

- can generate large logarithms log(R) which would be cancelled (partially) only by the fragmentation component at NLO
- can interfere with jet clustering
- mismatch theory-experiment larger because relative importance of underlying event becomes larger

 $\epsilon = 0.5$

scale uncertainty larger with smooth cone isolation

exclusive cuts: veto on second jet $p_{T,j2} \leq 30 \text{ GeV}$

$\gamma\gamma$ + jet

comparison of isolation parameters for $\gamma\gamma$ invariant mass $M_{\gamma,\gamma}$

exclusive cuts

differences between standard cone isolation and Frixione isolation decrease for decreasing z_c resp. ϵ

but are sizable for moderate isolation parameters

Greiner, Gehrmann, GH 2013

 $pp
ightarrow \gamma\gamma$ at NNLO

$$\begin{split} \sqrt{S} &= 14 \,\mathrm{TeV} \\ p_T^{\gamma \,hard} \geq 40 \,\mathrm{GeV} \\ p_T^{\gamma \,soft} \geq 25 \,\mathrm{GeV} \\ &|\eta^{\gamma}| \leq 2.5 \\ &20 \,\mathrm{GeV} \leq M_{\gamma\gamma} \leq 250 \,\mathrm{GeV} \end{split}$$

Frixione isolation

Catani, Cieri, De Florian, Ferrera, Grazzini, 2012

S.Catani, L.Cieri, DdeF, G.Ferrera, M.Grazzini (2012)

NNLO calculations

what are the different types of ingredients?

two-loop matrix elements $(2\rightarrow 2)$

contain explicit infrared poles from two-loop virtual integrals

one-loop matrix elements $(2\rightarrow 3)$

contain explicit infrared poles from one-loop virtual integrals and implicit infrared poles from singly unresolved real emission

will show up upon integration over the phase space

tree level matrix elements $(2 \rightarrow 4)$ contain implicit infrared poles from **doubly** unresolved real emission

main difficulties:

- isolate and subtract implicit infrared poles (real radiation)
- calculate two-loop virtual integrals

Structure of NNLO cross sections

$$\begin{split} \mathrm{d}\hat{\sigma}_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{NNLO}^{S} \right) \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^{VS} + \mathrm{d}\hat{\sigma}_{NNLO}^{MF,1} \right) \\ &+ \int_{\mathrm{d}\Phi_{m}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV} + \mathrm{d}\hat{\sigma}_{NNLO}^{MF,2} \right) + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\hat{\sigma}_{NNLO}^{S} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\hat{\sigma}_{NNLO}^{VS} \end{split}$$

- ► Real and virtual contributions: $d\hat{\sigma}_{NNLO}^{RR}$, $d\hat{\sigma}_{NNLO}^{RV}$, $d\hat{\sigma}_{NNLO}^{VV}$
- Subtraction term for double real radiation: $d\hat{\sigma}_{NNLO}^S$
- Subtraction term for one-loop single real radiation: $d\hat{\sigma}_{NNLO}^{VS}$
- Mass factorization counter-terms: $d\hat{\sigma}_{NNLO}^{MF,1}$, $d\hat{\sigma}_{NNLO}^{MF,2}$

remember NLO:

$$\sigma^{NLO} = \underbrace{\int_{m+1} \left[d\sigma^R - d\sigma^S \right]_{\epsilon=0}}_{\text{numerically}} + \underbrace{\int_{m} \left[\underbrace{d\sigma^V}_{\text{cancel poles}} + \underbrace{\int_{s} d\sigma^S}_{\text{analytically}} \right]_{\epsilon=0}}_{\text{numerically}}$$

Real radiation at NNLO: methods

Sector decomposition

(T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello)

▶ pp → H, pp → V, including decays (C.Anastasiou, K. Melnikov, F. Petriello; S. Bühler, F. Herzog, A. Lazopoulos, R. Müller)

Sector-improved subtraction schemes

(M. Czakon; R. Boughezal, K. Melinkov, F. Petriello)

▶ $pp \rightarrow t\bar{t}$ (M. Czakon, P. Fiedler, A. Mitov)

- ▶ $pp \rightarrow H+j$ (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze)
- ▶ **q**_T-subtraction (S. Catani, M. Grazzini)

4

- ▶ $pp \rightarrow H, pp \rightarrow V, pp \rightarrow \gamma \gamma, pp \rightarrow VH$ (S. Catani, L. Cieri, D. de Florian, G. Ferrera M. Grazzini, F. Tramontano)
- Antenna subtraction (T. Gehrmann, E.W.N. Glover, AG)
 - $e^+e^- \rightarrow 3j$ (T. Gehrmann, E.W.N. Glover, G. Heinrich, AG; S. Weinzierl)
 - ▶ $pp \rightarrow 2j$ (T. Gehrmann, E.W.N. Glover, J. Pires, AG)

Aude Gehrmann-De Ridder

SM@LHC 2013 Freiburg

NNLO: what is available or in the pipeline?

Some measurements to few percent accuracy $\checkmark e^+e^- \rightarrow 3 \text{ jets}$ $e^-p \rightarrow (2+1)$ jets $\mathcal{O}(\alpha_s^2)$ $\checkmark pp \rightarrow V$ Match experimental accuracy $pp \rightarrow jets$ partial Extract accurate information $pp \rightarrow V + jets$ $\checkmark pp \to t\bar{t}$ Some processes with still (potentially) large NNLO corrections $\checkmark pp \to H$ $\checkmark pp \rightarrow \gamma \gamma$ meaningful comparison solid estimate of uncertainties $pp \to VV$ $pp \rightarrow H + jets$ partial

> Daniel de Florian, EPS 2013

Conclusions

- understanding QCD effects is crucial at hadron colliders
- precision measurements require at least NLO accuracy
- a lot of progress has been achieved in recent years (fixed higher orders, matching to parton showers, resummation, all-orders infrared structure of massless Yang-Mills theories, ...)
- nonetheless let us keep the hopes up that QCD (+EW/Higgs) is not all we will see in the next LHC run!

understanding QCD better will also help him ...