CERN-Fermilab Hadron Collider Physics Summer School 2013

Heavy lons Part 1/3

Andrea Dainese (INFN Padova, Italy)

Disclaimer and Acknowledgements

- Ultra-relativistic Heavy Ions: a very rich field (6 large active experiments) with >20 years of experimental history + very active and broad theory community
- I will present a selection of topics (non exhaustive!), from an experimental point of view (only qualitative theory arguments)

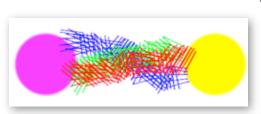
- Thanks to the Organizers for their invitation and support
- ◆ Thanks to those from whom I borrowed slides/figures: F.Antinori, N.Armesto, H.Caines, M.Floris, B.Hippolyte, C.Salgado, T.Ullrich, ...

Introductory remarks

Why Colliding Heavy Ions?

Fundamental Questions:

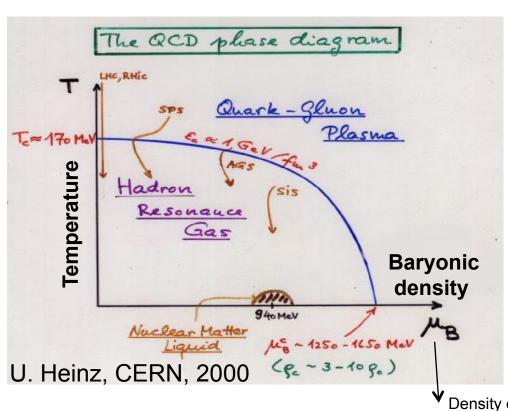
- Can the quarks inside the protons and neutrons be freed?
- Why do protons and neutrons weigh 100 times more than the quarks they are made of?
- What happens to matter when it is heated to 100,000 times the temperature at the centre of the Sun?



Strongly-interacting matter, QCD, and confinement

- Strong interaction: keeps together
 - quarks inside protons and neutrons
 - protons and neutrons inside atomic nuclei and is carried by the colour charge (quarks, gluons)
- Quantum ChromoDynamics (QCD) is the theory that describes the strong interaction
- Important feature of QCD: confinement
 - → no free quarks

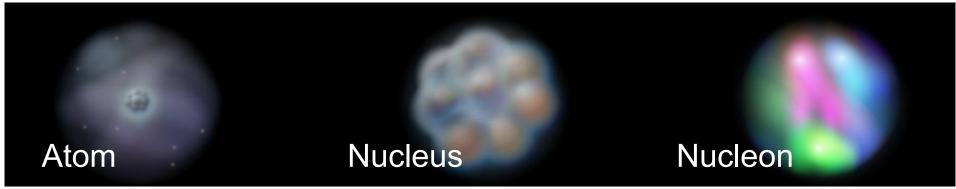
cartoon of a quark and anti-quark being "pulled apart" and their colour connection



Phase diagram of strongly-interacting (QCD) matter

At high energy density ε (high temperature and/or high density) hadronic matter undergoes a phase transition to the *Quark-Gluon Plasma* (QGP)

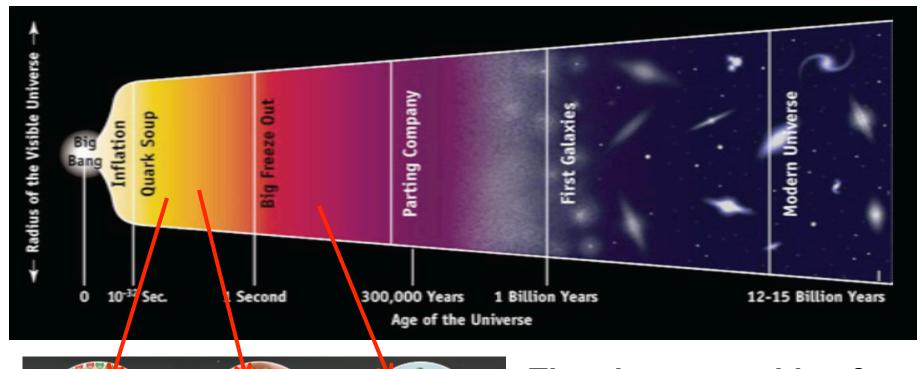
- a state in which colour confinement is removed
- and chiral symmetry is approximately restored
- a high-density QCD medium of "free" quarks and gluons

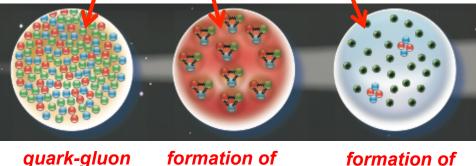

Density of baryons – anti-baryons

critical energy density $\varepsilon_c \sim 1 \text{ GeV/fm}^3 \sim 10 \ \varepsilon_{\text{nucleus}}$

Why Colliding Heavy Ions?

Fundamental Questions:


- Can the quarks inside the protons and neutrons be freed?
 a state in which colour confinement is removed
- Why do protons and neutrons weigh 100 times more than the quarks they are made of?
 and chiral symmetry is approximately restored
- What happens to matter when it is heated to 100,000 times the temperature at the centre of the Sun? a high-density QCD medium of "free" quarks and gluons



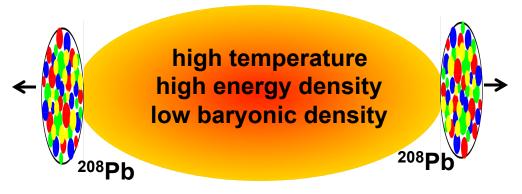
Quark-Gluon Plasma (QGP):

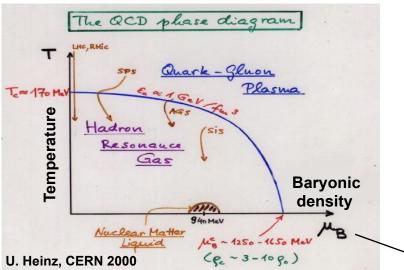
the first "matter" in the primordial Universe

protons/neutrons

The phase transition from quarks to hadrons occured in the cooling Universe 10 µs after the Big Bang

plasma


atomic nuclei



The Little Bang in the lab

- ♦ QCD phase transition (QGP \rightarrow hadrons) at $t_{\text{Universe}} \sim 10 \, \mu \text{s}$
- ♦ In high-energy heavy-ion collisions, large energy densities (> 1 GeV/fm³) are reached over large volumes (> 1000 fm³)

Density of baryons – anti-baryons

Ultra-relativistic heavy-ion accelerators

- ♦ BNL-AGS, early '90s, Au-Au up to $\sqrt{s_{NN}} = 5 \text{ GeV}$
 - Below critical energy density
- ◆ **CERN-SPS**, from 1994, Pb-Pb up to $\sqrt{s_{NN}} = 17 \, \text{GeV}$
 - Estimated energy density ~ 1 × critical value ε_c
 - First signatures of the QGP observed
- ♦ BNL-RHIC, from 2000, Au-Au $\sqrt{s_{NN}} = 8 200 \text{ GeV}$
 - Estimated energy density ~ 10 × critical value ε_c
 - Discovery of several properties of the QGP
- ◆ **CERN-LHC**, from 2010, Pb-Pb $\sqrt{s_{NN}} = 2.76 5.5 \text{ TeV}$
 - Estimated energy density ~ 15-30 × critical value ε_c
 - > (Ongoing) Precise characterization of the QGP, new probes available

Introduction

- The QCD phase transition and deconfinement
- Nucleus-nucleus collisions

Measurements and phenomenology

- Global observables the QGP fireball
- Strangeness production historic signature of the QGP
- Bulk particle production hadronization of the QGP
- ➤ Heavy flavour production ← transport properties of the QGP
- Quarkonium production deconfinement in the QGP
- Surprises from LHC p-Pb current "hottest topic"

Part

Part 2

Part 3

The QCD phase transition

Two puzzles in QCD: i) Hadron Masses

FERMIONS

matter constituents spin = 1/2, 3/2, 5/2, ...

Leptons spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge
ν _e electron neutrino	<1×10 ⁻⁸	0
e electron	0.000511	-1
$ u_{\mu}^{ m muon}$ neutrino	<0.0002	0
$oldsymbol{\mu}$ muon	0.106	-1
$ u_{ au}^{ au}$ tau neutrino	<0.02	0
au tau	1.7771	-1

Quarks spin = 1/2		
Flavor	Approx. Mass GeV/c ²	Electric charge
U up	0.003	2/3
d down	0.006	-1/3
C charm	1.3	2/3
S strange	0.1	-1/3
t top	175	2/3
b bottom	4.3	-1/3

BOSONS

force carriers spin = 0, 1, 2, ...

Unified Electroweak spin = 1		
Name	Mass GeV/c ²	Electric charge
γ photon	0	0
W ⁻	80.4	-1
W ⁺	80.4	+1
Z^0	91.187	0

Strong (color) spin = 1		
Name	Mass GeV/c ²	Electric charge
g gluon	0	0

- A proton is thought to be made of two u and one d quarks
- The sum of their masses is around 12 MeV
- ... but the proton mass is 938 MeV!
- How is the extra mass generated?

Two puzzles in QCD: ii) Confinement

FERMIONS

matter constituents spin = 1/2, 3/2, 5/2, ...

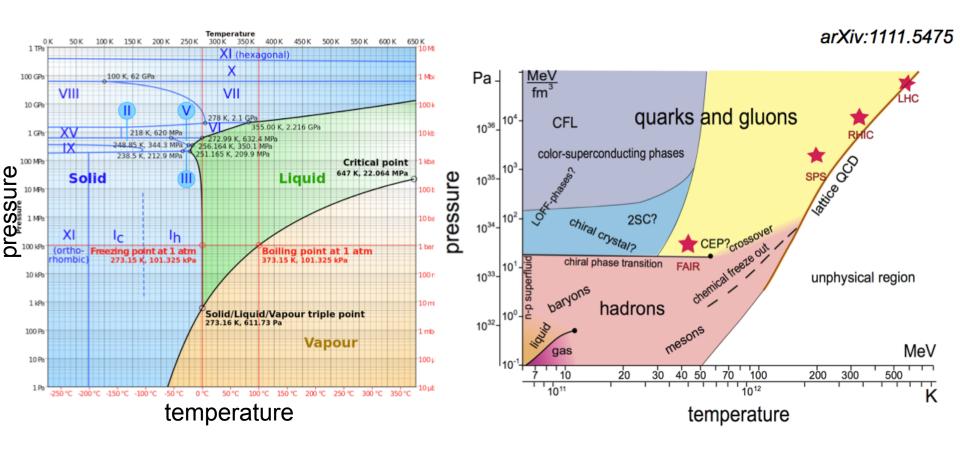
Leptons spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge
ν _e electron neutrino	<1×10 ⁻⁸	0
e electron	0.000511	-1
$ u_{\mu}^{ m muon}$ neutrino	<0.0002	0
$oldsymbol{\mu}$ muon	0.106	-1
$ u_{ au}^{ au}$ tau neutrino	<0.02	0
$oldsymbol{ au}$ tau	1.7771	-1

Quarks spin = 1/2		
Flavor	Approx. Mass GeV/c ²	Electric charge
U up	0.003	2/3
d down	0.006	-1/3
C charm	1.3	2/3
S strange	0.1	-1/3
t top	175	2/3
b bottom	4.3	-1/3

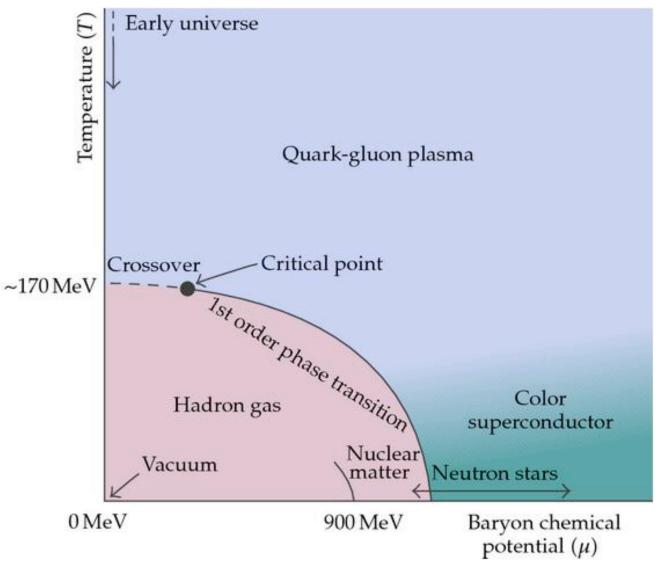
BOSONS

force carriers spin = 0, 1, 2, ...

Unified Electroweak spin = 1		
Name	Mass GeV/c ²	Electric charge
γ photon	0	0
W ⁻	80.4	-1
W ⁺	80.4	+1
Z^0	91.187	0


Strong (color) spin = 1		
Name	Mass GeV/c ²	Electric charge
g gluon	0	0

- Nobody ever succeeded in detecting an isolated quark
- Quarks seem to be permanently confined within protons, neutrons, pions and other hadrons.
- It looks like one half of the fundamental fermions are not directly observable... why?


Water and QCD phase diagrams

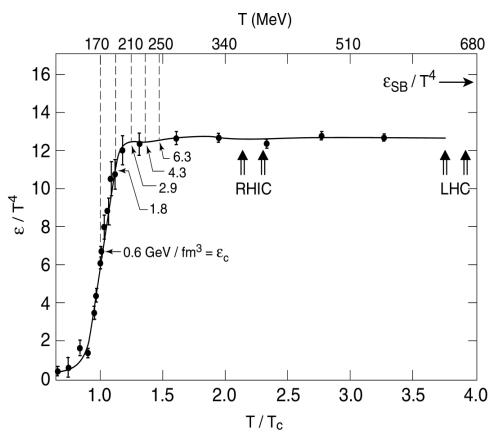
QCD phase diagram (Standard representation)

K. Rajagopal and F. Wilczek, Handbook of QCD

Lattice QCD

- Method for doing calculations in non-perturbative regime of QCD
- Discretization on a space-time lattice
- Ultraviolet (large momentum scale = small space-time scale) divergencies can be avoided
- Compute thermo-dynamical properties for a system of interacting quarks and gluons

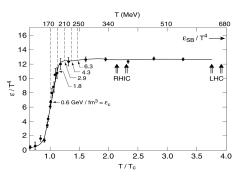
$$p = \frac{\varepsilon}{3} = n_{dof} \frac{\pi^2 T^4}{90}$$


for an ideal gas

Lattice QCD: Phase Transition

$$\frac{\varepsilon}{T^4}$$
 vs. T

- Zero baryon density, 2 quark flavours (u, d)
- ϵ changes rapidly around T_c
- $T_c = 170 \text{ MeV}$: • $\epsilon_c = 0.6 \text{ GeV/fm}^3$
- at T~1.2 T_c ε settles at about 80% of the Stefan-Boltzmann value for an ideal gas of q,q, g (ε_{SB})


F. Karsch et al. PLB478 (2000)

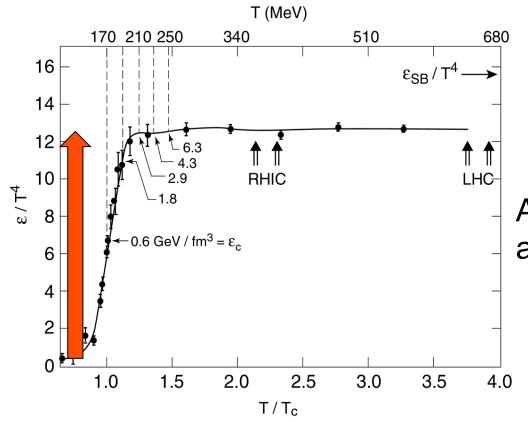
Lattice QCD: Phase Transition

$$\frac{\mathcal{E}}{T^4}$$
 vs. T $\propto n_{dof} = n_b + \frac{7}{8} n_f$

Below T_c : gas of pions

$$n_b = 3$$
(isospin); $n_f = 0 \implies n_{dof} = 3$

Above T_c : gas of g, u, d and anti-quarks


$$n_b = 8(\text{colors}) \times 2(\text{polar.})$$

 $n_f = 3(\text{colors}) \times 2(\text{polar.}) \times 2(\text{flav.}) \times 2(\text{charg.})$ $\Rightarrow n_{dof} = 37$

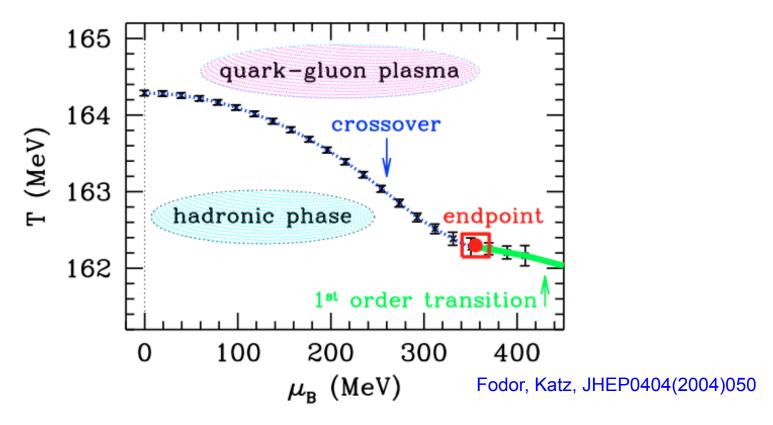
Lattice QCD: Phase Transition

$$\frac{\varepsilon}{T^4}$$
 vs. T $\propto n_{dof} = n_b + \frac{7}{8}n_f$

Below T_c : gas of pions

$$n_{dof} = 3$$

Above T_c : gas of g, u, d and anti-quarks

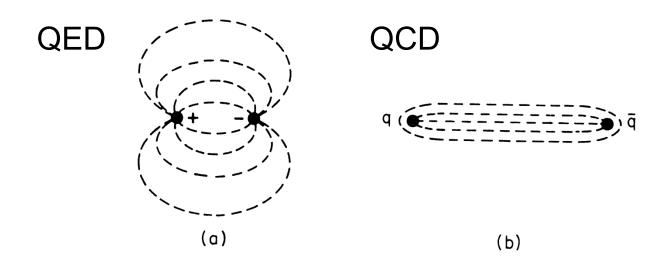

$$n_{dof} = 37$$

F. Karsch et al. PLB478 (2000)

Calculating the phase diagram of QCD

- Lattice QCD calculations at finite μ_B in recent years
- Map phase line on (μ_B, T) plane
- Study order of the phase transition
- Estimate position of the critical point

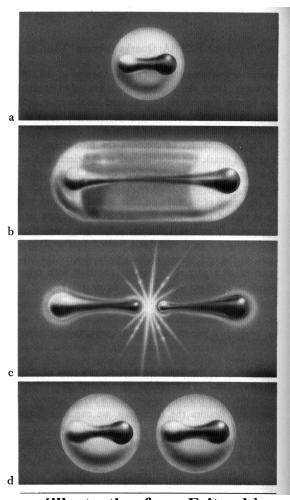
Confinement and deconfinement: an "intuitive" view


Confinement

- At scales of the order of the hadron size (~ 1 fm) perturbative methods lose validity
- Calculations rely on approximate methods (such as lattice theory or effective theories)
- There are compelling arguments (but no rigorous proof) that the non-abelian nature of QCD is responsible for the confinement of colour

Confining potential in QCD

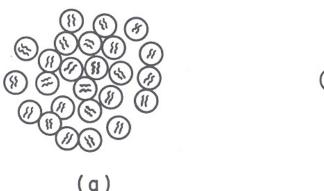
◆ In QCD, the field lines are compressed into a "flux tube" (or "string") of constant cross-section (~fm²), leading to a long-distance potential which grows linearly with distance r:

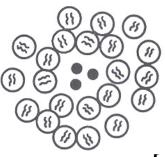

$$V(r) = -\frac{A}{r} + k \cdot r$$
 with $k \sim 1$ GeV/fm

Confinement: string breaking

- ◆ If one tries to pull the string apart, when the energy stored in the string (k r) reaches the point where it is energetically favourable to create a qq pair, the string breaks...
- ...and one ends up with two colourneutral strings (and eventually hadrons)

 $[illustration\ from\ \underline{Fritzsch}]$



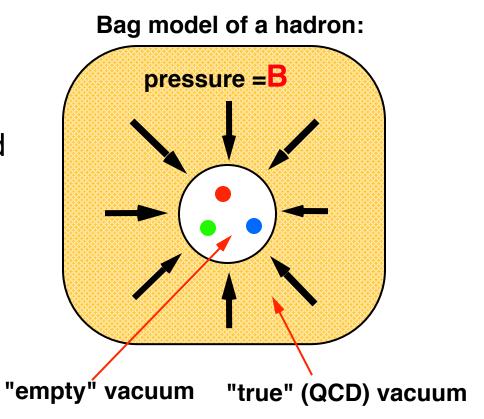

Confinement and Deconfinement

in the Bag Model

- Due to the non-abelian nature of QCD, the QCD vacuum is a rather complex object, behaving practically as a liquid of gg pairs in colour-singlet state
- The MIT bag model describes the essential phenomenology of confinement by assuming that quarks are confined within bubbles (bags) of perturbative (= empty) vacuum of radius R upon which the QCD vacuum exerts a confining pressure B

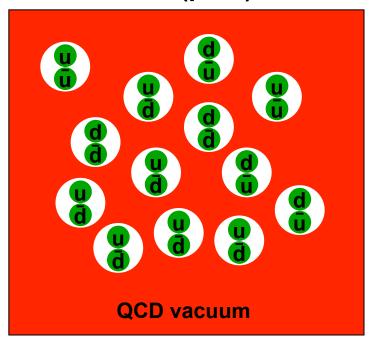
(b)

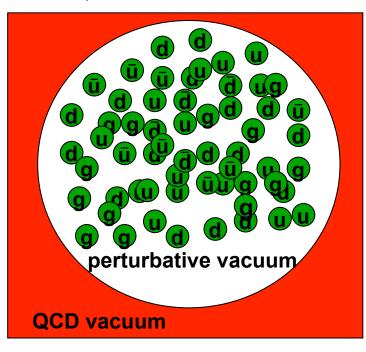
[see e.g. Gottfried-Weisskopf, p. 399]


FIG. 9. The QCD vacuum state is depicted in (a). It is a random distribution of cells that contain a gluon pair in a color and spin singlet state. Quarks (in a color singlet configuration) displace these cells, creating a region (or "bag") of "empty" vacuum, as shown in (b).

Bag Model

- The bubble radius R is determined by the balance between the vacuum pressure B and the outward kinetic pressure exerted by the quarks
- From measured proton "radius" (→ R):
 B ~ (200 MeV)⁴

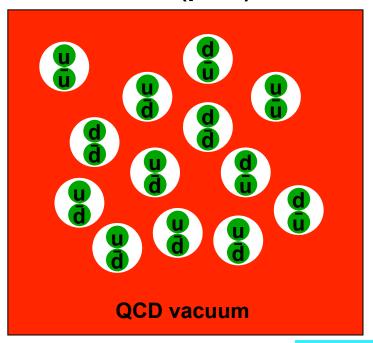


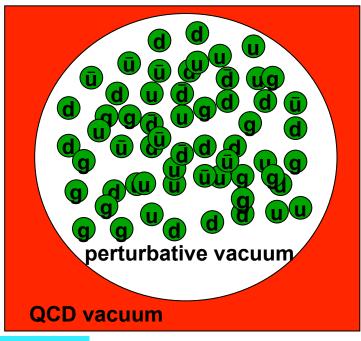


Hadron (pion) Gas

Quark-Gluon Plasma

- Gibbs' criterion: the stable phase is the one with the largest pressure
- From statistical mechanics: (for an ideal gas)


$$p = \frac{\varepsilon}{3} = \left(g_B + \frac{7}{8}g_F\right) \frac{\pi^2 T^4}{90}$$



Hadron (pion) Gas

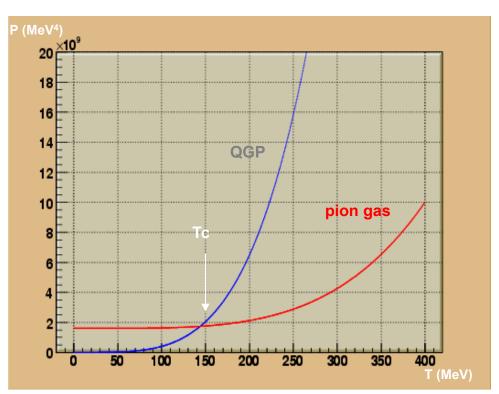
Quark-Gluon Plasma

$$g_B = 3$$
 $g_F = 0$

$$g_B = 3$$
 $g_F = 0$ $p = \frac{\varepsilon}{3} = \left(g_B + \frac{7}{8}g_F\right)\frac{\pi^2 T^4}{90}$ $g_B = 16$ $g_F = 24$

$$g_B = 16 \quad g_F = 24$$

$$p = \frac{3}{90}\pi^2 T^4 + B$$


$$p = \frac{37}{90}\pi^2 T^4$$

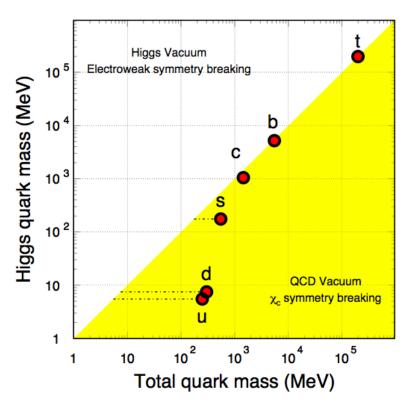
Bag Model: Critical Temperature

- At low temperature the hadron gas is the stable phase
- ◆ There is a temperature T_c above which the QGP "wins", thanks to the larger number of degrees of freedom

$$T_c = \left(\frac{90}{34 \ \pi^2}\right)^{1/4} B^{1/4}$$

$$\approx 150 \ \text{MeV}$$

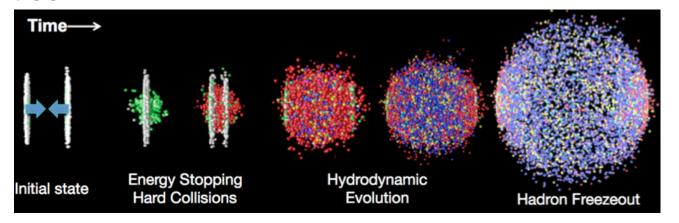
Consistent with lattice QCD value: 170 MeV


170 MeV $\approx 2 \ 10^{12} \ \text{K}$ (compare Sun core: 1.5 $10^7 \ \text{K}$)

Restoration of bare quark masses

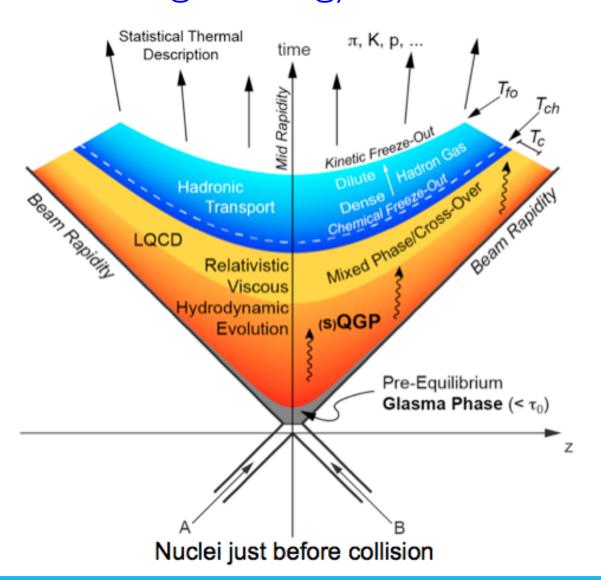
- Confined quarks acquire an additional mass (~ 350 MeV) dynamically, through the confining effect of strong interactions
- Deconfinement is expected to be accompanied by a restoration of the masses to the "bare" values they have in the Lagrangian
 - > m(u,d): ~ 350 MeV → a few MeV
 - > m(s): ~ 500 MeV → ~ 150 MeV
- (This effect is usually referred to as "Partial Restoration of Chiral Symmetry". Chiral Symmetry: fermions and antifermions have opposite helicity. The symmetry is exact only for massless particles, therefore its restoration here is only partial)

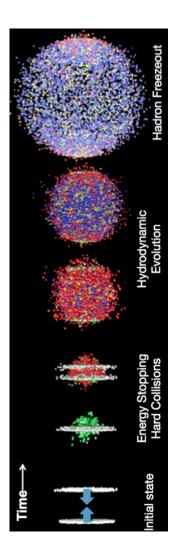
X.Zhu et al., PLB 647 (2007) 366


Nucleus – Nucleus Collisions

Nucleus-nucleus collisions

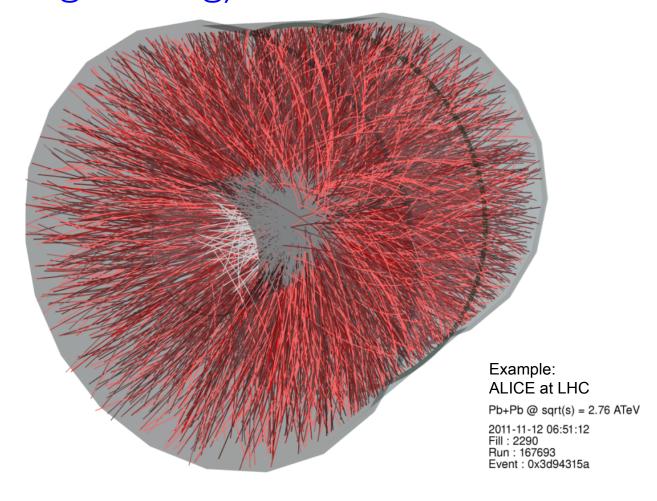
How can we compress/heat matter to such high energy densities?


- By colliding two heavy nuclei at ultra-relativistic energies we recreate, for a short time span (about 10⁻²³ s, or a few fm/c) the conditions for deconfinement
- As the system expands and cools down it will undergo a phase transition from QGP to hadrons again, like at the beginning of the life of the Universe: we end up with confined matter again

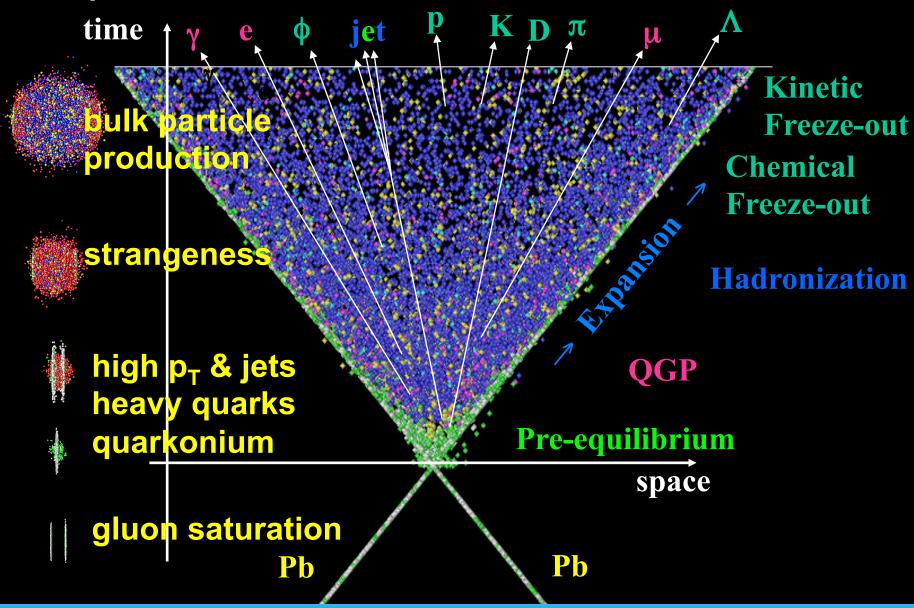


Evolution of

a high-energy nuclear collisions

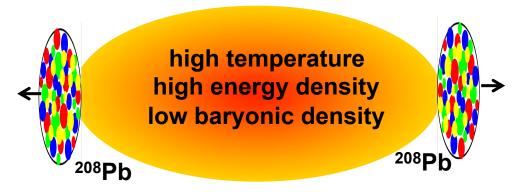


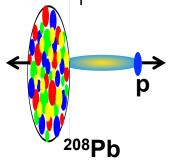
Courtesy B.Hippolyte


Final state of a high energy nuclear collision

Use particles in the final state to investigate the stages of the collision evolution

Space-time evolution of the collision

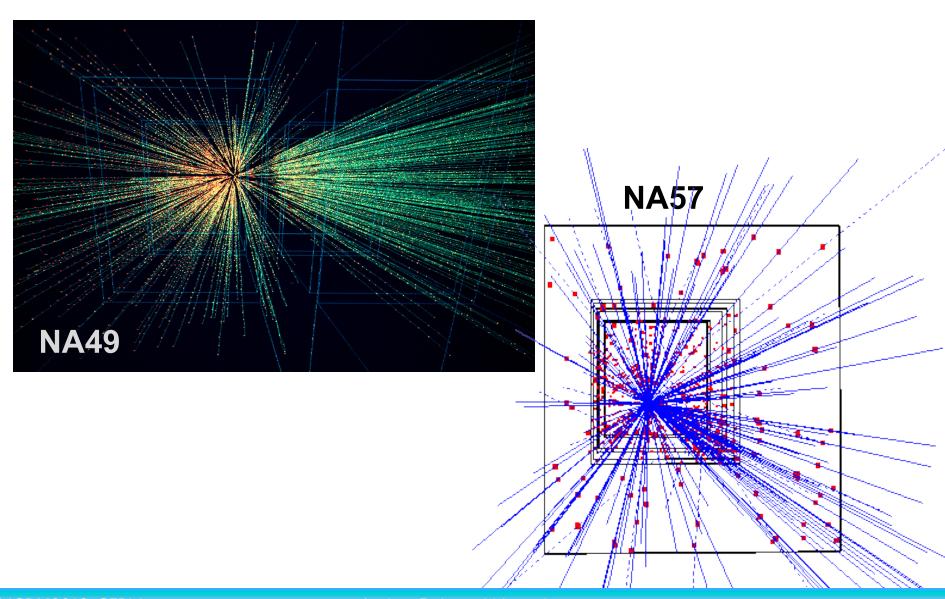



The role of <u>proton</u>-nucleus collisions

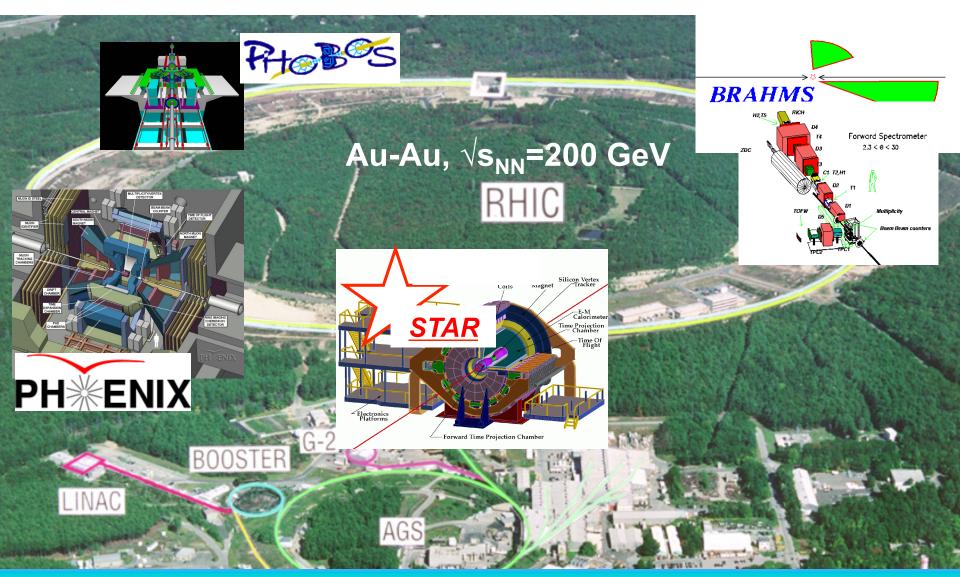
◆ In high-energy nucleus-nucleus collisions, large energy density (> 1 GeV/fm³) over large volume (>> 100 fm³)

 ◆ <u>Control experiment</u>: <u>high-energy proton-nucleus</u> collisions, <u>large energy densities</u> (?) in a <u>small volume</u> → no QGP (?)

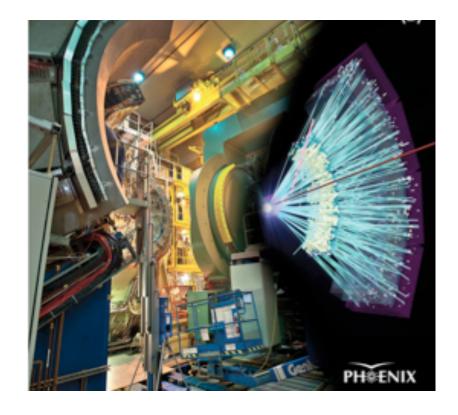
Control experiment:


Heavy Ions at SPS and RHIC

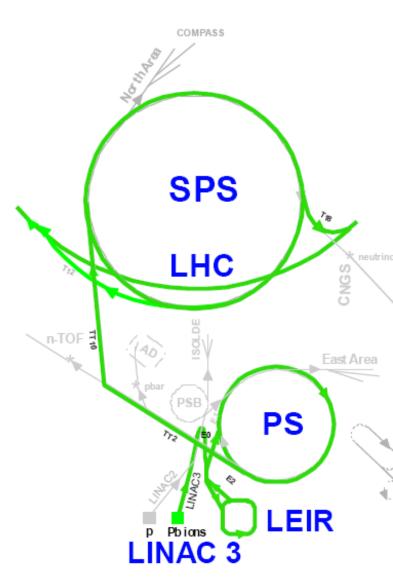
- Super Proton Synchrotron (SPS) at CERN (Geneva)
 - > 1994-, Pb-Pb fixed target, p = 158 A GeV → √ s_{NN} = 17.3 GeV
 - > 10 experiments:
 - WA97 (<u>silicon pixel telescope spectrometer</u>: production of strange and multiply strange particles)
 - WA98 (<u>photon and hadron spectrometer</u>: photon and hadron production)
 - NA44 (<u>single arm spectrometer</u>: particle spectra, interferometry, particle correlations)
 - NA45 (<u>e⁺e⁻ spectrometer</u>: low mass lepton pairs)
 - NA49 (<u>large acceptance TPC</u>: particle spectra, strangeness, interferometry, event-by-event, ...)
 - \circ NA50 (<u>dimuon spectrometer</u>: high mass lepton pairs, J/ψ production)
 - NA52 (<u>focusing spectrometer</u>: strangelet search, particle production)
 - NA57 (<u>silicon pixel telescope spectrometer</u>: production of strange and multiply strange particles)
 - NA60 (<u>dimuon spectrometer + pixels</u>: dileptons and charm)
 - NA61 (<u>extension/continuation of NA49</u>) TAKING DATA
- Relativistic Heavy Ion Collider (RHIC) at BNL (Long Island, NY)
 - ≥ 2000-, collider, up to Au-Au, $\sqrt{s_{NN}}$ = 200 GeV
 - 4 experiments:
 - STAR (<u>multi-purpose experiment</u>: focus on hadrons) TAKING DATA
 - PHENIX (<u>multi-purpose experiment</u>: focus on leptons, photons) TAKING DATA
 - BRAHMS (<u>two-arm spectrometer</u>: particle spectra, forward rapidity), completed
 - PHOBOS (<u>silicon array</u>: particle spectra), completed


SPS: Pb-Pb, √s_{NN}=17 GeV

2000: beginning of the collider era, the RHIC experiments



RHIC: Au-Au, √s_{NN}=200 GeV



Acceleration of Pb ions:

- > ECR source: Pb²⁷⁺ (80 μA)
- RFQ: Pb²⁷⁺ to 250 A keV
- Linac3: Pb²⁷⁺ to 4.2 A MeV
- ➤ Stripper: Pb⁵³⁺
- ➢ PS Booster: Pb⁵³⁺ to 95 A MeV
- PS: Pb⁵³⁺ to 4.25 A GeV
- Stripper: Pb⁸²⁺ (full ionisation)
- SPS: Pb⁸²⁺ to 158 A GeV
- > LHC: Pb⁸²⁺ to 1.375 A TeV (2010-11)
 - 2.75 A TeV (2015-6?)

LHC as a HI accelerator

◆ Fully ionised ²⁰⁸Pb nucleus accelerated in LHC (magnet configuration identical to that for pp), e.g. (2011 numbers):

$$\sqrt{s_{\text{NN}}} = \sqrt{4p_1p_2} = \sqrt{4\frac{Z_1Z_2}{A_1A_2}p_pp_p} = \frac{Z}{A}\sqrt{s_{\text{pp}}} = \frac{82}{208}\sqrt{s_{\text{pp}}} = 2.76 \text{ TeV}$$

- ... of course, real life is more complicated...
 - ion collimation
 - sensitivity of LHC instrumentation
 - > injection chain
 - >

Luminosity and its limitations

Bound-Free Pair Production (BFPP):

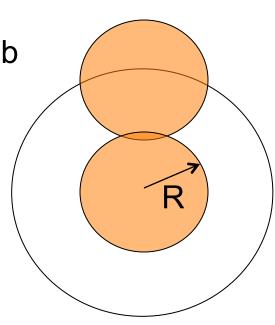
$$^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \xrightarrow{\gamma} ^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{81+} + e^{+}$$

with subsequent loss of the ²⁰⁸Pb⁸¹⁺

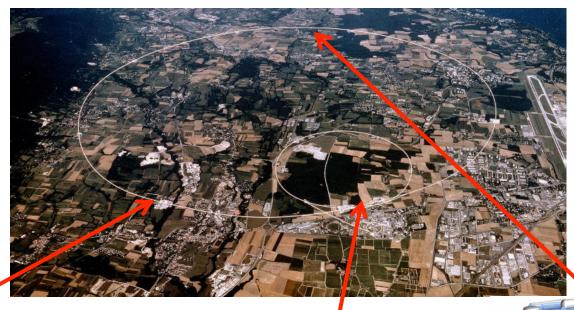
- > creates a small beam of ²⁰⁸Pb⁸¹⁺, with an intensity ∝ Luminosity
- impinging on a superconducting dipole (that you don't want to quench...)

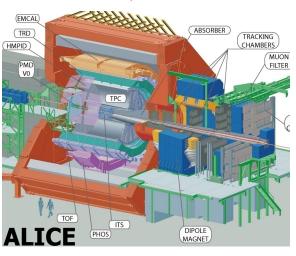
Collimation losses

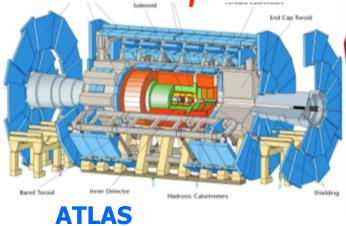
- collimation for ions (which can break up into fragments) is harder than for protons
- limitation on the total intensity
- Juminosity limited


to
$$\sim 10^{27}$$
 cm⁻²s⁻¹

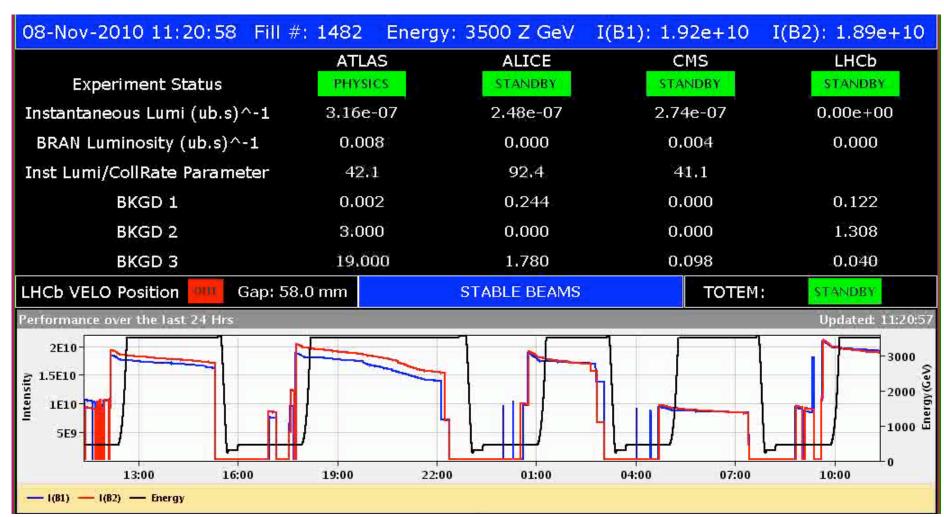
Pb-Pb cross section and interaction rate

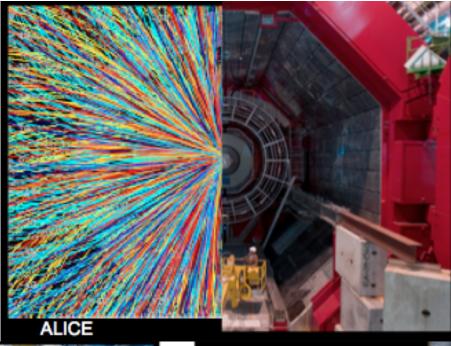

- ♦ Pb-Pb interaction cross section: σ_{geom} ~ 7.7 b
 - ightharpoonup 208Pb radius, R ~ 1.2*A^{1/3} fm ~ 7 fm
 - $ightharpoonup \sigma_{geom} \sim \pi \ (2 \ R)^2 \sim 7.7 \ b$
- For 2011 Pb-Pb run:
 - > ~ 1.1 108 ions/bunch
 - > 358 bunches (200 ns basic spacing)
 - $> \beta^* = 1 \text{ m}$
 - ightharpoonup L ~ 5 10²⁶ cm⁻²s⁻¹
 - \rightarrow R = L σ_{geom} ~ 4 kHz interaction rate

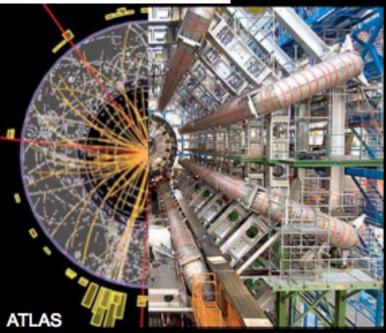


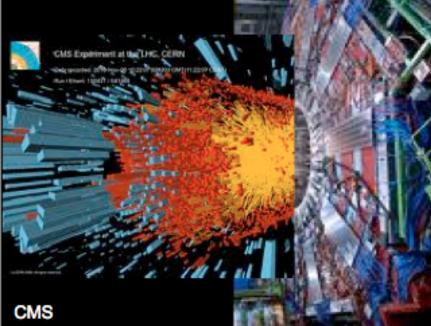


Heavy-ion experiments at the LHC


for p-Pb also LHCb


Pb-Pb collisions in the LHC!


8 November 2010: the beginning of a new era for Heavy Ion Physics

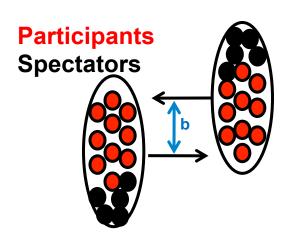


LHC Heavy-Ion running: where we are

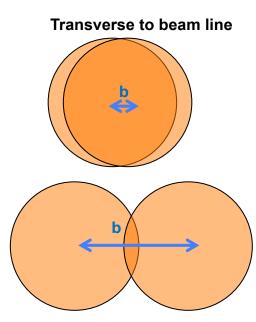
- Two Pb-Pb runs at the LHC so far:
 - in 2010 commissioning and the first data taking
 - in 2011 already above nominal instant luminosity!
- A p-Pb run in 2013
- Now, Long Shutdown–1 (LS1)
 - Till autumn 2014; next Pb-Pb run in 2015

year	system	energy √s _{nn} TeV	integrated luminosity
2010	Pb – Pb	2.76	~ 10 μb⁻¹
2011	Pb – Pb	2.76	~ 150 μb ⁻¹
2013	p – Pb	5.02	~ 30 nb ⁻¹

Observables and Probes of the QGP


Phenomenology and measurements from heavy-ion collisions at SPS, RHIC, LHC

- Strangeness production historic signature of the QGP
- Anisotropy, correlations collective expansion of the QGP
- Bulk particle production hadronization of the QGP
- Heavy flavour production transport properties of the QGP
- Quarkonium production deconfinement in the QGP
- Surprises from LHC p-Pb current "hottest topic"

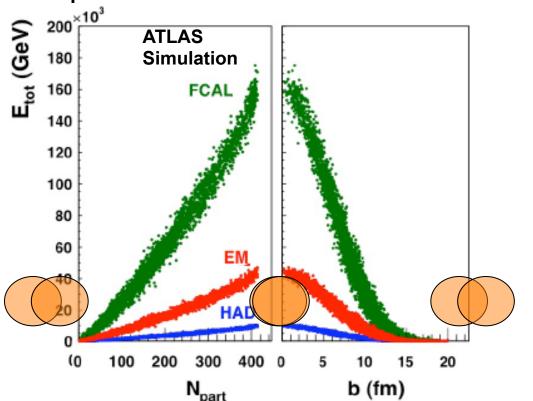


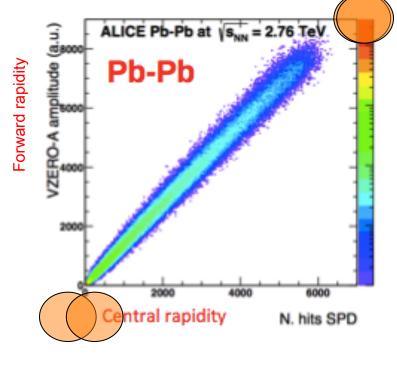
Geometry of a nucleus-nucleus collision

- central collisions
 - small impact parameter b
 - high number of participants
 high resulting inits
 - → high multiplicity
- peripheral collisions
 - large impact parameter b
 - ➤ low number of participants→ low multiplicity

- System size strongly dependent on collision centrality
- Classify events in "centrality classes"
 - In terms of percentiles of total hadronic AA cross section
 - ➤ Determine <N_{participants}> and <N_{collisions}> with a model of the collision geometry (Glauber model)

Glauber model: see e.g. M. Miller et al. Ann.Rev.Nucl.Part.Sci.57(2007)205

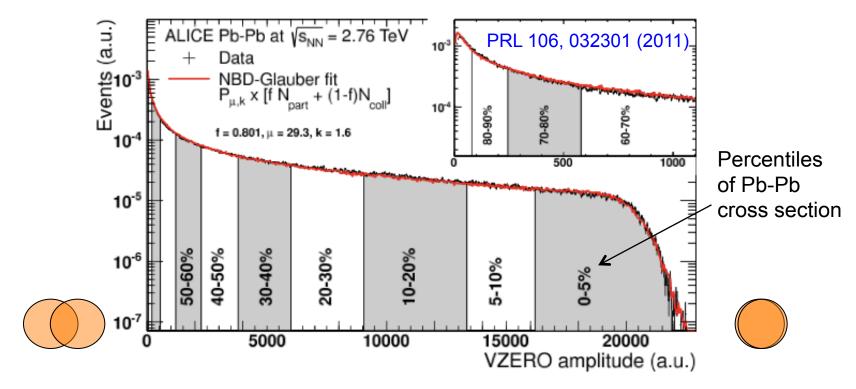



Geometry of a nucleus-nucleus collision

 Use multiplicity of produced particles in the acceptance of a given detector

Or "Zero Degree Calorimeters" to measure the energy of the

spectator nucleons

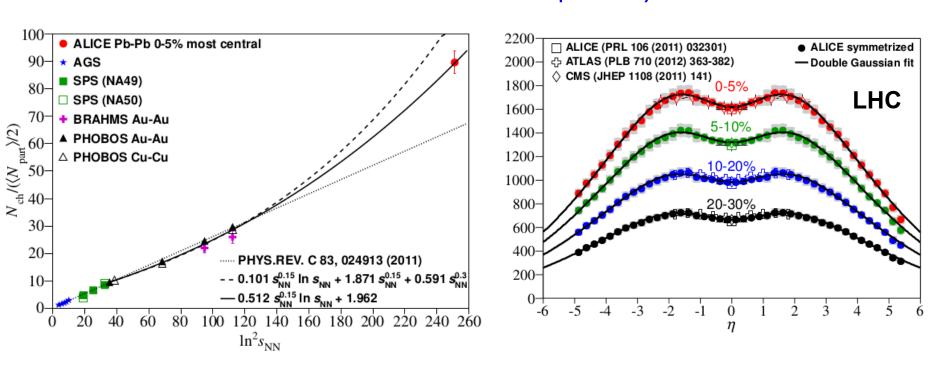


Geometry of a nucleus-nucleus collision

Example: sum of the amplitudes in the ALICE VZERO scintillators

Reproduced by simple model (red):

- $ightharpoonup N_{charged} = P x [f N_{part} + (1-f) N_{coll}]$
- ➢ With N_{part} and N_{coll} distributions from Glauber model
 - o Inputs: Wood-Saxon nuclear density profile, inelastic NN cross section



Bulk observables: multiplicity, size and temperature of the system

Particle multiplicity

Central collisions at LHC: ~17,000 charged particles!

x3 increase with respect to RHIC

ALICE, arXiv:1304.0347

Energy density: Bjorken's formula

To evaluate the energy density reached in the collision:

$$\varepsilon = \frac{E}{V} = \frac{1}{Sc\tau_0} \frac{dE_T}{dy} \bigg|_{y=0}$$

$$S$$
 = transverse dimension of nucleus au_0 ="formation time" $\sim 1 \, \mathrm{fm/}c$

- Initial time τ_0 normally taken to be ~ 1 fm/c
 - i.e. equal to the "formation time": the time it takes for the energy initially stored in the field to materialize into particles
- Transverse dimension:

$$S \approx 160 \,\text{fm}^2$$
 $(R_A \approx 1.2 A^{1/3} \,\text{fm})$

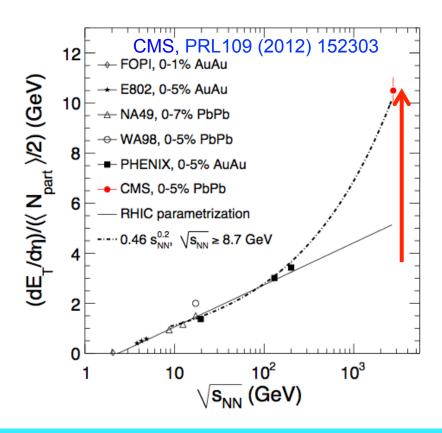
Energy density at RHIC energies

- Estimated from measured transverse energy
- As a function of centrality and collision energy

$$\varepsilon \tau_0 = \frac{1}{S} \frac{dE_T}{dy} \bigg|_{y=0}$$

= ε for τ_0 =1 fm/c

HCPSS2013, CERN


Andrea Dainese | Heavy Ions

Energy density at LHC energy

◆ Transverse energy x3 from RHIC to LHC:

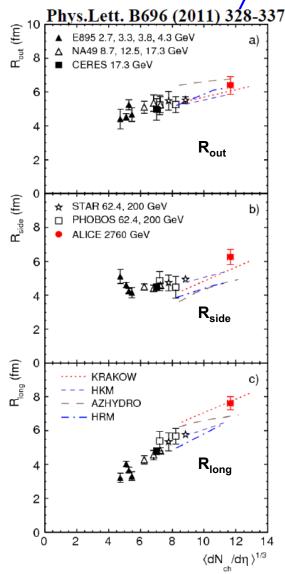
$$\left. \frac{dE_T}{dy} \right|_{y=o} \approx 2 \text{ TeV}$$

 $\varepsilon \sim (2000/160) \text{ GeV/fm}^3 \approx 12 \text{ GeV/fm}^3$

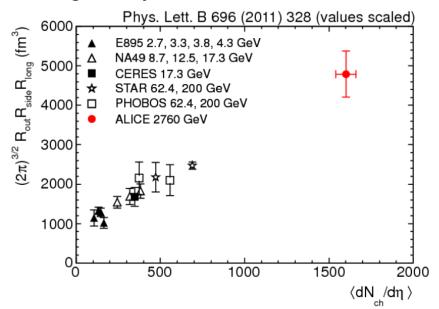
Size of the fireball:

Hanbury Brown - Twiss interferometry

- Quantum phenomenon: enhancement of correlation function for identical bosons, e.g. pairs of pions
- From Heisenberg's uncertainty principle:
 - \rightarrow $\Delta p \cdot \Delta x \sim \hbar$ (Planck's constant)
 - → (width of enhancement) · (source size) ~ ħ
 - extract source size from correlation function
- First used with photons in the 1950s by astronomers Hanbury Brown and Twiss
 - measured size of star Sirius by aiming at it two photomultipliers separated by a few metres
- ◆ E.g.: three components of correlation function C(q = momentum difference) for pairs of pions for eight intervals of pair transverse momentum (k_T)



Size of the fireball:

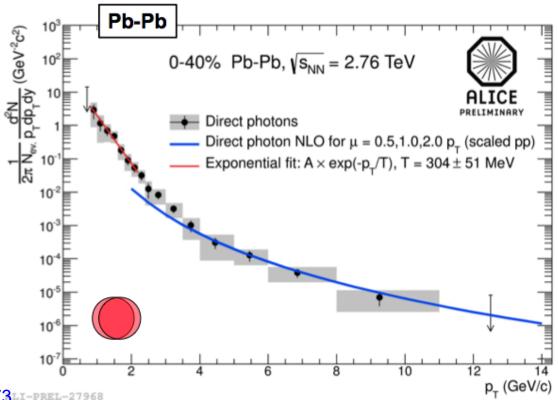


Hanbury Brown - Twiss interferometry

From RHIC to LHC:

- increase of size in the 3 dimensions
 - out, long, and side
- "homogeneity" volume ~ 5000 fm³ ~ x 2

- for comparison: R_{Pb} ~ 7 fm → V ~ 1500 fm³
- substantial expansion!



Temperature from Photon spectrum

- Prompt γ = Inclusive $\gamma \gamma$ from π^0 decays
 - Direct photons from QCD processes: power law spectrum dominant at high p_T
 - ➤ Thermal photons, emitted by the hot system (analogy with black body radiation): exponential spectrum dominant at low p_T

o From inverse slope:

$$T = 304 \pm 51 \text{ MeV}$$

~ 2 T_c
~ 1.4 T_{RHIC}

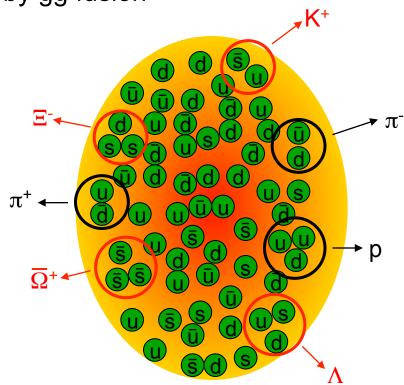
M. Wilde (ALICE), NPA904-905 2013 (2013) 573

Strangeness enhancement

The first predicted signature of the QGP (1982)

[the second is the J/ ψ suppression (1986), discussed in the third lecture]

Historic QGP signature

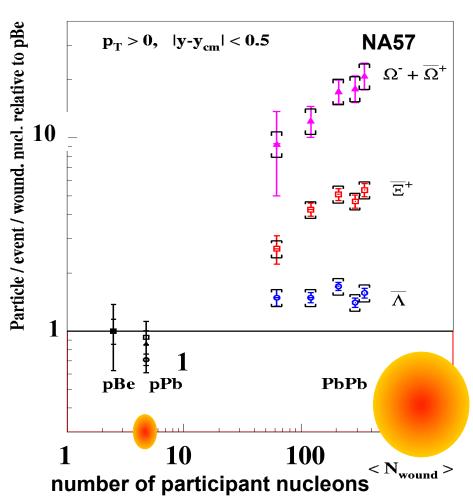

- Restoration of χ symmetry \rightarrow increased production of s
 - mass of strange quark in QGP expected to go back to current value
 - $_{\circ}$ m_s ~ 150 MeV ~ T_c
 - → copious production of s̄s pairs, mostly by gg fusion

[Rafelski: PR 88 (1982) 331]

[Rafelski-Müller: PRL 48 (1982) 1066]

- ◆ Deconfinement → stronger effect for multi-strange baryons
 - can be built recombining s quarks
 - strangeness enhancement increasing with strangeness content

[Koch, Müller & Rafelski: PR 142 (1986) 167]

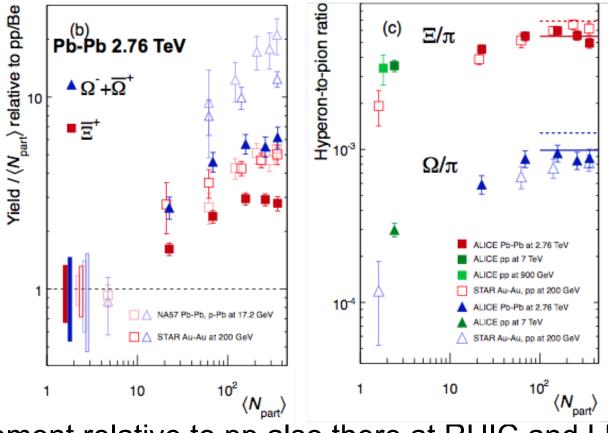


Strangeness enhancement at the SPS

Enhancement in Pb-Pb relative to p-Be (WA97/NA57)

Enhancement is larger for particles of higher strangeness content (QGP prediction!) up to a factor ~ 20 for Ω

No model without QGP has reproduced these observations


First unambiguous indication for QGP formation in these collisions

NA57, JPG 32, 427 (2006), JPG 37, 045105 (2010)

Strangeness: SPS, RHIC, LHC

- Enhancement relative to pp also there at RHIC and LHC
 - > decreases with increasing \sqrt{s} : E(17 GeV) > E(200 GeV) > E(2.76 TeV)
 - → strange/non-strange increases with √s in pp reference
- Suggests hadron formation by parton recombination from a strangeness-rich system STAR, PRC 77, 044908 (2008)

ALICE, arXiv:1307.5543

End of Part 1