

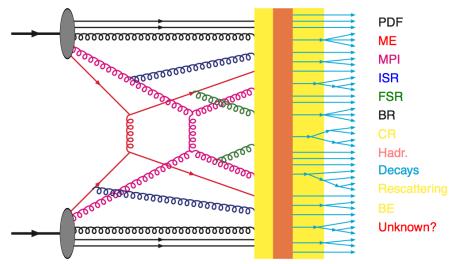
Monte Carlo Generators and Soft QCD 2. Matching and Merging

Torbjörn Sjöstrand

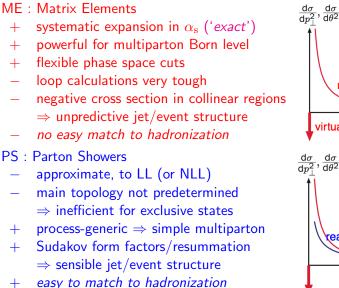
Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE-223 62 Lund, Sweden

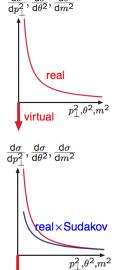
CERN, 2 September 2013

An event consists of many different physics steps, which have to be modelled by event generators:



Matrix elements vs. parton showers





+

+

+

+

++ Myth: parton showers always underestimate true jet rate. Not true!

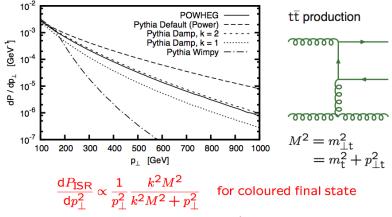
- ME expression vs. PS splitting kernels: can go either way; always possible to adjust up kernels so that PS > ME.
- Coverage of phase space can leave dead zones or overlaps: HERWIG (angular-ordering) fix: add ME in dead zone; PYTHIA (p⊥-ordered): no dead zones for *first* emission, but subsequent ones unaccounted for;

VINCIA fix: allow some non-ordered emissions; VINCIA solution: sector showers.

• Starting scale of showers most obvious to "get it wrong". E.g. $q\overline{q} \rightarrow Z^0$ factorization/renormalization scale m_Z gave historical choice $Q_{\max}^2 = m_Z^2$: "wimpy shower"; but "correct" answer is $Q_{\max}^2 = s = E_{cm}^2$: "power shower".

PS matching to MEs: realistic hard default

Aim: provide better default shower behaviour at large p_{\perp} , to bridge gap between "power" and "wimpy" showers.



No dampening for uncoloured final state (W⁺W⁻, ..., SUSY). R. Corke & TS, Eur. Phys. J. C69 (2010) 1

Recall complementary strengths:

- ME's good for well separated jets
- PS's good for structure inside jets
- Marriage desirable! But how?

Very active field of research; requires a lecture series of its own

- Reweight first PS emission by ratio ME/PS (simple POWHEG)
- Combine several LO MEs, using showers for Sudakov weights
 - CKKW: analytic Sudakov not used any longer
 - CKKW-L: trial showers gives sophisticated Sudakovs
 - MLM: match of final partonic jets to original ones
- Match to NLO precision of basic process
 - MC@NLO: additive \Rightarrow LO normalization at high p_{\perp}
 - POWHEG: multiplicative \Rightarrow NLO normalization at high p_{\perp}
- Combine several orders, as many as possible at NLO
 - MENLOPS
 - UNLOPS (U = unitarized = preserve normalizations)

Confused terminology.

Originally (?)

- Matching: separation scale, e.g. $p_{\perp sep}$;
 - $p_{\perp} > p_{\perp ext{sep}}$: use ME;
 - $p_{\perp} < p_{\perp sep}$: use PS.
- Merging: combination of ME+PS over full phase space, but ME input only for hardest emission, at whatever p_⊥.

Nowadays instead e.g.

- Merging: LO multijet ME+PS for $p_{\perp} > p_{\perp sep}$, then PS for $p_{\perp} < p_{\perp sep}$.
- Matching: NLO MEs separated by multiplicity.

In following: matching/merging used interchangeably.

Multijet merging - 1

Start from core process, e.g. $\rm Z^0$ production (or $\rm W/H/\ldots)$ and add more legs (but no loops) to get $\rm Z^0$ + 1j, $\rm Z^0$ + 2j, \ldots

Define allowed phase space by $p_{\perp \rm sep}$, e.g. \sim jet algorithms:

- all $p_{\perp i} > p_{\perp sep}$ (p_{\perp} w.r.t. beam axis)
- all $p_{\perp ij} = \min(p_{\perp i}, p_{\perp j}) R_{ij} > p_{\perp sep}$ with $R_{ij}^2 = (y_i - y_j)^2 + (\varphi_i - \varphi_j)^2$.

Can one add σ 's for full answer: $\sigma_Z = \sigma_0 + \sigma_1 + \sigma_2 + ...$? No!

- Each σ_i , i > 0, contains soft and collinear divergences, giving $\sigma_i = \sigma_i(p_{\perp sep}) \sim \left(\alpha_s \log^2(p_{\perp max}^2/p_{\perp sep}^2)\right)^i$.
- The σ_i are inclusive, e.g. dσ₁/dp_{⊥1} = Z⁰ + 1j at p_{⊥1} + any other jet(s) above p_{⊥sep}, so significant amount of doublecounting.

Multijet merging – 2

Want to make it exclusive, i.e.

 $d\sigma_1/dp_{\perp 1} = Z^0 + 1j$ at $p_{\perp 1} + no$ other jet(s) above $p_{\perp sep}$.

Recall Sudakov form factor of shower = no-emission probability, e.g. with p_{\perp} as evolution variable for FSR (ISR more messy)

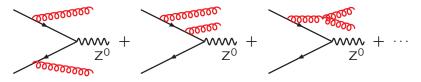
$$\begin{aligned} \Delta_{a}(p_{\perp 1}^{2}, p_{\perp 2}^{2}) &= \exp\left(-\sum_{b,c} \int_{p_{\perp 2}^{2}}^{p_{\perp 1}^{2}} \frac{\mathrm{d}p_{\perp}^{2}}{p_{\perp}^{2}} \int \frac{\alpha_{\mathrm{s}}}{2\pi} P_{a \to bc}(z') \,\mathrm{d}z'\right) \\ \mathrm{d}\mathcal{P}_{a \to bc} &= \frac{\mathrm{d}p_{\perp}^{2}}{p_{\perp}^{2}} \frac{\alpha_{\mathrm{s}}}{2\pi} P_{a \to bc}(z) \,\mathrm{d}z \,\Delta_{a}(p_{\perp \mathrm{max}}^{2}, p_{\perp}^{2}) \end{aligned}$$

Multiplication by Sudakov form factors turns inclusive into exclusive.

Alternatively: Sudakovs provides (crude?) estimate of higher-order loop corrections needed to unitarize (exponentiate) leading orders.

Two issues to solve:

- Several Feynman graphs/shower histories \Rightarrow ill-defined p_{\perp} emission scales.
- Showers use running α_s(p_⊥), while MEs use fixed: gauge invariance!



Standard solution:

- Construct all possible shower histories, pick one according to probability for that particlar history.
- ² Generate MEs with fixed high α_s , say $\alpha_s(p_{\perp sep})$, and afterwards reweight by $\prod_{\text{vertices}} (\alpha_s(p_{\perp i})/\alpha_s(p_{\perp sep}))$.

CKKW

S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 0111 (2001) 063 Simple illustration: Z⁰ decay:

$$\begin{aligned} \frac{\sigma_{\mathrm{q}\overline{\mathrm{q}},\mathrm{excl}}}{\sigma_{\mathrm{q}\overline{\mathrm{q}},\mathrm{incl}}} &= \left[\Delta_q(E_{\mathrm{cm}}^2, p_{\perp \mathrm{sep}}^2) \right]^2 \\ \frac{\mathrm{d}\sigma_{\mathrm{q}\overline{\mathrm{q}},\mathrm{g},\mathrm{excl}}}{\mathrm{d}\sigma_{\mathrm{q}\overline{\mathrm{q}}\mathrm{g},\mathrm{incl}}} &= \Delta_q(E_{\mathrm{cm}}^2, p_{\perp \mathrm{sep}}^2) \Delta_q(E_{\mathrm{cm}}^2, p_{\perp 1}^2) \\ &\times \Delta_q(p_{\perp 1}^2, p_{\perp \mathrm{sep}}^2) \Delta_g(p_{\perp 1}^2, p_{\perp \mathrm{sep}}^2) \\ &= \left[\Delta_q(E_{\mathrm{cm}}^2, p_{\perp \mathrm{sep}}^2) \right]^2 \Delta_g(p_{\perp 1}^2, p_{\perp \mathrm{sep}}^2) \end{aligned}$$

and so on for higher multiplicities.

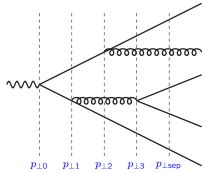
Normal showers start from $p_{\perp sep}$ downwards, except for highest multiplicity from last $p_{\perp n}$ downwards.

Original CKKW drawback: use analytical Sudakovs. Formally correct but numerically lousy, so not used any longer.

CKKW-L

L. Lönnblad, JHEP0205 (2002) 046: use shower to generate Sudakovs! advantage: proper kinematics; drawback: use shower p_{\perp} def.

- generate *n*-body by ME mixed in proportions ∫ dσ_n above p_{⊥sep} cut
- reconstruct fictitious p_{\perp} -ordered PS



- reject from $\alpha_{\rm s}(p_{\perp \rm sep})$ to $\alpha_{\rm s}(p_{\perp i})$
- **(**) run trial shower between each $p_{\perp i}$ and $p_{\perp i+1}$
- reject if shower branching \Rightarrow Sudakov factor
- regular shower below $p_{\perp sep}$ (or below $p_{\perp n}$ for $n = n_{max}$)

How pick $p_{\perp sep}$ scale? The better the shower, the less crucial!

- $p_{\perp sep} \ll p_{\perp max}$: large logarithms, $\alpha_s \log^2(p_{\perp max}^2/p_{\perp sep}^2) \ge 1$:
 - need to include MEs for high multiplicities (beyond calculational capability? too slow?);
 - will reject most events since Sudakovs \ll 1; so overall inefficient/slow.
- Increasing p_{⊥sep}: reduced need for MEs and faster, but also less ME info survives in generated events.

Realistically demand $\int d\sigma_0 \ge \int d\sigma_1 \ge \int d\sigma_2 \ge \ldots$, which typically may mean $p_{\perp sep} \simeq p_{\perp max}/10$.

Study of $p_{\perp sep}$ variation is central consistency check.

MLM

M.L. Mangano et al., JHEP0701 (2007) 013

Use full shower evolution to provide veto, in one step!

- **(**) generate *n*-body by ME mixed in proportions $\int d\sigma_n$
- **2** reconstruct fictitious p_{\perp} -ordered PS
- 3 reject from $\alpha_{\rm s}(p_{\perp \rm sep})$ to $\alpha_{\rm s}(p_{\perp i})$
- Iet a shower evolve "freely" from n-parton state
- (cone-)cluster showered event
- Imatch original partons and final jets
 - loop over all partons in decreasing p_{\perp}
 - for each parton fins nearest jet in ΔR
 - if $\Delta R < R_{
 m match}$ then matched and remove jet

 keep the event if n_{jet} = n_{parton} and all partons are matched (for highest parton multiplicity allow extra unmatched softer jets)
 Similar in spirit to CKKW-L, but less formal.
 Implemented in AlpGen and also (with variations) in MadGraph.

ME corrections (POWHEG precursor) -1

M. Bengtsson & TS, Phys.Lett. B185 (1987) 435; E. Norrbin & TS, Nucl. Phys. B603 (2001) 297) Objective: cover full phase space with smooth transition ME/PS (and be accurate to NLO).

Want to reproduce $W^{\text{ME}} = \frac{1}{\sigma(\text{LO})} \frac{\mathrm{d}\sigma(\text{LO} + \mathrm{g})}{\mathrm{d}(\text{phasespace})}$

by shower generation $+\ correction\ procedure$

Procedure:

- Ensure that $W^{PS} \ge W^{ME}$ everywhere (easy!).
- **②** Generated W^{PS} acquires Sudakov by shower evolving in Q

$$W^{\mathrm{PS}}_{\mathrm{actual}}(Q^2) = W^{\mathrm{PS}}(Q^2) \exp\left(-\int_{Q^2}^{Q^2_{\mathrm{max}}} W^{\mathrm{PS}}(Q'^2) \mathrm{d}{Q'}^2
ight)$$

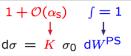
ME corrections (POWHEG precursor) – 2

- Accepting emission with probability $W^{ME}/W^{PS} \le 1$ gives W^{ME} in prefactor but still W^{PS} in Sudakov.
- Mismatch fixed by **veto algorithm**: if emission at Q_{trial}^2 is rejected then put $Q_{\text{max}}^2 = Q_{\text{trial}}^2$ and continue evolution from this scale downwards

$$W_{\text{actual}}^{\text{PS}}(Q^2) = W^{\text{ME}}(Q^2) \exp\left(-\int_{Q^2}^{Q_{\text{max}}^2} W^{\text{ME}}(Q'^2) \, \mathrm{d}Q'^2\right)$$

PS only remains as ordering variable for phase-space sweeping.

- Solution of the second second
 - $K = \sigma_{\rm NLO} / \sigma_{\rm LO}$ factor for hard and soft emissions

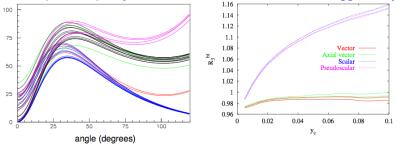


PYTHIA FSR ME corrections

PYTHIA performs merging with generic FSR $a \rightarrow bcg$ ME, in SM: $\gamma^*/Z^0/W^{\pm} \rightarrow q\overline{q}$, $t \rightarrow bW^+$, $H^0 \rightarrow q\overline{q}$, and MSSM: $t \rightarrow bH^+$, $Z^0 \rightarrow \tilde{q}\overline{\tilde{q}}$, $\tilde{q} \rightarrow \tilde{q}'W^+$, $H^0 \rightarrow \tilde{q}\overline{\tilde{q}}$, $\tilde{q} \rightarrow \tilde{q}'H^+$, $\chi \rightarrow q\overline{\tilde{q}}$, $\chi \rightarrow q\overline{\tilde{q}}$, $\tilde{q} \rightarrow q\chi$, $t \rightarrow \tilde{t}\chi$, $\tilde{g} \rightarrow q\overline{\tilde{q}}$, $\tilde{q} \rightarrow q\tilde{g}$, $t \rightarrow \tilde{t}\tilde{g}$

g emission for different colour, spin and parity:

 $R_3^{\rm bl}(y_c)$: mass effects in Higgs decay:



Basic concept generalizes to ISR, but NLO rescaling less trivial.

POWHEG

Nason; Frixione, Oleari, Ridolfi (e.g. JHEP 0711 (2007) 070)

$$d\sigma = \bar{B}(v)d\Phi_{v}\left[\frac{R(v,r)}{B(v)}\exp\left(-\int_{\rho_{\perp}}\frac{R(v,r')}{B(v)}d\Phi_{r}'\right)d\Phi_{r}\right] ,$$

$$\bar{B}(v) = B(v) + V(v) + \int d\Phi_{r}[R(v,r) - C(v,r)] .$$

 $v, d\Phi_v$ Born-level *n*-body variables and differential phase space $r, d\Phi_r$ extra n + 1-body variables and differential phase space B(v) Born-level cross section V(v) Virtual corrections R(v, r) Real-emission cross section C(v, r) Conterterms for collinear factorization of parton densities. Note that $\int \bar{B}(v) d\Phi_v \equiv \sigma_{\rm NLO}$ and $\int [\cdots d\Phi_r] \equiv 1$. So pick the real emission with largest p_\perp according to complete

ME's + ME-based Sudakov, with NLO normalization, and let showers do subsequent evolution downwards from this p_{\perp} scale.

MC@NLO - 1

Frixione, Webber, JHEP 0206 (2002) 029

Start from $\sigma = \sigma_B + \sigma_V + \int d\sigma_R$ (B = born, V = virtual (incl. counterterms), R = real emissions). Assume well-understood MC shower algorithm:

- ullet first emission described by $\mathrm{d}\sigma_{R,\mathrm{MC}}$ \times Sudakov,
- which agrees with $\mathrm{d}\sigma_R$ in collinear/soft limits,
- and with analytically calculable $\sigma_{R,\mathrm{MC}} = \int \mathrm{d}\sigma_{R,\mathrm{MC}}.$

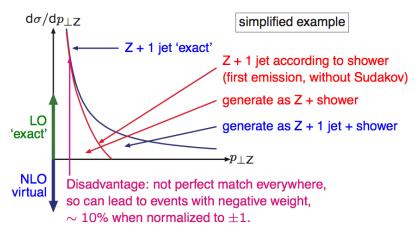
Then

$$\sigma = \sigma_B + \overbrace{\sigma_V + \sigma_{R,MC}}^{\text{divergences cancel}} + \int \underbrace{\left(d\sigma_R - d\sigma_{R,MC} \right)}^{\text{divergences cancel}}$$

so MC implementation:

- $\sigma_B + \sigma_V + \sigma_{R,MC}$: start from Born topology and add showers to it, with no particular constraint.
- $\int (d\sigma_R d\sigma_{R,MC})$: pick radiation topology and add showers below selected radiation scale.

MC@NLO - 2



Key difference to POWHEG: $d\sigma_R$ is *not* boosted by *K* factor. \Rightarrow Pure NLO results are obtained for all observables when (formally) expanded in powers of α_s , whereas POWHEG "guesses" some NNLO corrections.

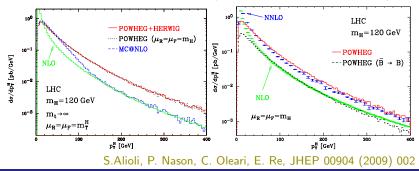
Interpolation between POWHEG and MC@NLO

Master formula for meaningful NLO implementations:

$$d\sigma = d\sigma_{R,hard} + (\sigma_B + \sigma_{R,soft} + \sigma_V) \left[\frac{d\sigma_{R,soft}}{\sigma_B} \exp\left(-\int \frac{d\sigma_{R,soft}}{\sigma_B} \right) \right]$$

ordered in " p_{\perp} ", with shower from selected " p_{\perp} " downwards POWHEG: $\sigma_{R,hard} = 0$ MC@NLO: $\sigma_{R,soft} = \sigma_{R,MC}$

"Best" choice process-dependent (guess NLO behaviour of σ_R)



CKKW(-L), MLM: several topologies at LO, e.g. $Z^0 + 0, 1, 2, 3, 4j$ POWHEG, MC@NLO: lowest at NLO, e.g. Z^0 , next at LO, $Z^0 + 1j$ the rest by showers \Rightarrow more important for latter

Which to use depends on application:

- Multijet topologies important (e.g. searches)
 - Get going fast \Rightarrow MLM
 - $\bullet\,$ Willing to spend time on optimal generation $\Rightarrow\,$ CKKW-L

Personal opinion: CKKW-L better choice for multijets

• Normalization important (e.g. PDF determinations, $\sigma_{t\bar{t}}$, σ_{H})

- POWHEG & MC@NLO explore reasonable range of variation
- POWHEG has no negative weights
- $\bullet~\mbox{PWWHEG}$ better separated from shower details \Rightarrow flexible
- POWHEG optimal for p_{\perp} -ordered showers (like PYTHIA)
- POWHEG scaling-up of real emissions (B/B) abhors purists, but physically it probably(?) makes for a faster convergence

Personal opinion: POWHEG better choice for NLO

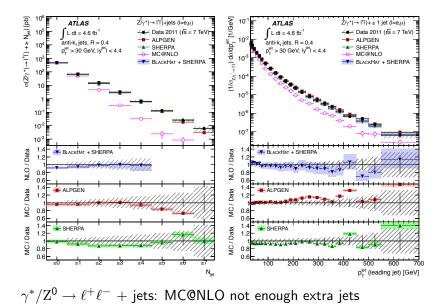
How combine NLO precision for few-body topologies with LO for many-body ones?

Current frontline: no consensus, no one-line formulae!

- MENLOPS (Hamilton, Nason): use POWHEG for Z⁰ + 0, 1j, add MEs for Z⁰ + ≥ 2j with K = B/B factor, and adjust Z⁰ + 1j to retain total σ_{NLO}
- MEPS@NLO (SHERPA): use POWHEG for ${\rm Z}^0+0j$ and for ${\rm Z}^0+1j,$ MEs for ${\rm Z}^0+\geq 2j$
- UNLOPS (Lönnblad, Prestel; Plätzer): input ~ as above, but careful bookkeeping of gain/loss between event classes to preserve NLO normalization Personal opinion: currently most sophisticated approach, but at the price of lengthy formulae ⇒ not transparent
- many further groups/ideas: VINCIA, SCET, Nagy, ...

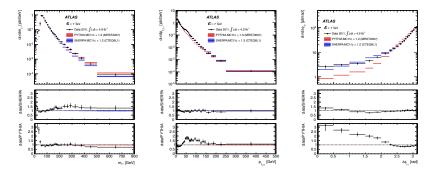
The dust has not yet settled...

Example of results -1



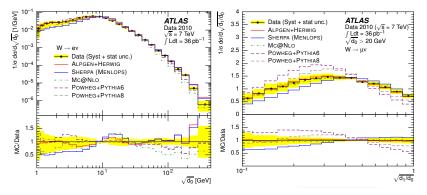
Torbjörn Sjöstrand

Example of results – 2



Diphotons: $m_{\gamma\gamma}$, $p_{\perp,\gamma\gamma}$ and $\Delta\varphi_{\gamma\gamma}$: PYTHIA pure shower fails to give enough nearby photons; SHERPA ME matching fills it in.

Example of results -3



Use k_{\perp} clustering algorithm to define jet resolution scales $d_n \sim p_{\perp}^2$ in W events: no clear winner.

Data summary: LO+PS not enough, NLO+PS not for multijets, for the rest different approaches fare comparably well.

Range of models useful to probe uncertainties.

Summary and Outlook

- ME legs fine, but lack enough loops to give convergence in observable multijet phase space.
- Process-generic nature of showers a strength and a weakness.
- Combination methods: Sudakovs estimate summed loops.
- LO multijet merging: CKKW-L well established.
- NLO merging: POWHEG and MC@NLO still contenders.
- Multijets + NLO: current frontline, no consensus.
- (Envelope of) generators doing fine compared with LHC data.

Next (tomorrow):

- Multiparton interactions
- Hadronization