Top physics and the top mass

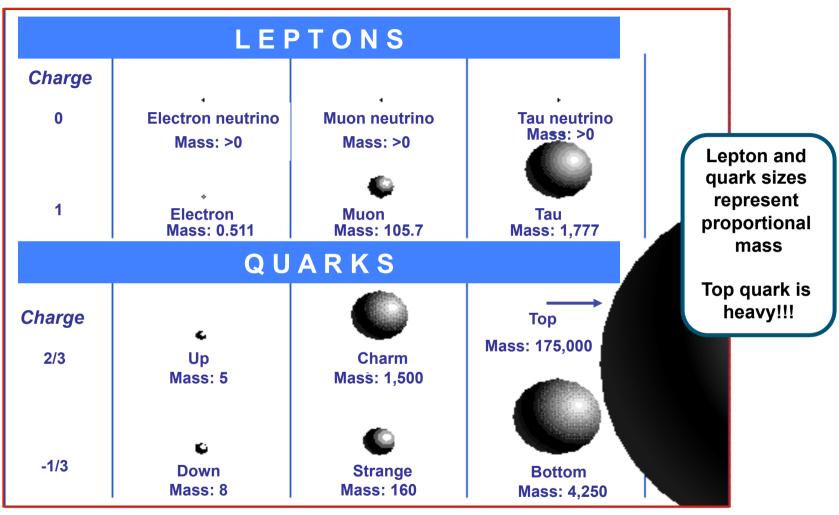
Lecture 2/3

2013 CERN-Fermilab HCP Summer School

Prof Dr Freya Blekman Interuniversity Institute for High Energies Vrije Universiteit Brussel, Belgium

pc

(and this year also: LHC Physics Centre, Fermilab)



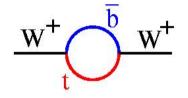
Vrije Universiteit Brussel

Outline

- Wednesday:
 - Lecture I: Intro to top physics and its jargon.
- Thursday:
 - Lecture 2: SM top physics and the top mass
 - Top mass physics motivation
 - Measuring top properties
 - QCD motivations for precision top physics
- Friday:
 - Lecture 3: SM and top physics, the portal to physics searches

The building blocks of matter

Freva

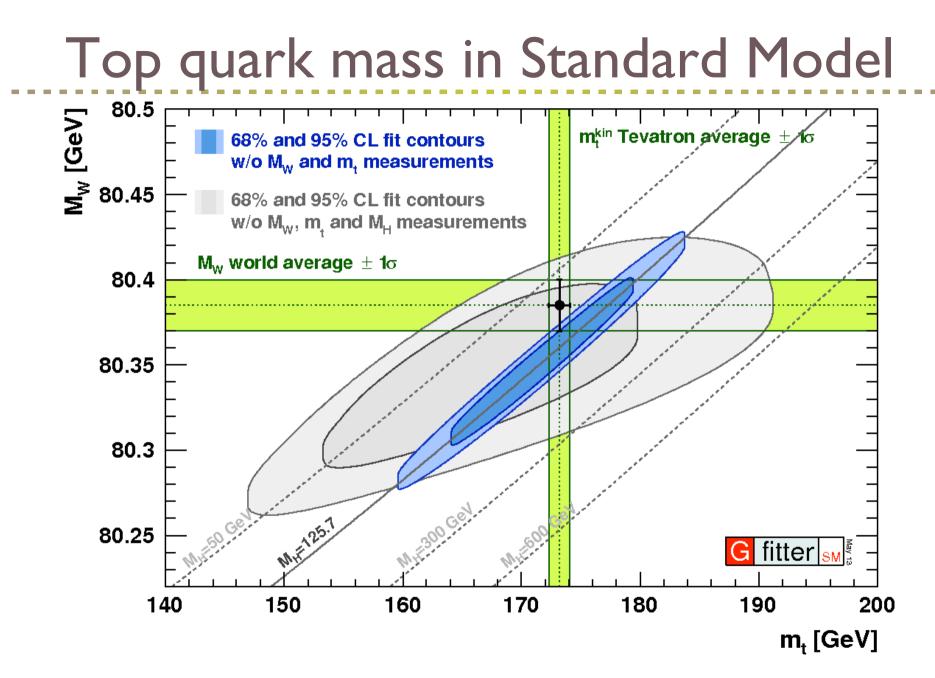

3

Masses are in millions of Electron Volts [MeV/c²]

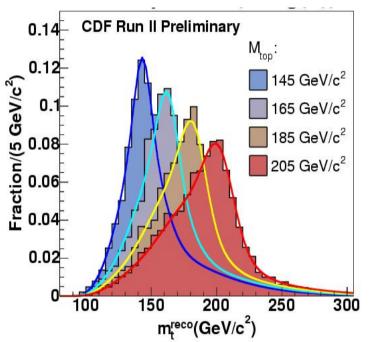
History of the top quark

1989: Indirect constraints on top from precision measurements at LEP

- 1995: Observation of Topquark at the TeVatron collider
- at Fermilab
- Historic perspective indirect -> direct


measurements -> precision

	VALUE (GeV)		DOCUMENT ID		TECN	COMMENT
	173.07± 0.52±	0.72 OL	IR EVALUATION	See	commen	ts in the header above.
	174.5 \pm 0.6 \pm	2.3		121	ATLS	$\ell {+} ot\!$
	$172.85 \pm \ 0.71 \pm$	0.85		12AI	CDF	$\ell + \not\!\! E_T + \ge$ 4j (0,1,2 <i>b</i>) template
	172.7 \pm 9.3 \pm	3.7		12al		$\tau_h + E_T + 4j \ (\geq 1b)$
	172.5 \pm 1.4 \pm	1.5		12G	CDF	6–8 jets with $\geq 1 b$
	173.9 \pm 1.9 \pm	1.6				$\ell\ell + \not\!$
	172.5 \pm 0.4 \pm	1.5	⁶ CHATRCHYAN			$\ell\ell + E_T + \geq 2$ j ($\geq 1b$), AMWT
	$173.49\pm~0.43\pm$	0.98	⁷ CHATRCHYAN	12bp	CMS	$\ell + \not\!\! E_T + \ge 4 j \ (\ge 2b)$
Π	172.3 \pm 2.4 \pm	1.0		11AK	CDF	$ ot\!$
	172.1 \pm 1.1 \pm	0.9	⁹ AALTONEN	11E	CDF	ℓ + jets and dilepton
	$174.94\pm~0.83\pm$	1.24	¹⁰ ABAZOV	11P	D0	$\ell + ot\!$
	$173.0~\pm~1.2$		¹¹ AALTONEN	10AE	CDF	$\ell + E_T + 4$ jets (≥ 1 <i>b</i> -tag),
	170.7 \pm 6.3 \pm	2.6	¹² AALTONEN	10D	CDF	$\begin{array}{l} ME \ method \\ \ell + \not\!\!\! E_T + 4 \ jets \ (b-tag) \end{array}$


Vrije Universiteit Brussel

•

Template method

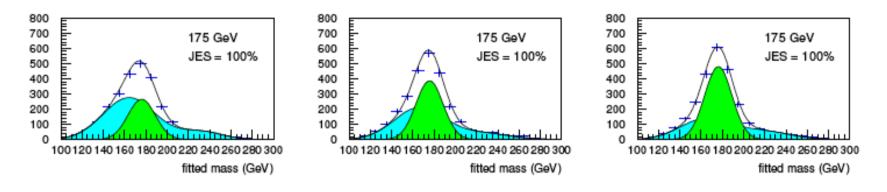
- Isolate a sample rich in top events
 - Use some form of b-quark identification
- Select the most likely combination of jets, leptons and missing transverse energy
- Have templates of top signal at different masses and of background
- For each event, determine probability signal or background
 - Fit which mass is most probable
 - Modern analyses also use different templates for the di-jet W candidates

DISADVANTAGE: Only use one possible permutation of jets,leptons, missing energy

Matrix element method

$$P_{t\bar{t}} = \frac{1}{12\sigma_{t\bar{t}}} \int \mathrm{d}\rho_1 \mathrm{d}m_1^2 \mathrm{d}M_1^2 \mathrm{d}m_2^2 \mathrm{d}M_2^2 \times \sum_{\mathrm{perm.},\nu} |\mathcal{M}_{t\bar{t}}|^2 \frac{f(q_1)f(q_2)}{|q_1||q_2|} \Phi_6 W_{\mathrm{jets}}(E_{\mathrm{part}}, E_{\mathrm{jet}})$$

- Method first used for top physics by DØ in Tevatron Run I
- Use LO matrix element 'Standard' integral (20D)
- put in all known information
 - Eight jet angles

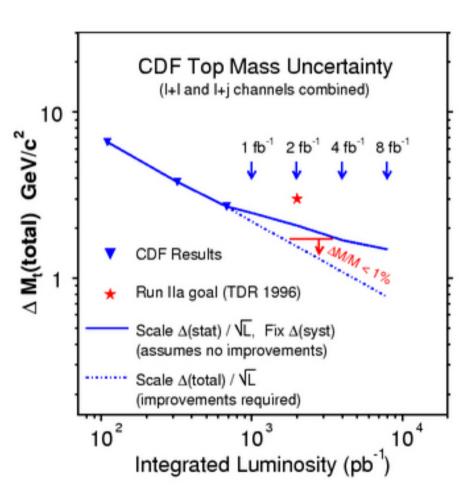

Vrije Universiteit Brussel

- Lepton 3-momentum
- Conservation of energy and momentum (4x)

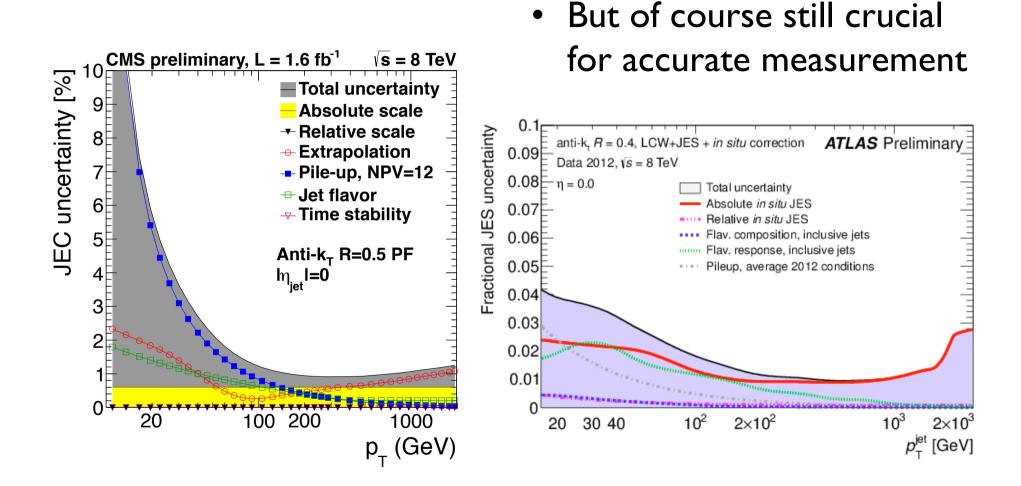
- Do Monte Carlo integration
 - |M(top)| for range of top masses
 - |M(BG)|² not dependent of top mass
- Get signal probability per event
 - used in likelihood fit

DISADVANTAGE: Very computing intensive

Ideogram method

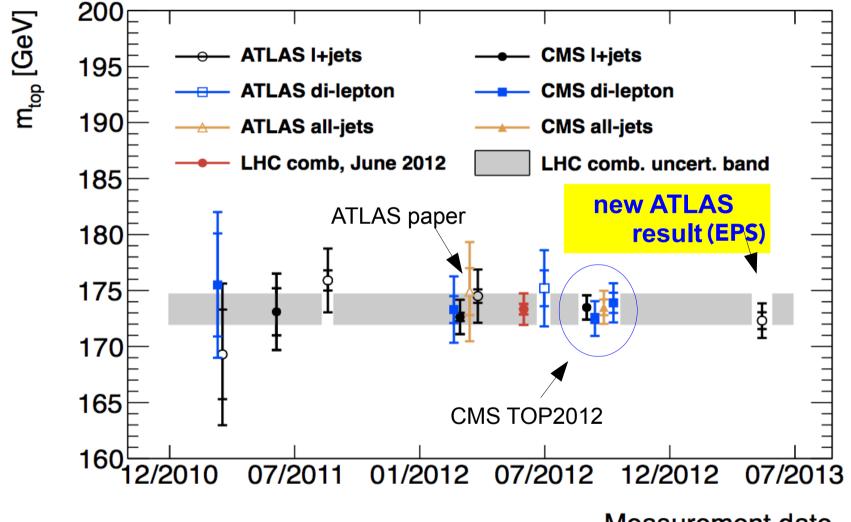

- Already used in LEP era
- Compromise:
 - Use all different permutations in weighted probability
 - Also makes use of topological information
- Takes into account resolutions as observed in simulation
- Include b quark identification
- Include mis-tags

"In situ" jet energy calibration


- Tevatron top mass measurements use in situ jet energy calibration
 - = Fit energy scale of jets to W mass simultaneously with top mass
- Impressive decrease uncertainties wrt expected!
- Not always necessary at LHC as leading systematic uncertainties can be different

Vrije Universiteit Brussel

JES no longer only leading syst. Uncertainty?


•

Vrije Universiteit Brussel

So let's look at some measurements

State of the art measurements

Measurement date

Vrije Universiteit Brussel

ATLAS 3D mass

input m_{top} **JES bJES** normalized events / GeV normalized events / GeV normalized events / GeV ATLAS Preliminary ATLAS Preliminary ATLAS Preliminary 0.03 0.03 0.03 m,___ = 167.5 GeV bJSF = 0.95 JSF = 0.95 Simulation, vs= 7 TeV Simulation, √s= 7 TeV Simulation, √s= 7 TeV m_{ton} = 172.5 GeV bJSF = 1.00 JSF = 1.00 0.025 0.025 0.025 m,... = 177.5 GeV bJSF = 1.05 JSF = 1.05 0.02 0.02 0.02 0.015 0.015 0.015 0.0 0.0 0.0 0.005 0.005 0.005 0 0 0 220 140 180 200 140 160 180 200 22(140 160 180 200 220 160 m^{reco} [GeV] mton [GeV] m^{reco} [GeV] Good sensitivity to the Large dependence on the jet Large dependence on the b-jet underlying top guark mass. energy scale \rightarrow large systematics! energy scale \rightarrow large systematics!

- ATLAS CONF-2013-046
- Determine top mass while simultaneously constraining jet energy scale for light and b jets

ATLAS 3D mass

input m_{top} **bJES JES** normalized events / GeV normalized events / GeV normalized events / GeV ATLAS Preliminary 0.03 ATLAS Preliminary ATLAS Preliminary 0.03 0.03 m,___ = 167.5 GeV bJSF = 0.95 JSF = 0.95 Simulation, vs= 7 TeV Simulation, √s= 7 TeV Simulation, √s= 7 TeV m_{top} = 172.5 GeV JSF = 1.00 bJSF = 1.00 0.025 0.025 0.025 m_{top} = 177.5 GeV JSF = 1.05 bJSF = 1.05 0.02 0.02 0.02 0.015 0.015 0.015 0.0 0.0 0.0 0.005 0.005 0.005 0 0 0 140 200 160 180 140 160 180 200 22(140 160 180 200 220 m^{reco} [GeV] m^{reco} [GeV] m^{reco} [GeV] Good sensitivity to the Large dependence on the jet Large dependence on the b-jet underlying top guark mass. energy scale \rightarrow large systematics! energy scale \rightarrow large systematics! 0.045 normalized events / GeV ATLAS Preliminary Constrain JES using W mass JSF = 0.95 ullet0.04 Simulation, √s= 7 TeV JSF = 1.00 0.035 instead of top mass JSF = 1.05 0.03 0.025 0.02

Vrije Universiteit Brussel

60

70

80

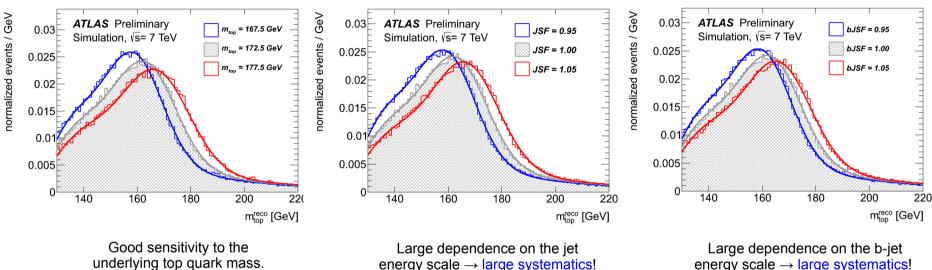
90

100

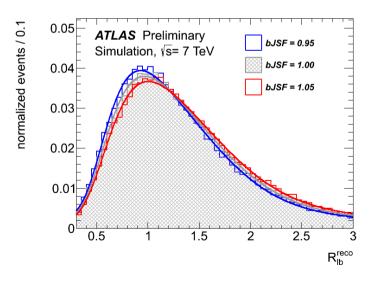
m_W^{reco} [GeV]

0.015 0.01 0.005

0

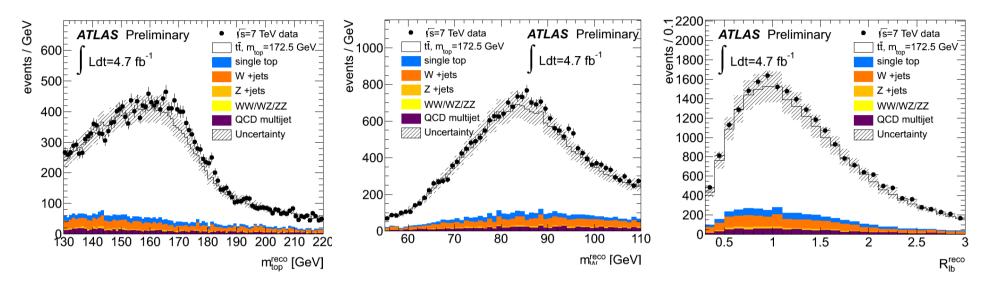

110

ATLAS 3D mass

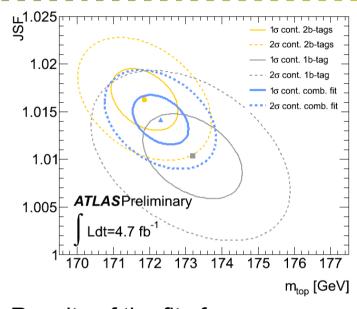

JES

input m_{top}

Vrije Universiteit Brussel

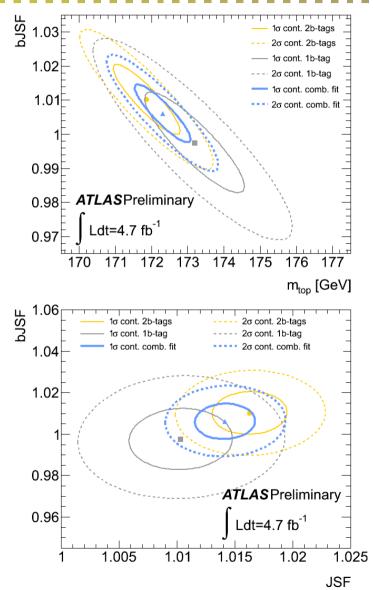


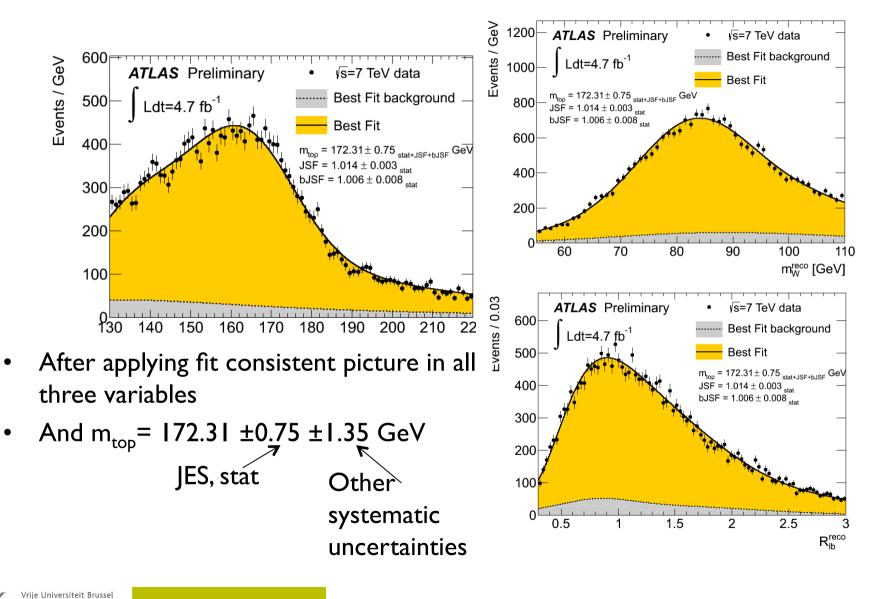
• Constrain JES for b jets using ration bJES/light JES


bJES

With Data, before fit

• All this information combined in 3D template fit

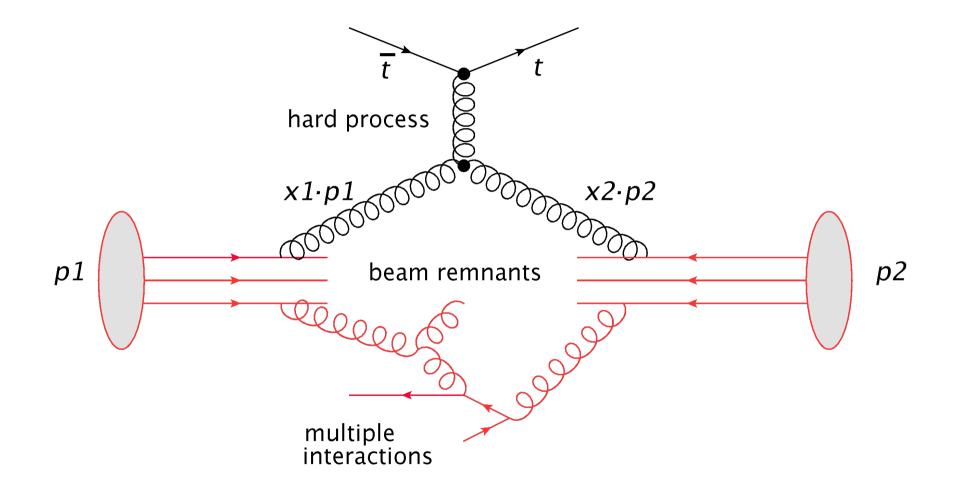

Repeat in 1 b-tag/2 b-tag/combined


- Fits are consistent
- JES and bJES almost uncorrelated

Vrije Universiteit Brussel

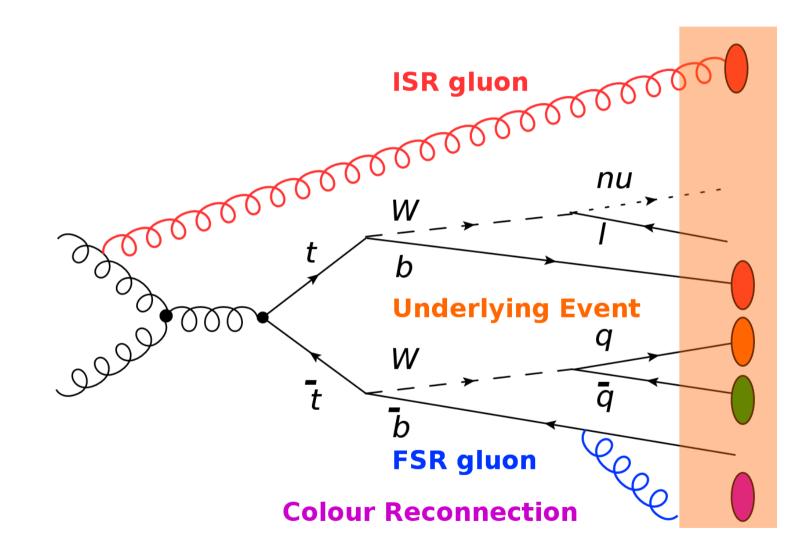
• (stat uncertainties only)

Post-fit



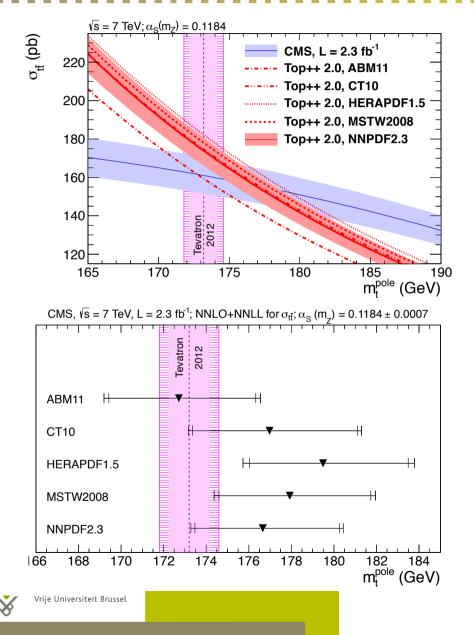
Systematic uncertainties

	2d-analy	vsis	3d-a	nalysis	
	m _{top} [GeV]	JSF	m _{top} [GeV]	JSF	bJSF
Measured value	172.80	1.014	172.31	1.014	1.006
Data statistics	0.23	0.003	0.23	0.003	0.008
Jet energy scale factor (stat. comp.)	0.27	n/a	0.27	n/a	n/a
bJet energy scale factor (stat. comp.)	n/a	n/a	0.67	n/a	n/a
Method calibration	0.13	0.002	0.13	0.002	0.003
Signal MC generator	0.36	0.005	0.19	0.005	0.002
Hadronisation	1.30	0.008	0.27	0.008	0.013
Underlying event	0.02	0.001	0.12	0.001	0.002
Colour reconnection	0.03	0.001	0.32	0.001	0.004
ISR and FSR (signal only)	0.96	0.017	0.45	0.017	0.006
Proton PDF	0.09	0.000	0.17	0.000	0.001
single top normalisation	0.00	0.000	0.00	0.000	0.000
W+jets background	0.02	0.000	0.03	0.000	0.000
QCD multijet background	0.04	0.000	0.10	0.000	0.001
Jet energy scale	0.60	0.005	0.79	0.004	0.007
<i>b</i> -jet energy scale	0.92	0.000	0.08	0.000	0.002
Jet energy resolution	0.22	0.006	0.22	0.006	0.000
Jet reconstruction efficiency	0.03	0.000	0.05	0.000	0.000
<i>b</i> -tagging efficiency and mistag rate	0.17	0.001	0.81	0.001	0.011
Lepton energy scale	0.03	0.000	0.04	0.000	0.000
Missing transverse momentum	0.01	0.000	0.03	0.000	0.000
Pile-up	0.03	0.000	0.03	0.000	0.001
Total systematic uncertainty	2.02	0.021	1.35	0.021	0.020
Total uncertainty	2.05	0.021	1.55	0.021	0.022


Underlying event

Vrije Universiteit Brussel

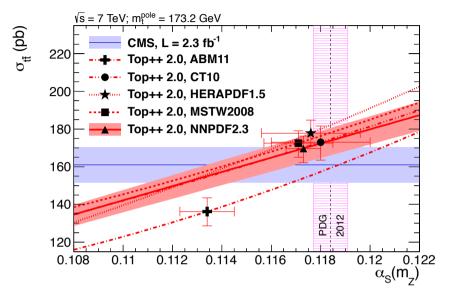
 \mathbf{v}


Other generator uncertainties

What top mass, really?

- When measurements are so accurate question is what one really measures
 - The top quark mass is a parameter of the SM
 - Mass is usually defined as a pole mass or $\overline{\rm MS}$ mass
 - Definition is confusing, we typically use pole mass when dealing with mass/yukawa couplings, while $\overline{\rm MS}$ is used for prediction cross sections.
 - There is a transformation from one scheme to the other, but this relies on order of calculation and strong coupling constant.
- The measured mass effectively is a number we use as input to a MC generator

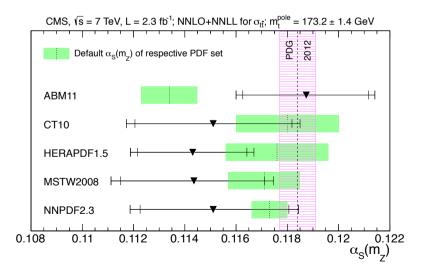
Derive top mass from cross section


Comparison of most accurate ttbar cross section measurement and do transformation

mass

- Measure xsec for different mTop
- And α_s , best NNLO calculation

$$- M_t^{\text{pole}} = 176.7 + 3.8_{-3.4} \text{ GeV}$$


Or use cross section to find α_s

 Use precise pole mass measurement and compare to cross section

- Derive $\alpha_{\rm S}$ using NNLO theoretical cross section predictions $\alpha_s(m_Z) = 0.1151^{+0.0033}_{-0.0032}$
- Strong pdf dependence!

Vrije Universiteit Brussel

Final word definitely not said

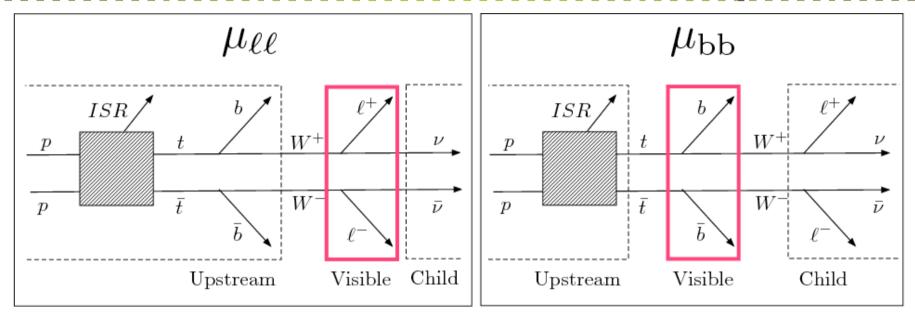
Summary

Top quark mass

• On-shell scheme (pole mass) at NNLO in QCD

 $m_t \,=\, 173.18 \,\pm\, 0.94 \,\pm\, \mathcal{O}\,(\text{few})\,\text{GeV}$

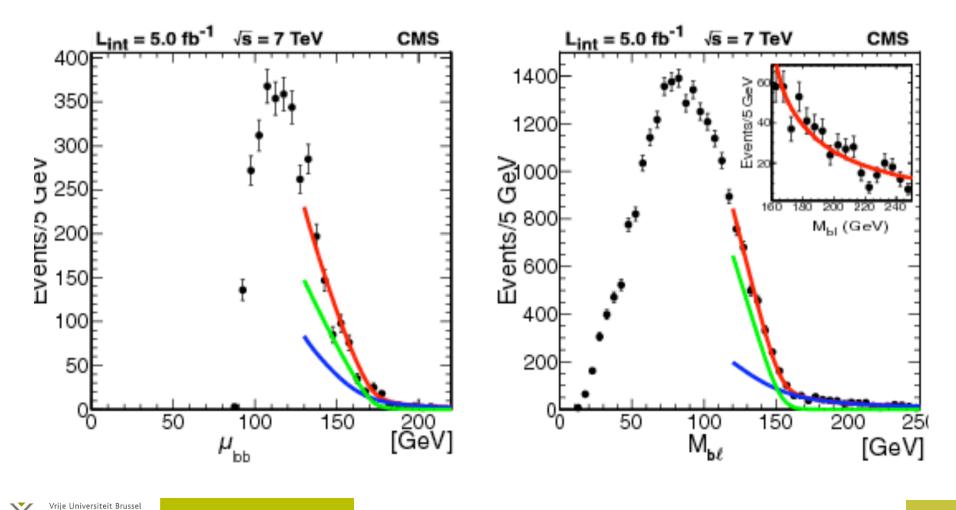
• Running mass ($\overline{\mathrm{MS}}$ scheme) at NNLO in QCD


 $m_t(m_t) = 163.3 \pm 2.7 GeV$

Sven-Olaf Moch

Interpreting top quark mass measurements – p.24

Or measure in other ways?

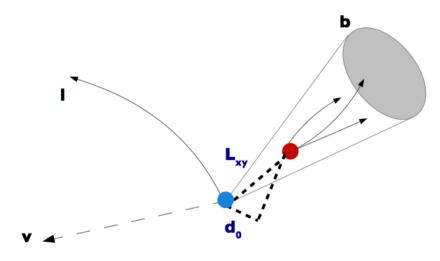


- In di-lepton events the di-lepton mass has a direct kinematic correlation to the top mass
 - Or with possible new physics particles if applied to cascade decays
- Measuring 'endpoint' of m(ll) distribution accurately means measuring the top quark mass accurately
- Basis of CMS endpoint measurement (arXiv:1304.5783)

Detailed fit with backgrounds included

• Small Background contribution derived from data

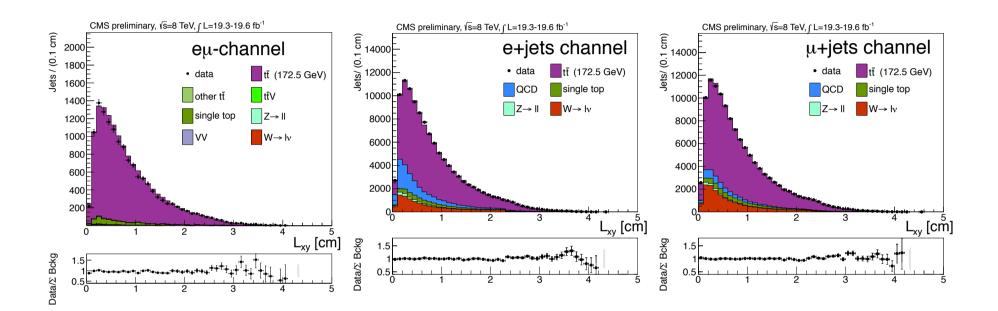
Advantage: very different syst. uncertainties


Source	$\delta M_{\rm t}~({\rm GeV})$
Jet energy scale	$^{+1.3}_{-1.8}$
Jet energy resolution	± 0.5
Lepton energy scale	+0.3 -0.4
Fit range	± 0.6
Background shape	± 0.5
Jet and lepton efficiencies	$+0.1 \\ -0.2$
Pileup	< 0.1
QCD effects	± 0.6
Total	+1.7 -2.1

• Jet energy scale still there, but few theory/ modeling uncertainties

 $M_{\rm t} = 173.9 \pm 0.9 \,({\rm stat.})^{+1.7}_{-2.1} \,({\rm syst.}) \,{\rm GeV}.$

 Not the best measurement in the world, but still competitive!


Lifetime method

Vrije Universiteit Brussel

- Boost of b quark correlated with top mass
- Decay length of secondary vertex can be used to measure top mass
 - Also possible: momentum of soft leptons from bquarks
 - Technique pioneered by CDF
 - (CMS PAS TOP-12-030)

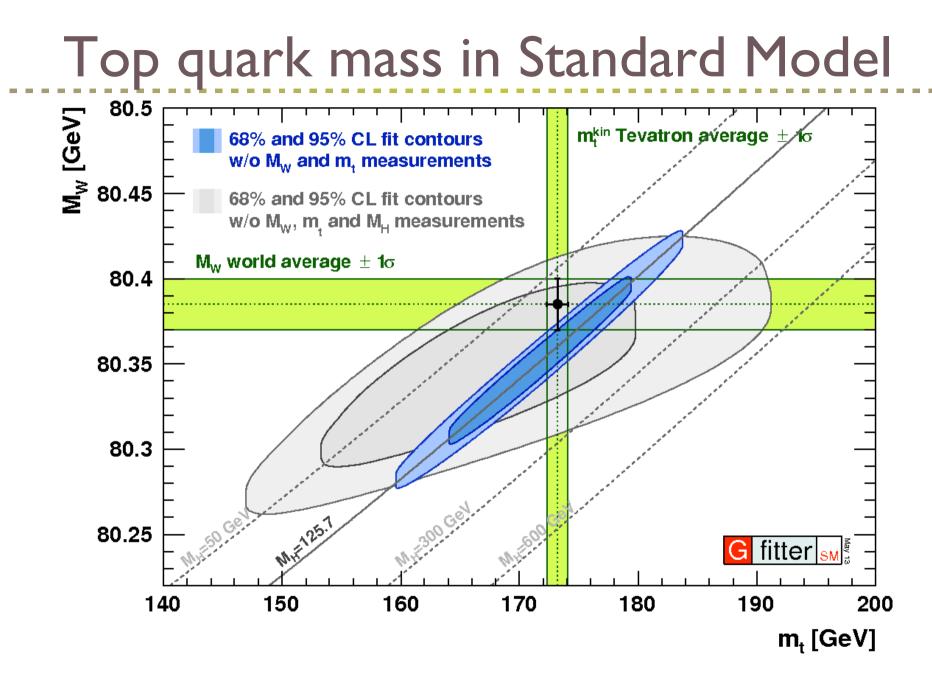
Examine decay length in dilepton and I+jets

$$\widehat{L_{xy}} = 0.682 \pm 0.004 \ cm \qquad \widehat{L_{xy}} = 0.6536 \pm 0.0013 \ cm \qquad \widehat{L_{xy}} = 0.6690 \pm 0.0013 \ cm \\ m_t^{MC} = 173.7 \pm 2.0 \ \text{GeV} \qquad m_t^{MC} = 172.8 \pm 1.0 \ \text{GeV} \qquad m_t^{MC} = 173.2 \pm 1.0 \ \text{GeV}$$

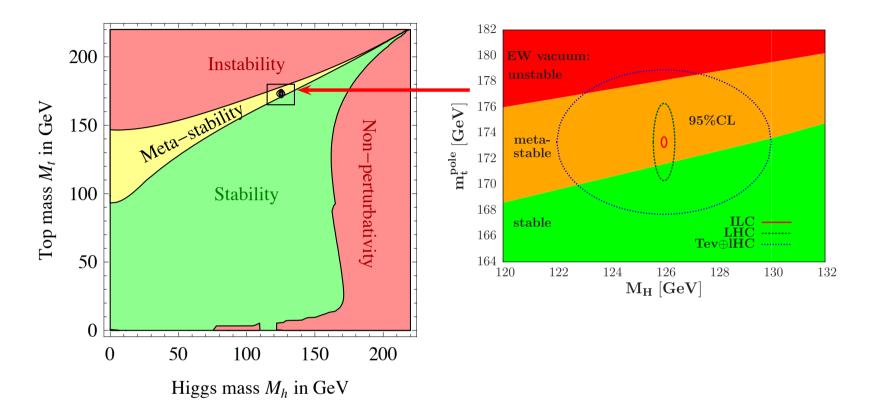
Again – different systematic uncertainties

		μ +jets	e+jets	еµ	
	Jet energy scale	0.30 ± 0.01	0.30 ± 0.01	0.30 ± 0.01	• Leading systematic:
	Multijet normalization (ℓ +jets)	0.50 ± 0.01	0.67 ± 0.01	-	t
Experimental	W+jets normalization (ℓ +jets)	1.42 ± 0.01	1.33 ± 0.01	-	p_{τ}^{top} modeling
-	DY normalization $(\ell \ell)$	-	-	0.38 ± 0.06	11 0
	Other backgrounds normalization	0.05 ± 0.01	0.05 ± 0.01	0.15 ± 0.07	3 CMS Preliminary, 12.1 fb ¹ at $\sqrt{s} = 8$ TeV
	W+jets background shapes (ℓ +jets)	0.40 ± 0.01	0.20 ± 0.01	-	
	Single top background shapes	0.20 ± 0.01	0.20 ± 0.01	0.30 ± 0.06	$\begin{array}{c} 10 \\ \hline 10$
	DY background shapes ($\ell\ell$)	-	-	0.04 ± 0.06	
	Calibration	0.42 ± 0.01	0.50 ± 0.01	0.21 ± 0.01	
	Q^2 -scale	0.47 ± 0.13	0.20 ± 0.03	0.11 ± 0.08	-ю Арргох. NNLO 6 (arXiv:1205.3453)
Theory	ME-PS matching scale	0.73 ± 0.01	0.87 ± 0.03	0.44 ± 0.08	5
Theory	PDF	0.26 ± 0.15	0.26 ± 0.15	0.26 ± 0.15	
	Hadronization model	0.95 ± 0.13	0.95 ± 0.13	0.67 ± 0.10	
	B-hadron composition	0.39 ± 0.01	0.39 ± 0.01	0.39 ± 0.01	
	B-hadron lifetime	0.29 ± 0.18	$\textbf{0.29} \pm \textbf{0.18}$	0.29 ± 0.18	
	Top quark $p_{\rm T}$ modeling	3.27 ± 0.48	3.07 ± 0.45	2.36 ± 0.35	
	Underlying event	0.27 ± 0.51	0.25 ± 0.48	0.19 ± 0.37	0 50 100 150 200 250 300 350 400
	Colour reconnection	0.36 ± 0.51	0.34 ± 0.48	0.26 ± 0.37	p _T t [GeV]

Final results


Vrije Universiteit Brussel

Channel	<i>m</i> t [GeV]
muon+jets	$173.2 \pm 1.0_{\rm stat} \pm 1.6_{\rm syst} \pm 3.3_{p_{\rm T}(t)}$
electron+jets	$172.8 \pm 1.0_{\text{stat}} \pm 1.7_{\text{syst}} \pm 3.1_{p_{\text{T}}(t)}$
electron-muon	$173.7 \pm 2.0_{\text{stat}} \pm 1.4_{\text{syst}} \pm 2.4_{p_{\text{T}}(\text{t})}$


Combination of all channels

$$m_t^{MC} = 173.5 \pm 1.5_{\text{stat}} \pm 1.3_{\text{syst}} \pm 2.6_{
m
ho_T^{top}}$$

src: Stijn Blyweert @EPS-HEP 2013

The top mass vs stability of the universe

- Constraints from the SM can also be used to assess stability of physics laws
 - Example: arXiv:1205.6497

Vrije Universiteit Brussel

¥

End of lecture two – questions?

