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Outline
• Basics of QCD

• e+e- to hadrons and infrared singularities
• Scale variations
• Hadronic collisions and PDFs
• Jets
• Selected topics: NLO automation, prompt photons, ... 

• Lagrangian and Feynman rules
• Colour 
• QCD beta-function and asymptotic freedom
• Factorisation

• QCD concepts in Phenomenology 

(time permitting)
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Motivation
Why do we care about QCD ? 

• we have to :  it dominates hadronic collisions

• can hide New Physics effects

• is interesting by itself

• can fake New Physics effects

the precision we can achieve on important 
measurements (e.g. Higgs properties) is 

directly linked to the control of QCD effects!
e.g.  Higgs production in gluon fusion 

at NNLO: 

D. de Florian, EPS ’13



magnitudes of cross sections: 
QCD dominates 



Basics of QCD 
strong interactions are described by SU(3) gauge theory
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Evidence for 3 Colours

55.1 Elektron-Positron-Annihilation in Hadronen 307
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Abb. 5.1
Die inklusive Hadronerzeugung in der
e−e+-Annihilation. Die Meßwerte stammen
von 14 verschiedenen Experimenten mit
Normierungsfehlern, die bis zu 20 % betra-
gen können. Die fast waagerechten Linien
sind die Vorhersagen gemäß (5.3) nach
Berücksichtigung der QCD-Korrekturen
aus (5.18)

in Elektron-Positron-Stößen oberhalb einer Schwerpunktsenergie von etwa
4 GeV bei. Beim Erstellen der Abb. 5.1 wurden aber Ereignisse mit Hadro-
nen aus τ-Zerfällen in der Bestimmung der Raten nicht berücksichtigt. Sie
zeigt daher nur die Produktion von Hadronen über Quarks, ist also sozusa-
gen ,,theoretisch vorbelastet“. Man sieht daran vielleicht am deutlichsten, wie
sehr wir inzwischen von der Richtigkeit des Modells überzeugt sind.

Schlüsselexperiment
Das τ-Lepton wurde 1975 mit dem gleichen Detektor entdeckt, mit
dem schon die ψ-Resonanzen in der e−e+-Vernichtung gefunden wur-
den [Per75]. Das Vorgehen der Experimentatoren kann als Musterbeispiel
für viele ähnliche, spätere Experimente auf der Suche nach neuen Teil-
chen gelten. Die Aufgabe war besonders schwierig, da im Bereich einer
Schwerpunktsenergie von 4 GeV auch die Paarerzeugung von c-Quarks
möglich ist. Die Autoren wählten zunächst Ereignisse mit genau zwei ent-
gegengesetzt geladenen Spuren in einem ansonsten leeren Detektor aus.
Sie benutzten dann zu ihrer Suche nach neuen Leptonen die Signatur

e− + e+ → e± +µ∓ + fehlende Energie . (5.4)

Auf den ersten Blick verletzen solche Ereignisse die Erhaltung der
Elektronen- und Myonenzahl. Der gewählten Signatur liegt jedoch die
Hypothese zugrunde, daß die in der Reaktion

e− + e+ → τ− + τ+ (5.5)

erzeugten τ-Paare Zerfallskanäle wie das Myon haben, also z.B.
τ+ → ν̄τµ

+νµ oder τ− → ντe−ν̄e. Die auslaufenden Neutrinos sind dem-
nach für die fehlende Energie im Detektor und für die scheinbare Verletzung
der Le- und Lµ-Erhaltung verantwortlich. Es ist klar, daß der in einem
solchen Experiment verwendete Detektor eine sehr gute Erkennung von
Elektronen, Photonen und Myonen über einen großen Bereich des Raum-

R = RQED(1 + !s
2/! + ...)

[includes QCD corrections]Resonances
at beginning of step



QCD Lagrangian 
LQCD = LYangMills + Lfermion + Lgauge fixing + Lghost
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A
µ − g fABCA
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C
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q̄a (i /D

ab
−m δab) qb

/Dab = γµD
µ
ab ; D

µ
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A)†(Dµ

ABη
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ab ; D

µ
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Lgauge fixing = −
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(covariant gauges)
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ABη
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gluon self interactions

LQCD = LYangMills + Lfermion + Lgauge fixing + Lghost
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4
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)2
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A)†(Dµ
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A = 1, . . . , 8

a, b = 1, 2, 3

gluons in adjoint representation of SU(3)

non-Abelian gauge theory different from QED ! important consequences

1 Langrangian and colour

LQCD = LYangMills + Lfermion + Lgauge fixing + Lghost

LYangMills = −
1

4
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1
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)2
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µ
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quarks in fundamental representation of SU(3)
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LQCD = LYangMills + Lfermion + Lgauge fixing + Lghost
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4
FA
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Lfermion =
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q̄a (i /D
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−m δab) qb
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µ
ab ; D

µ
ab = ∂µδab + i g (tAAµ

A)ab

Lgauge fixing = −
1

2λ

(

∂µAA
µ
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(covariant gauges)

Lghost = ∂µ(η
A)†(Dµ

ABη
B)

A = 1, . . . , 8
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tA = λA/2 λA : Gell-Mann matrices
generators of SU(3)
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KAB
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1
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(
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λ = 1 : Feynman gauge

λ = 0 : Landau gauge
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n2 = 0 : light-cone gauge
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µν (p) =

i δAB

p2 + i ε
dµν
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∑
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ε∗µ(p,α)εν(p,α)

=
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Lgauge fixing = −
1
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)2
(axial gauges: n ·A = 0)

λ = 1 : Feynman gauge

λ = 0 : Landau gauge

λ = ∞ : unitary gauge

n2 = 0 : light-cone gauge

∆AB
µν (p) =

i δAB

p2 + i ε
dµν

dµν =
∑

polarisationsα

ε∗µ(p,α)εν(p,α)

=
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−gµν +
pµnν+pνnµ

p·n
light-cone gauge

NB conventions: doubly occurring  indices are summed over 
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)2
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λ = 1 : Feynman gauge

λ = 0 : Landau gauge

λ = ∞ : unitary gauge

n2 = 0 : light-cone gauge

reminder: classical equation of motion

cannot be solved because is not invertible ⇒ need gauge fixing
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c

Lgauge fixing = −
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nµAA
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)2
(axial gauges: n · A = 0)
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λ = ∞ : unitary gauge

n2 = 0 : light-cone gauge
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λ = ∞ : unitary gauge

n2 = 0 : light-cone gauge

Lgauge fixing = −
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(axial gauges: n · A = 0)

λ = 1 : Feynman gauge

λ → 0 : Landau gauge

n2 = 0 : light-cone gauge

∆AB
µν (p) =

i δAB

p2 + i ε
dµν

dµν =
∑

polarisationsα

ε∗µ(p,α)εν(p,α)

=

{

−gµν + (1− λ) pµpν
p2 covariant gauge

−gµν +
pµnν+pνnµ

p·n light-cone gauge

A, µ

B, ν

p

a b A B TR CA
1

2Nc

colour
=

CF =
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Tr(tA) = 0

Tr(tAtB) = TRδ
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1
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∑

A
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A
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η complex scalar field obeying Fermi statistics
(related to Jacobian of gauge transformations in path integral formulation)

• Covariant gauges introduce unphysical gluon polarisations at  
quantum level which are cancelled by ghost-gluon interactions.  

LQCD = LYangMills + Lfermion + Lgauge fixing + Lghost
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tA = λA/2 λA :

LQCD = LYangMills + Lfermion + Lgauge fixing + Lghost
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A)†(Dµ
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A = 1, . . . , 8

a, b ∈ {1, 2, 3}

tA = λA/2 λA :• In axial gauges ghosts do not couple to gluons, only physical 
gluon polarisations propagate.

Ghost fields

Therefore axial gauges are also called  physical gauges.



Feynman Rules

[ta, tb] = i fabc t
c

KAB
µν Aν

B = δAB(−!gµν + ∂µ∂ν)A
ν
B = JA

µ

KAB
µν

Lgauge fixing = −
1

2λ

(

nµAA
µ

)2
(axial gauges: n ·A = 0)

λ = 1 : Feynman gauge

λ = 0 : Landau gauge

λ = ∞ : unitary gauge

n2 = 0 : light-cone gauge

∆AB
µν (p) =

i δAB

p2 + i ε
dµν

dµν =
∑

polarisationsα

ε∗µ(p,α)εν(p,α)

=

{

−gµν + (1− λ) pµpν
p2

covariant gauge

−gµν +
pµnν+pνnµ

p·n
light-cone gauge

[ta, tb] = i fabc t
c
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B = δAB(−!gµν + ∂µ∂ν)A
ν
B = JA

µ

KAB
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Lgauge fixing = −
1

2λ

(

nµAA
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)2
(axial gauges: n ·A = 0)

λ = 1 : Feynman gauge

λ = 0 : Landau gauge

λ = ∞ : unitary gauge

n2 = 0 : light-cone gauge

∆AB
µν (p) =

i δAB

p2 + i ε
dµν

dµν =
∑

polarisationsα

ε∗µ(p,α)εν(p,α)

=

{

−gµν + (1− λ) pµpν
p2

covariant gauge

−gµν +
pµnν+pνnµ

p·n
light-cone gauge

A, µ

B, ν

A, µ

B, ν

A, µ

B, ν

p
gluon propagator



Feynman Rules

conventions from
Ellis, Stirling, Webber

QCD and Collider Physics

ghost propagator

fermion propagator

gluon-ghost vertex

gluon-quark vertex



Colour Algebra

[tA, tB] = i fABC tC

KAB
µν Aν

B = δAB(−!gµν + ∂µ∂ν)A
ν
B = JA

µ

KAB
µν

Lgauge fixing = −
1

2λ

(

nµAA
µ

)2
(axial gauges: n ·A = 0)

λ = 1 : Feynman gauge

λ = 0 : Landau gauge

λ = ∞ : unitary gauge

n2 = 0 : light-cone gauge

∆AB
µν (p) =

i δAB

p2 + i ε
dµν

dµν =
∑

polarisationsα

ε∗µ(p,α)εν(p,α)

=

{

−gµν + (1− λ) pµpν
p2

covariant gauge

−gµν +
pµnν+pνnµ

p·n
light-cone gauge

(fundamental representation)

A, µ

B, ν

p

a b A B TR CA
1

2Nc

color
=

CF =
N2

c − 1

2Nc

Tr(TA) = 0

Tr(TATB) = TRδ
AB , TR =

1

2
∑

A

tAact
A
cb = CF δab

∑

C,D

fCDAfCDB = CA δAB , CA = Nc

(tA)ab(t
A)cd =

1

2
δadδbc −

1

2Nc

δabδcd

fABEfCDE + fBCEfADE + fCAEfBDE = 0

generators of SU(Nc):
N2

c − 1 hermitean traceless matrices (tA)ab

A, µ

B, ν

p

a b A B TR CA
1

2Nc

color
=

CF =
N2

c − 1

2Nc

Tr(TA) = 0

Tr(TATB) = TRδ
AB , TR =

1

2
∑

A

tAact
A
cb = CF δab

∑

C,D

fCDAfCDB = CA δAB , CA = Nc

(tA)ab(t
A)cd =

1

2
δadδbc −

1

2Nc

δabδcd

fABEfCDE + fBCEfADE + fCAEfBDE = 0

generators of SU(Nc):
N2

c − 1 hermitean traceless matrices (tA)ab
QCD Lagrangian
Feynman rules

Pictorial representation of SU(Nc) identities

Fundamental relations

Fundamental representation 3

!ij ta
ij

a

jii j = =

Trace identities: Tr(ta) = 0 and Tr(tatb) = TRδab

= 0a RTa b a b=

Adjoint representation 8

i fabc=a =cb !ab

b

a
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QCD Lagrangian
Feynman rules

Pictorial representation of SU(Nc) identities

Fundamental relations

Fundamental representation 3

!ij ta
ij

a

jii j = =

Trace identities: Tr(ta) = 0 and Tr(tatb) = TRδab

= 0a RTa b a b=

Adjoint representation 8

i fabc=a =cb !ab

b

a
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Colour decomposition

we can write every n-gluon tree 
graph colour factor as a sum of 
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Color in pictures
Insert

where

into typical string of fabc structure constants for a Feynman diagram:

• Always single traces (at tree level) 
• comes only from those planar diagrams 
with cyclic ordering of external legs fixed to 1,2,…,n

is color factor for qqg vertex

and

similarly 
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colour ordered subamplitude, colour factors stripped off 
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2

(see later)



Non-planar topologies are subleading in colour   
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∣
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Color sums

Up to 1/Nc
2 suppressed effects, squared subamplitudes have 

definite color flow – important for handoff to parton shower programs

In the end, we want to sum/average over final/initial colors
(as well as helicities):

Inserting:

and doing the color sums diagrammatically:

we get:
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Color sums

Up to 1/Nc
2 suppressed effects, squared subamplitudes have 

definite color flow – important for handoff to parton shower programs

In the end, we want to sum/average over final/initial colors
(as well as helicities):

Inserting:

and doing the color sums diagrammatically:

we get:

Colour expansion

insert colour ordered amplitude and perform the colour sum:

Note: parton showers usually do not take 
subleading colour into account



QCD beta-function

... contains one of the most important minus signs in physics ! 

α

 QCD:

 QED:

Roughly speaking, the gluon self couplings reverse the sign of the beta-function.

In more detail ...



QCD beta-function
• consider a dimensionless observable R which can be expanded in 

  R should be independent of Q•  dimensional analysis

•  however, R needs UV renormalisation ! 

si,i+1 = (pi + pi+1)
2

αs =
g2

4π
and  which depends on a single large energy scale Q 

•  this introduces another mass scale 
µ : the point at which the subtractions of the UV divergences are performed

•  therefore R will depend on the ratio   Q/µ

•  the renormalized coupling   αs will also depend on    µ

•  as     is arbitrary, R can not depend on itµ ⇒

Running coupling
Consider dimensionless physical observable R which depends on a single large
energy scale, Q ! m where m is any mass. Then we can set m → 0 (assuming
this limit exists), and dimensional analysis suggests that R should be independent
of Q.
This is not true in quantum field theory. Calculation of R as a perturbation series in
the coupling αS = g2/4π requires renormalization to remove ultraviolet
divergences. This introduces a second mass scale µ — point at which
subtractions which remove divergences are performed. Then R depends on the
ratio Q/µ and is not constant. The renormalized coupling αS also depends on µ.
But µ is arbitrary! Therefore, if we hold bare coupling fixed, R cannot depend on µ.
Since R is dimensionless, it can only depend on Q2/µ2 and the renormalized
coupling αS . Hence

µ2 d

dµ2
R

 

Q2

µ2
, αS

!

≡
"

µ2 ∂

∂µ2
+ µ2 ∂αS

∂µ2

∂

∂αS

#

R = 0 .
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QCD beta function

 define

Introducing

τ = ln

 

Q2

µ2

!

, β(αS) = µ2 ∂αS

∂µ2
,

we have
"

− ∂

∂τ
+ β(αS)

∂

∂αS

#

R = 0.

This renormalization group equation is solved by defining running coupling αS(Q):

τ =

Z αS(Q)

αS

dx

β(x)
, αS(µ) ≡ αS .

Then
∂αS(Q)

∂τ
= β(αS(Q)) ,

∂αS(Q)

∂αS
=

β(αS(Q))

β(αS)
.

and hence R(Q2/µ2, αS) = R(1, αS(Q)). Thus all scale dependence in R comes
from running of αS(Q).
We shall see QCD is asymptotically free: αS(Q) → 0 as Q → ∞. Thus for large
Q we can safely use perturbation theory. Then knowledge of R(1, αS) to fixed
order allows us to predict variation of R with Q.
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 the beta function has the expansion 

 where Nf is the number of active flavours. 

 :

4 Reduction of scale dependence

R = R0 ×∆QCD = 3
∑

q

Q2
q ×∆QCD

∆QCD = 1 +
αs(µ2)

π
+

∞
∑

n=2

Cn

(
s

µ2

)(
αs(µ2)

π

)n

dR

dµ
= 0 ⇒ µ2 ∂R

∂µ2
+ β(αs)

∂R

∂αs
= 0

β(αs) = −b0 α
2
s (1 + b1 αs) +O(α4

s)

b0 =
1

12π
(11Nc − 2Nf) , b1 =

17N2
c − 5NcNf − 3CFNf

2π (11Nc − 2Nf)

MZ/2 ≤ µ ≤ 2MZ

EW
T =

√

M2
W + p2T (W )

HT =
∑

jets

Ejet
T + E lepton

T + Emiss
T

5 DGLAP evolution

The phase space integral needed for the virtual diagrams, where only one
physical gluon line is cut, is given by

PSvirt = 2π z

∫
dmk

(2π)m
δ(x− z) δ((p− k)2) where (4)

(p− k)2 = −
k2
⊥

x
−

(1− x)

x
k2 =⇒ δ((p− k)2) = x δ(k2

⊥ + (1− x)k2)

 Terms up to   

4 Reduction of scale dependence

R = R0 ×∆QCD = 3
∑

q

Q2
q ×∆QCD

∆QCD = 1 +
αs(µ2)

π
+

∞
∑

n=2

Cn

(
s

µ2

)(
αs(µ2)

π

)n

dR

dµ
= 0 ⇒ µ2 ∂R

∂µ2
+ β(αs)

∂R

∂αs
= 0

β(αs) = −b0 α
2
s (1 + b1 αs) +O(α4

s)

b0 =
1

12π
(11Nc − 2Nf) , b1 =

17N2
c − 5NcNf − 3CFNf

2π (11Nc − 2Nf)

MZ/2 ≤ µ ≤ 2MZ

EW
T =

√

M2
W + p2T (W )

HT =
∑

jets

Ejet
T + E lepton

T + Emiss
T

5 DGLAP evolution

The phase space integral needed for the virtual diagrams, where only one
physical gluon line is cut, is given by

PSvirt = 2π z

∫
dmk

(2π)m
δ(x− z) δ((p− k)2) where (4)

(p− k)2 = −
k2
⊥

x
−

(1− x)

x
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 are known.



asymptotic freedom
Asymptotic freedom

Roughly speaking, quark loop diagram (a) contributes negative Nf term in b, while
gluon loop (b) gives positive CA contribution, which makes β function negative
overall.
QED β function is βQED(α) = 1

3π
α2 + . . .

Thus b coefficients in QED and QCD have opposite signs.
From earlier slides,

∂αS(Q)

∂τ
= −bα2

S(Q)
h

1 + b′αS(Q)
i

+ O(α4
S).

Neglecting b′ and higher coefficients gives αS(Q) = αS(µ)
1+αS(µ)bτ

, τ = ln
“

Q2

µ2

”

.
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 (a)  (b)

b0 =
1

12π
(11Nc − 2Nf ) QCD:

 QED:

αs(Q
2) =

αs(µ2)

1 + αs(µ2) b0 ln
�

Q2

µ2

�

α(Q2) =
α0

1− α0
3π ln

�
Q2

m2
e

�
 1/137

 coupling grows with energy

 coupling decreases with energy

 asymptotic freedom

⇒

 (includes ghost loop)



Asymptotic freedom

12 Siegfried Bethke: The 2009 World Average of αs

of the measurements with the others, exclusive averages,
leaving out one of the 8 measurements at a time, are cal-
culated. These are presented in the 5th column of table 1,
together with the corresponding number of standard de-
viations 5 between the exclusive mean and the respective
single measurement.

As can be seen, the values of exclusive means vary only
between a minimum of 0.11818 and a maximum 0.11876.
Note that in the case of these exclusive means and ac-
cording to the ”rules” of calculating their overall errors,
in four out of the eight cases small error scaling factors
of g = 1.06...1.08 had to be applied, while in the other
cases, overall correlation factors of about 0.1, and in one
case of 0.7, had to be applied to assure χ2/ndf = 1. Most
notably, the average value αs(MZ0) changes to αs(MZ0) =
0.1186±0.0011when omitting the result from lattice QCD.

5 Summary and Discussion

In this review, new results and measurements of αs are
summarised, and the world average value of αs(MZ0), as
previously given in [7,28,6], is updated. Based on eight
recent measurements, which partly use new and improved
N3LO, NNLO and lattice QCD predictions, the new av-
erage value is

αs(MZ0) = 0.1184± 0.0007 ,

which corresponds to

Λ(5)

MS
= (213 ± 9 )MeV .

This result is consistent with the one obtained in the pre-
viuos review three years ago [28], which was αs(MZ0) =
0.1189±0.0010. The previous and the actual world average
have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements.

The individual mesurements, as listed in table 1 and
displayed in figure 5, show a very satisfactory agreement
with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.

There remains, however, an apparent and long-standing
systematic difference: results from structure functions pre-
fer smaller values of αs(MZ0) than most of the others, i.e.
those from e+e− annihilations, from τ decays, but also
those from jet production in deep inelastic scattering. This
issue apparently remains to be true, although almost all of
the new results are based on significantly improved QCD

5 The number of standard deviations is defined as the
square-root of the value of χ2.

6 assuming their assigned total errors to be fully uncorre-
lated.

predictions, up to N3LO for structure functions, τ and Z0

hadronic widths, and NNLO for e+e− event shapes.
The reliability of “measurements” of αs based on “ex-

periments” on the lattice have gradually improved over
the years, too. Including vaccum polarisation of three light
quark flavours and extended means to understand and cor-
rect for finite lattice spacing and volume effects, the overall
error of these results significally decreased over time, while
the value of αs(MZ0) gradually approached the world aver-
age. Lattice results today quote the smallest overall error
on αs(MZ0); it is, however, ensuring to see and note that
the world average without lattice results is only marginally
different, while the small size of the total uncertainty on
the world average is, naturally, largely influenced by the
lattice result.

QCD !  ("  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

!!s (Q)

1 10 100Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Fig. 6. Summary of measurements of αs as a function of the
respective energy scale Q. The curves are QCD predictions for
the combined world average value of αs(MZ0), in 4-loop ap-
proximation and using 3-loop threshold matching at the heavy
quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Full sym-
bols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross-
filled square is based on lattice QCD. The filled triangle at
Q = 20 GeV (from DIS structure functions) is calculated from
the original result which includes data in the energy range from
Q =2 to 170 GeV.

In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
values of energy scales Q, the individual values of αs(Q)
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The presence of correlated errors, if using the equations
given above, is usually signalled by χ2 < ndf . Values of
χ2 > ndf , in most practical cases, are a sign of possibly
underestimated errors. In this review, both these cases are
pragmatically handled in the following way:

In the presence of correlated errors, described by a
covariance matrix C, the optimal procedure to determine
the average x is to minimise the χ2 function

χ2 =
n

∑

i,j=1

(xi − x)(C−1)ij(xj − x) ,

which leads to

x =





∑

ij

(C−1)ijxj









∑

ij

(C−1)ij





−1

and

∆x2 =





∑

ij

(C−1)ij





−1

.

The choice of Cii = ∆x2
i and Cij = 0 for i "= j re-

tains the uncorrelated case given above. In the presence
of correlations, however, the resulting χ2 will be less than
ndf = n − 1. In order to allow for an unknown common
degree of a correlation f , the method proposed in [61] will
be applied by choosing Cij = f×∆xi×∆xj and adjusting
f such that χ2 = n − 1.

For cases where the uncorrelated error determimation
results in χ2 > ndf , and in the absence of knowledge which
of the errors ∆xi are possibly underestimated, all individ-
ual errors are scaled up by a common factor g such that
the resulting value of χ2/ndf , using the definition for un-
correlated errors, will equal unity.

Note that both for values of f > 0 or g > 1, ∆x
increases, compared to the uncorrelated (f = 0 and g = 1)
case.

4.2 Determination of the world average

The eight different determinations of αs(MZ0) summarised
and discussed in the previous section are listed in ta-
ble 1 and are graphically displayed in figure 5. Apply-
ing equations 14, 15 and 16 to this set of measurements,
assuming that the errors are not correlated, results in
an average value of αs(MZ0) = 0.11842 ± 0.00063 with
χ2/ndf = 5.4/7.

The fact that χ2 < ndf signals a possible correlation
between all or subsets of the eight input results. Assuming
an overall correletion factor f and demanding that χ2 =
ndf = 7 requires f = 0.23, inflating the overall error from
0.00063 to 0.00089.

In fact, there are two pairs of results which are known
to be largely correlated:

– the two results from e+e− event shapes based on the
data from JADE and from ALEPH use the same theo-
retical predictions and similar hadronisation models to

0.11 0.12 0.13
!!    ((""    ))s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

#-decays (N3LO)

DIS  jets (NLO)

e+e– jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e– jets & shapes (NNLO) 

$ decays (NLO)

Fig. 5. Summary of measurements of αs(MZ0). The vertical
line and shaded band mark the final world average value of
αs(MZ0) = 0.1184 ± 0.0007 determined from these measure-
ments.

correct these predictions for the transitions of quarks
and gluons to hadrons. While the experimental errors
are uncorrelated, the theoretical uncertainties may be
assumed to be correlated to 100%. The latter accounts
for about 2/3 to 3/4 of the total errors. An appropriate
choice of correlation factor between the two may then
be f = 0.67.

– the QCD predictions for the hadronic widths of the
τ -lepton and the Z0 boson are essentially identical, so
the respective results on αs are correlated, too. The
values and total errors of αs(MZ0) from τ decays must
therefore be correlated to a large extend, too. In this
case, however, the error of one measurement is al-
most entirely determined by the experimental error
(Z0-decays), while the other, from τ -decays, is mostly
theoretical. A suitable choice of the correlation factor
between both these results may thus be f = 0.5.

Inserting these two pairs of correlations into the error
matrix C, the χ2/ndf of the averaging procedure results
in 6.8/7, and the overall error on the (unchanged) central
value of αs(MZ0) changes from 0.00063 to 0.00067. There-
fore the new world average value of αs(MZ0) is defined to
be

αs(MZ0) = 0.1184± 0.0007.

For seven out of the eight measurements of αs(MZ0),
the average value of 0.1184 is within one standard devi-
ation of their assigned errors. One of the measurements,
from structure functions [45], deviates from the mean value
by more than one standard deviation, see figure 5.

The mean value of αs(MZ0) is potentially dominated
by the αs result with the smallest overall assigned un-
certainty, which is the one based on lattice QCD [26]. In
order to verify this degree of dominance on the average
result and its error, and to test the compatibility of each

Comparisons with data

QCD
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There is nowadays a very
solid evidence that αS

runs as predicted by QCD
with NC = 3
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Confinement

 at small scales: running coupling diverges, so perturbation theory cannot be applied

Renormalisation group
QCD beta function

Short-distance observables

The dark side of asymptotic freedom: the Landau pole

Consider the behaviour of the running coupling at small scales

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  10  100  1000

!
s(
µ

)

µ [GeV]

1 loop

αs(µ) =
αs(µ0)

1 + αs(µ0)β0 ln µ2

µ2
0

=
1

β0 ln µ2

Λ2
QCD

The pole ΛQCD is a scale that is introduced dynamically in the theory, it is the price
to pay for renormalisability
The running of the coupling tells us that we cannot believe PT theory for scales
less than 500 MeV
The growth of the PT coupling at small scales is consistent with the fact that
quarks cannot be observed as free objects, but are always confined to form
hadrons
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confinement:

 at small scales:

 partons (quarks and gluons) are only found in  
colour singlet bound states (hadrons) 

domain of lattice QCD ⇒

 hadronisation:  partons produced in hard scattering processes 
reorganize themselves to form hadrons



Lambda Parameter

 It is useful to define a dimensionful parameter 

 setting the scale at which the coupling becomes large. 

 (integration constant)  Λ

4 Reduction of scale dependence

R = R0 ×∆QCD = 3
∑

q

Q2
q ×∆QCD

∆QCD = 1 +
αs(µ2)

π
+

∞
∑

n=2

Cn

(
s

µ2

)(
αs(µ2)

π

)n

dR

dµ
= 0 ⇒ µ2 ∂R

∂µ2
+ β(αs)

∂R

∂αs
= 0

β(αs) = −b0 α
2
s (1 + b1 αs) +O(α4

s)

b0 =
1

12π
(11Nc − 2Nf) , b1 =

17N2
c − 5NcNf − 3CFNf

2π (11Nc − 2Nf)

ln

(
Q2

Λ2

)

= −
∫ ∞

αs(Q)

dx

β(x)
=

∫ ∞

αs(Q)

dx

b0 x2 (1 + b1 x+ . . .)

x

αs(Q) =
1

b0 ln
(

Q2

Λ2

) LO

αs(Q) =
1

b0 ln
(

Q2

Λ2

)



1−
b1 ln ln

(
Q2

Λ2

)

b0 ln
(

Q2

Λ2

)



 NLO

MZ/2 ≤ µ ≤ 2MZ

EW
T =

√

M2
W + p2T (W )

HT =
∑

jets

Ejet
T + E lepton

T + Emiss
T

 Keeping only b0(LO), b1(NLO)

4 Reduction of scale dependence

R = R0 ×∆QCD = 3
∑

q

Q2
q ×∆QCD

∆QCD = 1 +
αs(µ2)

π
+

∞
∑

n=2

Cn

(
s

µ2

)(
αs(µ2)

π

)n

dR

dµ
= 0 ⇒ µ2 ∂R

∂µ2
+ β(αs)

∂R

∂αs
= 0

β(αs) = −b0 α
2
s (1 + b1 αs) +O(α4

s)

b0 =
1

12π
(11Nc − 2Nf) , b1 =

17N2
c − 5NcNf − 3CFNf

2π (11Nc − 2Nf)

ln

(
Q2

Λ2

)

= −
∫ ∞

αs(Q)

dx

β(x)
=

∫ ∞

αs(Q)

dx

b0 x2 (1 + b1 x+ . . .)

x

αs(Q) =
1

b0 ln
(

Q2

Λ2

) LO

αs(Q) =
1

b0 ln
(

Q2

Λ2

)



1−
b1 ln ln

(
Q2

Λ2

)

b0 ln
(

Q2

Λ2

)



 NLO

MZ/2 ≤ µ ≤ 2MZ

EW
T =

√

M2
W + p2T (W )

HT =
∑

jets

Ejet
T + E lepton

T + Emiss
T

 (LO) 

4 Reduction of scale dependence

R = R0 ×∆QCD = 3
∑

q

Q2
q ×∆QCD

∆QCD = 1 +
αs(µ2)

π
+

∞
∑

n=2

Cn

(
s

µ2

)(
αs(µ2)

π

)n

dR

dµ
= 0 ⇒ µ2 ∂R

∂µ2
+ β(αs)

∂R

∂αs
= 0

β(αs) = −b0 α
2
s (1 + b1 αs) +O(α4

s)

b0 =
1

12π
(11Nc − 2Nf) , b1 =

17N2
c − 5NcNf − 3CFNf

2π (11Nc − 2Nf)

ln

(
Q2

Λ2

)

= −
∫ ∞

αs(Q)

dx

β(x)
=

∫ ∞

αs(Q)

dx

b0 x2 (1 + b1 x+ . . .)

x

αs(Q) =
1

b0 ln
(

Q2

Λ2

) LO

αs(Q) =
1

b0 ln
(

Q2

Λ2

)



1−
b1 ln ln

(
Q2

Λ2

)

b0 ln
(

Q2

Λ2

)



 NLO

MZ/2 ≤ µ ≤ 2MZ

EW
T =

√

M2
W + p2T (W )

HT =
∑

jets

Ejet
T + E lepton

T + Emiss
T

 (NLO)  (LO) 

 Note that  Λ depends on the number of active flavours  Nf .  

Comment: as it sets the scale of hadron masses, it is quite an important 
parameter in particle physics! 
Not as famous as the Higgs though . . . 



artist: Frank Krauss

Orientation Matrix elements Detour: New models Survey of tools ME Limitations Detour: NLO

Prelude: Orientation

Event generator paradigm
Divide event into stages,
separated by different scales.

Signal/background:
Exact matrix elements.

QCD-Bremsstrahlung:
Parton showers (also in initial state).

Multiple interactions:
Beyond factorisation: Modelling.

Hadronisation:
Non-perturbative QCD: Modelling.

Sketch of an event

F. Krauss IPPP

Introduction to Event Generators

hard scattering

parton shower

hadronisation

hadron decays

Hadron collider event

initial state (proton)



Factorisation: separate hard and soft scales

factorisation

x1P1

x2P2

P2

P1

fa

fb

σ̂c
ab

Dc

σpp→X =
∑

a,b,c

fa(x1, µ
2
f )fb(x2, µ

2
f ) ⊗ σ̂ab(p1, p2,

Q2

µ2
f

,
Q2

µ2
r

,αs(µ
2
r ))

⊗Dc→X (z , µ
2
f ) +O(Λ/Q)

fa, fb: parton distribution functions (from fits to data)

σ̂ab: partonic hard scattering cross section

calculable order by order in perturbation theory

Dc→X (z , µ2
f ): describing the final state e.g. fragmentation function, jet observable, etc.

how can we describe this?  

Standard Model Theory for Collider Physics                Daniel de Florian

perturbative partonic cross-section

non-perturbative parton distributions

dσ =
�

ab

�
dxa

�
dxb fa(xa, µ

2
F )fb(xb, µ

2
F ) × dσ̂ab(xa, xb, Q

2,αs(µ
2
R)) +O

��
Λ

Q

�m�

dσ̂ = αn
s dσ̂(0) + αn+1

s dσ̂(1) + ...Partonic cross-section: expansion in αs(µ
2
R) � 1

‣ In the LHC era, QCD is everywhere!

a

b

H, γ, Z,W

jet

‣ Require precision for perturbative and non-perturbative contribution

3



•  hard scattering cross section:

 which order in the 
perturbative expansion is 
precise enough?
(LO, NLO, NNLO ...)   

 is fixed order adequate, or do we 
need to resum large logarithms?

• how to combine the partonic hard 
scattering result with a parton shower?

•  do we know the parton 
distribution functions (PDFs) 
well enough?

• how to  model hadronisation?

• how to combine the partonic hard 
scattering result with a parton shower?

we will concentrate mostly on 
the hard scattering cross 
section in the following

Without factorisation we would be quite lost, but there 
are still a number of open (QCD) questions, e.g.



start with simple example:  

R =
σ (e+e− → hadrons)
σ (e+e− → µ+µ−)

Renormalisation group
QCD beta function

Short-distance observables

The ratio R at two loops

At Born level, for nf massless quarks, we have

RPT

 

α,
Q2

Λ2
UV

!

= R0 = Nc

nf
X

q=1

e2
q

qe+

e! q

At 1-loop, both UV and IR divergences cancel, leaving a finite result

RPT

 

α,
Q2

Λ2
UV

!

= R0

“

1 +
α

π

”

Only at 2-loop do we meet UV divergences, which we regulate with a cutoff ΛUV

RPT

 

α,
Q2

Λ2
UV

!

= R0

 

1 +
α

π
+
“α

π

”2
 

c2 + πβ0 ln
Λ2

UV

Q2

!!
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e+e- annihilation

at leading order: R0 = Nc

�

q

Q2
q

γ∗

what happens if one of the 
quarks emits a gluon? 

start with simple example:  

Renormalisation group
QCD beta function

Short-distance observables

The ratio R at two loops

At Born level, for nf massless quarks, we have

RPT

 

α,
Q2

Λ2
UV

!

= R0 = Nc

nf
X

q=1

e2
q

qe+

e! q

At 1-loop, both UV and IR divergences cancel, leaving a finite result

RPT

 

α,
Q2

Λ2
UV

!

= R0

“

1 +
α

π

”

+

2

+ + +

2

Only at 2-loop do we meet UV divergences, which we regulate with a cutoff ΛUV

RPT

 

α,
Q2

Λ2
UV

!

= R0

 

1 +
α

π
+
“α

π

”2
 

c2 + πβ0 ln
Λ2

UV

Q2

!!
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Renormalisation group
QCD beta function

Short-distance observables

The ratio R at two loops

At Born level, for nf massless quarks, we have

RPT

 

α,
Q2

Λ2
UV

!

= R0 = Nc

nf
X

q=1

e2
q

qe+

e! q

At 1-loop, both UV and IR divergences cancel, leaving a finite result

RPT

 

α,
Q2

Λ2
UV

!

= R0

“

1 +
α

π

”

+

2

+ + +

2

Only at 2-loop do we meet UV divergences, which we regulate with a cutoff ΛUV

RPT

 

α,
Q2

Λ2
UV

!

= R0

 

1 +
α

π
+
“α

π

”2
 

c2 + πβ0 ln
Λ2

UV

Q2

!!
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to work consistently at order αs

 

we need both  real and virtual corrections

real radiation virtual corrections 

(we will not consider Z exchange here)



In a gauge theory with massless particles both 
soft and collinear divergences can occur. 

Infrared singularities

start with simple example:  

Consider the emission of a gluon from a hard quark:

Renormalisation group
QCD beta function

Short-distance observables

Collinear and infrared divergences

R̂(αs(Q), 1), obtained with partons instead than hadrons, is in agreement with experi-
mental data ⇒ hadronic R dominated by the hard scale Q2 = s: why?

Besides UV divergences, any gauge theory with massless particles can have
divergences whenever a propagator goes on shell

p + k p

k

!

Emission of a gluon ω off a hard quark E ∼ Q

(p + k)2 = 2Eω(1 − cos θ) $ Eωθ2

singular for soft (ω → 0) and/or collinear (θ → 0) gluons

Infrared (IR) and collinear (together IRC) singularities are present both in real
emission and virtual corrections

For soft and collinear radiation the characteristic emission time τ ∼ 1/(ωθ2) is
much larger than 1/Q, the characteristic time of the hard collision

Any observable that is sensitive to soft and collinear gluons will acquire a
dependence on the characteristic time of soft and collinear radiation
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∑

A

tAact
A
cb = CF δab

∑

C,D

fCDAfCDB = CA δAB , CA = Nc

(tA)ab(t
A)cd =

1

2
δadδbc −

1

2Nc

δabδcd

fABEfCDE + fBCEfADE + fCAEfBDE = 0

(tA)ab

i fABC

generators of SU(Nc):
N2

c − 1 hermitean traceless matrices (tA)ab

fABC = −2 iTr([tA, tB] tC)

Tr(tA1tA2 · · · tAn) + all non-cyclic permutations

qq̄gggg . . . ⇒ Tr(tA1tA2 · · · tAn)ab + permutations

Mtree
n ({pi, ai, hi}) = gn−2Tr(tA1tA2 · · · tAn)M tree

n (1h1, 2h2 . . . nhn) + all non-cyclic permutations

si,i+1 = (pi + pi+1)
2

αs =
g2

4π

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

∑

A

tAact
A
cb = CF δab

∑

C,D

fCDAfCDB = CA δAB , CA = Nc

(tA)ab(t
A)cd =

1

2
δadδbc −

1

2Nc

δabδcd

fABEfCDE + fBCEfADE + fCAEfBDE = 0

(tA)ab

i fABC

generators of SU(Nc):
N2

c − 1 hermitean traceless matrices (tA)ab

fABC = −2 iTr([tA, tB] tC)

Tr(tA1tA2 · · · tAn) + all non-cyclic permutations

qq̄gggg . . . ⇒ Tr(tA1tA2 · · · tAn)ab + permutations

Mtree
n ({pi, ai, hi}) = gn−2Tr(tA1tA2 · · · tAn)M tree

n (1h1, 2h2 . . . nhn) + all non-cyclic permutations

si,i+1 = (pi + pi+1)
2

αs =
g2

4π

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

will go to zero if the gluon becomes  soft  
or if quark and gluon become collinear 

(ω → 0)

(θ → 0)

  Soft and collinear divergences also occur in virtual corrections. 

  They cancel in an inclusive quantity where “degenerate energy states” 
are summed over (KLN theorem, see later).

Renormalisation group
QCD beta function

Short-distance observables

Infrared and collinear safety

In the partonic ratio R̂ IRC singularities cancel in the inclusive sum of real and
virtual contributions

+

2

+  =    finite+

2

R̂ is insensitive to soft and collinear emission. It is then called an infrared and
collinear safe observable
In case of R̂ there is complete cancellation of soft and collinear radiation, R̂
becomes completely insensitive to soft and collinear emissions up to the hard
scale Q2 = s

The key features that guarantee cancellation of IRC divergences are
1 In the IRC region the matrix elements for real and virtual corrections are equal but
with opposite sign

2 The observable assigns the same weight to real emissions and virtual corrections
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Note: are UV divergent. These UV singularities cancel with vertex diagram due to Ward Identity

Renormalisation group
QCD beta function

Short-distance observables

The ratio R at two loops

At Born level, for nf massless quarks, we have

RPT

 

α,
Q2

Λ2
UV

!

= R0 = Nc

nf
X

q=1

e2
q

qe+

e! q

At 1-loop, both UV and IR divergences cancel, leaving a finite result

RPT

 

α,
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UV

!

= R0
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+ + +

2

Only at 2-loop do we meet UV divergences, which we regulate with a cutoff ΛUV
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Soft singularities
Consider real emission diagrams in more detail:

−ieγµ

p1

p2

k, ε −ieγµ

p1

p2

k, ε+ =

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

If gluon becomes soft: neglect k except if it is in denominator:

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|
2 soft

→ |Mqq̄|
2 g2CF

p1p2
(p1k)(p2k)

Factorisation into Born matrix element and Eikonal factor

Note: colour will in general not 
factorize  in the soft limit 



Soft singularities
Consider real emission diagrams in more detail:

−ieγµ

p1

p2

k, ε −ieγµ

p1

p2

k, ε+ =

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

If gluon becomes soft: neglect k except if it is in denominator:

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|
2 soft

→ |Mqq̄|
2 g2CF

p1p2
(p1k)(p2k)

Factorisation into Born matrix element and Eikonal factor

Note: colour will in general not 
factorize  in the soft limit 



Collinear singularities

convenient parametrisation of momenta 

−ieγµ

p1

p2

k, ε

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|
2 soft

→ |Mqq̄|
2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E1ω (1− cos θ) → 0 for θ → 0

p = E (1, 0, 0, v) , v =

√

1−
m2

E2

(p1 + k)2 = 2E1ω (1− v cos θ)

pµ nµ k ⊥ p = k ⊥ n = 0

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

note:  if p1 is a massive particle:

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|
2 soft

→ |Mqq̄|
2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E1ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2E1ω (1− v cos θ)

pµ nµ k ⊥ p = k ⊥ n = 0

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|
2 soft

→ |Mqq̄|
2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E1ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2Eω (1− v cos θ)

pµ nµ k ⊥ p = k ⊥ n = 0

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

no singular denominator for θ → 0
⇒ only massless particles can lead to a collinear singularity

: splitting functions 

(“Sudakov parametrisation”) 

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|2
soft→ |Mqq̄|2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E1ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2Eω (1− v cos θ)

pµ nµ k⊥p = k⊥n = 0
z = E1

E1+Eg

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|2
soft→ |Mqq̄|2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E1ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2Eω (1− v cos θ)

pµ nµ k⊥p = k⊥n = 0
z = E1

E1+Eg

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

collinear direction 

light-like auxiliary vector 

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|2
soft→ |Mqq̄|2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E1ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2Eω (1− v cos θ)

pµ nµ k⊥p = k⊥n = 0
z = E1

E1+Eg

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(

/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|2
soft→ |Mqq̄|2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E1ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2Eω (1− v cos θ)

pµ nµ k⊥p = k⊥n = 0
z = E1

E1+Eg

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)

|M1(p1, k, p2)|2
coll→ g2

1

p1 · k
Pqq(z) |M0(p1 + k, p2)|2

Cross sections for a scattering process qa + qb → p1 + . . . + pN can be
written as

dσ =
J

flux
× |M|2 × dΦN

flux = 4
√

(qa · qb)2 −m2
am

2
b

J = 1/j ! is a statistical factor to be included for each group of j identical
particles in the final state.

Schematically, a next-to-leading order (NLO) cross section is constructed
in the following way: (for simplicity we use NLO in the strong coupling
constant αs and ma, mb = 0 here, the analogous is valid for NLO in the
expansion of other couplings):

σ = σLO + σNLO

σLO =
1

2s

∫

dΦN |MLO|2

σNLO =
αs

2s

∫

dΦN

[

MLOM†
NLO,virt. +M†

LOMNLO,virt. +
∑

j

∫

dΦ1,jDj

]

+
αs

2s

∫

dΦN+1

[

|MNLO,real|2 −
∑

j

Dj

]

(1)

The objects Dj are subtraction terms for divergences caused by soft/collinear
real radiation (e.g. sum over dipole subtraction terms).

The modulus of the matrix element involves the average over colours in
the initial state and sum over colours in the final state. For unpolarized in-
coming particles and if the spins of the final state particles are not measured,
the same is done for the polarisations.

|M|2 →
∑

λ,c
|Mλ,c|2 =

1
∏

initialNpolNcol

∑

final pol,col

|Mλ,c|2

|M0|2 =
1

3
4e2Q2

qNc s

Pqq(z)

2 IR divergences

p = E (1, 0, 0, 1)

k = ω (1, 0, sin θ, cos θ)

(p+ k)2 = 2E ω (1− cos θ)

Mµ
qq̄g = ū(p1) (−igtA/ε)

i(/p1 + /k)

(p1 + k)2
(−ieγµ) v(p2)

+ ū(p1) (−ieγµ)
−i(/p2 + /k)

(p2 + k)2
(−igtA/ε) v(p2)

Mµ
qq̄g

soft
= −iegtA ū(p1) γ

µ

(
/ε/p1
2p1k

−
/p2/ε

2p2k

)

v(p2)

|Mqq̄g|2
soft→ |Mqq̄|2 g2CF

p1p2
(p1k)(p2k)

(p1 + k)2 = 2E ω (1− cos θ) → 0 for θ → 0

p1 = E (1, 0, 0, v) , v =

√

1−
m2

1

E2

(p1 + k)2 = 2Eω (1− v cos θ)

pµ nµ k⊥p = k⊥n = 0
z = E1

E1+Eg

p1 = z pµ + kµ
⊥ −

k2
⊥

z

nµ

2p1n

k = (1− z) pµ − kµ
⊥ −

k2
⊥

1− z

nµ

2p1n

⇒ 2p1k = −
k2
⊥

z(1− z)



DGLAP splitting functions

Branching probabilities
Z

dφ

2π
CF = P̂ba(z)

where P̂ba(z) is the appropriate splitting function

dσn+1 = dσn
dt

t
dz

αS

2π
P̂ba(z) .

Including all the color factors we find the results for the unregulated branching
probabilities.

P̂qg(z) = TR

h

z2 + (1 − z)2
i

, TR =
1

2
,

P̂qq(z) = CF

»

1 + z2

(1 − z)

–

,

P̂gq(z) = CF

»

1 + (1 − z)2

z

–

,

P̂gg(z) = CA

»

z

(1 − z)
+

1 − z

z
+ z (1 − z)

–

QCD and Monte Carlo methodsLecture II: Proton structure and Parton Showers – p.16/37

(details see later in PDF discussion) 

(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi) 



Real radiation matrix element
pγ =

√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

p3 ≡ k = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1$pi dEi δ(E
2
i − $p 2

i )θ(Ei)

=
1

2Ei

∫

dD−1$pi
∣

∣

∣

Ei=|"pi|

in general we sum over final state polarizations and 
colours and average over initial state  pols., colours:

Cross sections for a scattering process qa + qb → p1 + . . . + pN can be
written as

dσ =
J

flux
× |M|2 × dΦN

flux = 4
√

(qa · qb)2 −m2
am

2
b

J = 1/j ! is a statistical factor to be included for each group of j identical
particles in the final state.

Schematically, a next-to-leading order (NLO) cross section is constructed
in the following way: (for simplicity we use NLO in the strong coupling
constant αs and ma, mb = 0 here, the analogous is valid for NLO in the
expansion of other couplings):

σ = σLO + σNLO

σLO =
1

2s

∫

dΦN |MLO|2

σNLO =
αs

2s

∫

dΦN

[

MLOM†
NLO,virt. +M†

LOMNLO,virt. +
∑

j

∫

dΦ1,jDj

]

+
αs

2s

∫

dΦN+1

[

|MNLO,real|2 −
∑

j

Dj

]

(1)

The objects Dj are subtraction terms for divergences caused by soft/collinear
real radiation (e.g. sum over dipole subtraction terms).

The modulus of the matrix element involves the average over colours in
the initial state and sum over colours in the final state. For unpolarized in-
coming particles and if the spins of the final state particles are not measured,
the same is done for the polarisations.

|M|2 →
∑

λ,c
|Mλ,c|2 =

1
∏

initialNpolNcol

∑

final pol,col

|Mλ,c|2

|M0|2 =
1

3
4e2Q2

qNc s

at LO, we obtain 

Cross sections for a scattering process qa + qb → p1 + . . . + pN can be
written as

dσ =
J

flux
× |M|2 × dΦN

flux = 4
√

(qa · qb)2 −m2
am

2
b

J = 1/j ! is a statistical factor to be included for each group of j identical
particles in the final state.

Schematically, a next-to-leading order (NLO) cross section is constructed
in the following way: (for simplicity we use NLO in the strong coupling
constant αs and ma, mb = 0 here, the analogous is valid for NLO in the
expansion of other couplings):

σ = σLO + σNLO

σLO =
1

2s

∫

dΦN |MLO|2

σNLO =
αs

2s

∫

dΦN

[

MLOM†
NLO,virt. +M†

LOMNLO,virt. +
∑

j

∫

dΦ1,jDj

]

+
αs

2s

∫

dΦN+1

[

|MNLO,real|2 −
∑

j

Dj

]

(1)

The objects Dj are subtraction terms for divergences caused by soft/collinear
real radiation (e.g. sum over dipole subtraction terms).

The modulus of the matrix element involves the average over colours in
the initial state and sum over colours in the final state. For unpolarized in-
coming particles and if the spins of the final state particles are not measured,
the same is done for the polarisations.

|M|2 →
∑

λ,c
|Mλ,c|2 =

1
∏

initialNpolNcol

∑

final pol,col

|Mλ,c|2

|M0|2 =
1

3
4e2Q2

qNc s

2

with extra gluon radiation:

Renormalisation group
QCD beta function

Short-distance observables

Infrared and collinear safety

In the partonic ratio R̂ IRC singularities cancel in the inclusive sum of real and
virtual contributions

+

2

+  =    finite+

2

R̂ is insensitive to soft and collinear emission. It is then called an infrared and
collinear safe observable
In case of R̂ there is complete cancellation of soft and collinear radiation, R̂
becomes completely insensitive to soft and collinear emissions up to the hard
scale Q2 = s

The key features that guarantee cancellation of IRC divergences are
1 In the IRC region the matrix elements for real and virtual corrections are equal but
with opposite sign

2 The observable assigns the same weight to real emissions and virtual corrections
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pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1$pi dEi δ(E
2
i − $p 2

i )θ(Ei)

=
1

2Ei

∫

dD−1$pi
∣

∣

∣

Ei=|"pi|

pγ =
√
s (1, 0, 0, 0)
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In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1$pi dEi δ(E
2
i − $p 2

i )θ(Ei)

=
1

2Ei

∫

dD−1$pi
∣

∣

∣

Ei=|"pi|

defining  
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In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1
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In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫
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∫

dDpiδ(p
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gluon energy:  

pγ =
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Q → p1 + . . .+ pN
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∏
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In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫
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∣

∣

∣
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Real radiation matrix element

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

p3 ≡ k = pγ − p1 − p2

sij = (pi + pj)
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√
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Phase space:

3 Phase space integrals
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∏
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In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1
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dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =
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=
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∣

∣

∣
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collinear singularity   
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Phase space:

3 Phase space integrals
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∏
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∣

∣

∣
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|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)

Define
x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ‖ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ‖ p3
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pγ =
√
s (1, 0, 0, 0)
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(
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)

p1 ‖ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ‖ p3

:

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2
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p1 ‖ p3 x1 → 1 x2 → 1 x1 → 1− x2
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, collinear singularity   

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2
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√
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x2
1 + x2

2
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p1 ‖ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ‖ p3:

soft gluon   

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2
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√
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p2 ‖ p3
:
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p2 = E2 (1, 0, sin θ, cos θ)
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√
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p1 ‖ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ‖ p3

in these limits the matrix element is singular !

• how can we interpret this ?  

• how can we remedy this ?  



Cancellation of IR divergences 

• interpretation:    A quark-antiquark pair with a soft an collinear gluon cannot 
be distinguished experimentally from just a q qbar pair, so 
this is not an observable final state. 
 

KLN Theorem 

Physical final states are hadrons or jets.

Kinoshita, Lee, Nauenberg, 60’s 

Soft and collinear singularities cancel in the sum over 
degenerate states 

• what are degenerate states ?

For example, a quark emitting a soft gluon cannot be distinguished from simply a quark.  
Exchange of virtual gluons also leads to IR singularities (same oder in alpha_s). 

Singularities cancel between real and virtual corrections.



Cancellation of IR divergences 
    IR singularities cancel between real and virtual corrections.

Really?    

Well, not always: in hadronic collisions, initial state collinear singularities do 
not cancel, but need to be absorbed into the parton distribution functions, 
as we cannot sum over “degenerate states” in the proton (see later).

In practice (calculation):  

We need to isolate the singularities before we can 
cancel them, as real and virtual corrections live on 
different phase spaces. 

Renormalisation group
QCD beta function

Short-distance observables

Infrared and collinear safety

In the partonic ratio R̂ IRC singularities cancel in the inclusive sum of real and
virtual contributions

+

2

+  =    finite+

2

R̂ is insensitive to soft and collinear emission. It is then called an infrared and
collinear safe observable
In case of R̂ there is complete cancellation of soft and collinear radiation, R̂
becomes completely insensitive to soft and collinear emissions up to the hard
scale Q2 = s

The key features that guarantee cancellation of IRC divergences are
1 In the IRC region the matrix elements for real and virtual corrections are equal but
with opposite sign

2 The observable assigns the same weight to real emissions and virtual corrections
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Renormalisation group
QCD beta function

Short-distance observables

Infrared and collinear safety

In the partonic ratio R̂ IRC singularities cancel in the inclusive sum of real and
virtual contributions

+
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+  =    finite+

2

R̂ is insensitive to soft and collinear emission. It is then called an infrared and
collinear safe observable
In case of R̂ there is complete cancellation of soft and collinear radiation, R̂
becomes completely insensitive to soft and collinear emissions up to the hard
scale Q2 = s

The key features that guarantee cancellation of IRC divergences are
1 In the IRC region the matrix elements for real and virtual corrections are equal but
with opposite sign

2 The observable assigns the same weight to real emissions and virtual corrections
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3-particle phase space 

2-particle phase space 



Dimensional Regularization

A  convenient way to isolate singularities is dimensional regularisation:

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =

√
s (1− x1 − x2)

|M1|2 = |M0|2
2g2CF

s

(

s13
s23

+
s23
s13

+ 2s
s12

s13s23

)
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x1 = 2E1/

√
s , x2 = 2E1/

√
s

|M1|2 = |M0|2
2g2CF

s

(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ‖ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ‖ p3 D = 4− 2εwe work in dimensions.

• regulates both UV and IR divergences

• does not violate gauge invariance

• poles can be isolated in terms of 

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
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√
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√
s
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(

x2
1 + x2

2

(1− x1)(1− x2)

)

p1 ‖ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ‖ p3 D = 4− 2ε
1/εb

• need phase space integrals in D dimensions

• need integration over virtual loop momenta in D dimensions

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
Eg =
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s (1− x1 − x2)
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√
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2

(1− x1)(1− x2)

)

p1 ‖ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ‖ p3 D = 4− 2ε
1/εb

g2
∫ ∞

−∞

d4k

(2π)4
−→ g2µ2ε

∫ ∞

−∞

dDk

(2π)D



Virtual corrections

Renormalisation group
QCD beta function

Short-distance observables

The ratio R at two loops

At Born level, for nf massless quarks, we have

RPT

 

α,
Q2

Λ2
UV

!

= R0 = Nc

nf
X

q=1

e2
q

qe+

e! q

At 1-loop, both UV and IR divergences cancel, leaving a finite result

RPT

 

α,
Q2

Λ2
UV

!

= R0

“

1 +
α

π

”

+

2

+ + +

2

Only at 2-loop do we meet UV divergences, which we regulate with a cutoff ΛUV

RPT

 

α,
Q2

Λ2
UV

!

= R0

 

1 +
α

π
+
“α

π

”2
 

c2 + πβ0 ln
Λ2

UV

Q2

!!
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we will not go through the calculation but only quote the result:

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
2

gluon energy:
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√
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)

p1 ‖ p3 x1 → 1 x2 → 1 x1 → 1− x2

p2 ‖ p3 D = 4− 2ε
1/εb

g2
∫ ∞

−∞

d4k

(2π)4
−→ g2µ2ε

∫ ∞

−∞

dDk

(2π)D

Rvirt = RLO ×
αs

2π
CF

Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

(

−s

4πµ2

)−ε{

−
2

ε2
−

3

ε
− 8 +O(ε)

}

Rreal = RLO ×
αs

2π
CF

Γ2(1− ε)

Γ(1− 3ε)

(

s

4πµ2

)−ε{ 2

ε2
+

3

ε
+

19

2
+O(ε)

}

R = RLO ×
{

1 +
αs(µ)

π
+O(α2

s)

}



Phase space in D dimensions

1 to N particle phase space:

Phase space:

3 Phase space integrals

Q → p1 + . . .+ pN

∫

dΦD
N = (2π)N−D(N−1)

∫ N
∏

j=1

dDpj δ
+(p2j −m2

j)δ
(D)

(

Q−
N
∑

i=1

pi
)

(2)

In the following consider massless case p2j = 0. Use for i = 1, . . . , N − 1

∫

dDpiδ
+(p2i ) ≡

∫

dDpiδ(p
2
i )θ(Ei) =

∫

dD−1$pi dEi δ(E
2
i − $p 2

i )θ(Ei)

=
1

2Ei

∫

dD−1$pi
∣

∣

∣

Ei=|!pi|

and eliminate pN by momentum conservation

⇒
∫

dΦD
N = (2π)N−D(N−1) 21−N

∫ N−1
∏

j=1

dD−1$pj
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as in the analysis of so-called Landau singularities, which are singularities where detS or a
sub-determinant of S is vanishing (see below for more details).

Remember that we are in Minkowski space, where l2 = l20 − !l2, so temporal and spatial com-
ponents are not on equal footing. Note that the poles of the denominator are located at

l20 = R2 + !l2 − iδ ⇒ l±0 # ±
√

R2 +!l2 ∓ i δ. Thus the iδ term shifts the poles away from the
real axis.
For the integration over the loop momentum, we better work in Euclidean space where l2E =
∑4

i=1 l2i . Hence we make the transformation l0 → i l4, such that l2 → −l2E = l24 + !l2, which
implies that the integration contour in the complex l0-plane is rotated by 90◦ such that the
contour in the complex l4-plane looks as shown below. The is called Wick rotation. We see
that the iδ prescription is exactly such that the contour does not enclose any poles. Therefore
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Im l4
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Real radiation in D dimensions

1 to 3 particle phase space:
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Q2
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N = 3:
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pγ = (
√
s,"0(D−1))

p1 = E1 (1,"0
(D−2), 1)

p2 = E2 (1,"0
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1
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4
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As in the following a parametrization in terms of the Mandelstam vari-
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2)(1− ε) + 2ε(1− x3)

(1− x1)(1− x2)− 2ε

)

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1,"0(D−2), 1) , qb =

√

Q2

2
(1,"0(D−2),−1)

p1 = E1 (1,"0
(D−3), sin θ, cos θ) , p2 = Q− p1

N = 3:

For N = 3 one can choose a coordinate frame such that

pγ = (
√
s,"0(D−1))

p1 = E1 (1,"0
(D−2), 1)

p2 = E2 (1,"0
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1

Integrating out the δ-distributions as in (3)

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ [E1E2 sin θ]

D−3dΩD−2 dΩD−3

As in the following a parametrization in terms of the Mandelstam vari-
ables sij = 2 pi · pj will be useful, we make the transformation E1, E2, θ →
s12, s23, s13. To work with dimensionless variables we define

y1 = s12/s , y2 = s13/s , y3 = s23/s

which leads to

dΦ1→3 = (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [y1 y2 y3]

D/2−2

dy1 dy2 dy3Θ(y1)Θ(y2)Θ(y3) δ(1− y1 − y2 − y3)

= (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [(1− x1) (1− x2) (1− x3)]

D/2−2

dx1 dx2 dx2 Θ(1− x1)Θ(1− x2)Θ(1− x3)δ(2− x1 − x2 − x3)

y1 = 1− x3, y2 = 1− x2, y3 = 1− x1

3
∑

i=1

= 2, xi =
2pi · pγ

s

|M1|2 = |M0|2
2g2CF

s

(

(x2
1 + x2

2)(1− ε) + 2ε(1− x3)

(1− x1)(1− x2)− 2ε

)

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1,"0(D−2), 1) , qb =

√

Q2

2
(1,"0(D−2),−1)

p1 = E1 (1,"0
(D−3), sin θ, cos θ) , p2 = Q− p1

N = 3:

For N = 3 one can choose a coordinate frame such that

pγ = (
√
s,"0(D−1))

p1 = E1 (1,"0
(D−2), 1)

p2 = E2 (1,"0
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1

Integrating out the δ-distributions as in (3)

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ [E1E2 sin θ]

D−3dΩD−2 dΩD−3

As in the following a parametrization in terms of the Mandelstam vari-
ables sij = 2 pi · pj will be useful, we make the transformation E1, E2, θ →
s12, s23, s13. To work with dimensionless variables we define

y1 = s12/s , y2 = s13/s , y3 = s23/s

which leads to

dΦ1→3 = (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [y1 y2 y3]

D/2−2

dy1 dy2 dy3Θ(y1)Θ(y2)Θ(y3) δ(1− y1 − y2 − y3)

= (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [(1− x1) (1− x2) (1− x3)]

D/2−2

dx1 dx2 dx2 Θ(1− x1)Θ(1− x2)Θ(1− x3)δ(2− x1 − x2 − x3)

y1 = 1− x3, y2 = 1− x2, y3 = 1− x1

3
∑

i=1

= 2, xi =
2pi · pγ

s

|M1|2 = |M0|2
2g2CF

s

(

(x2
1 + x2

2)(1− ε) + 2ε(1− x3)

(1− x1)(1− x2)− 2ε

)

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1,"0(D−2), 1) , qb =

√

Q2

2
(1,"0(D−2),−1)

p1 = E1 (1,"0
(D−3), sin θ, cos θ) , p2 = Q− p1

N = 3:

For N = 3 one can choose a coordinate frame such that

pγ = (
√
s,"0(D−1))

p1 = E1 (1,"0
(D−2), 1)

p2 = E2 (1,"0
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1

Integrating out the δ-distributions as in (3)

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ [E1E2 sin θ]

D−3dΩD−2 dΩD−3

As in the following a parametrization in terms of the Mandelstam vari-
ables sij = 2 pi · pj will be useful, we make the transformation E1, E2, θ →
s12, s23, s13. To work with dimensionless variables we define

y1 = s12/s , y2 = s13/s , y3 = s23/s

which leads to

dΦ1→3 = (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [y1 y2 y3]

D/2−2

dy1 dy2 dy3Θ(y1)Θ(y2)Θ(y3) δ(1− y1 − y2 − y3)

= (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [(1− x1) (1− x2) (1− x3)]

D/2−2

dx1 dx2 dx2 Θ(1− x1)Θ(1− x2)Θ(1− x3)δ(2− x1 − x2 − x3)

y1 = 1− x3, y2 = 1− x2, y3 = 1− x1

3
∑

i=1

= 2, xi =
2pi · pγ

s

|M1|2 = |M0|2
2g2CF

s

(

(x2
1 + x2

2)(1− ε) + 2ε(1− x3)

(1− x1)(1− x2)− 2ε

)

where θ is the angle between the z-axis (in qa-direction) and p1:

qa =

√

Q2

2
(1,"0(D−2), 1) , qb =

√

Q2

2
(1,"0(D−2),−1)

p1 = E1 (1,"0
(D−3), sin θ, cos θ) , p2 = Q− p1

N = 3:

For N = 3 one can choose a coordinate frame such that

pγ = (
√
s,"0(D−1))

p1 = E1 (1,"0
(D−2), 1)

p2 = E2 (1,"0
(D−3), sin θ, cos θ)

p3 = pγ − p2 − p1

Integrating out the δ-distributions as in (3)

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ [E1E2 sin θ]

D−3dΩD−2 dΩD−3

As in the following a parametrization in terms of the Mandelstam vari-
ables sij = 2 pi · pj will be useful, we make the transformation E1, E2, θ →
s12, s23, s13. To work with dimensionless variables we define

y1 = s12/s , y2 = s13/s , y3 = s23/s

which leads to

dΦ1→3 = (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [y1 y2 y3]

D/2−2

dy1 dy2 dy3Θ(y1)Θ(y2)Θ(y3) δ(1− y1 − y2 − y3)

= (2π)3−2D 24−D

32
sD−3 dΩD−2 dΩD−3 [(1− x1) (1− x2) (1− x3)]

D/2−2

dx1 dx2 dx2 Θ(1− x1)Θ(1− x2)Θ(1− x3)δ(2− x1 − x2 − x3)

y1 = 1− x3, y2 = 1− x2, y3 = 1− x1

3
∑

i=1

= 2, xi =
2pi · pγ

s

|M1|2 = |M(D)
0 |2

2g2CF

s

(

(x2
1 + x2

2)(1− ε) + 2ε(1− x3)

(1− x1)(1− x2)
− 2ε

)



Combine to final result 

gluon both soft and collinear 

remember virtual corrections: 

KLN theorem at work! 

pγ =
√
s (1, 0, 0, 0)

p1 = E1 (1, 0, 0, 1)

p2 = E2 (1, 0, sin θ, cos θ)

k ≡ p3 = pγ − p1 − p2

sij = (pi + pj)
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gluon energy:
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√
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(
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scale dependence 
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Scale dependence 4 Reduction of scale dependence

R = R0 ×∆QCD = 3
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‣ Pure gluon (leading colour) using antenna subtraction : NNLOJET

•15-25% increase 
• K-factor ~flat

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, J.Pires (2013)

pp → 2 jets

•Amazing reduction in scale 
dependence : precision for LHC

2

liders to NNLO accuracy. The program consists of three
integration channels:

dσ̂gg,NNLO =

∫

dΦ4

[

dσ̂RR
gg,NNLO − dσ̂S

gg,NNLO

]

+

∫

dΦ3

[

dσ̂RV
gg,NNLO − dσ̂T

gg,NNLO

]

+

∫

dΦ2

[

dσ̂V V
gg,NNLO − dσ̂U

gg,NNLO

]

, (1)

where each of the square brackets is finite and well be-
haved in the infrared singular regions. For the all-gluons
channel, the construction of the three subtraction terms
dσ̂S,T,U

ij,NNLO was described in Refs. [39–41].
In the three-parton and four-parton channel, the phase

space has been decomposed into multiple wedges (6
three-parton wedges and 30 four-parton wedges), each
containing only a subset of possible infrared singular con-
tributions. Inside each wedge, the generation of multiple
phase space configurations related by angular rotation of
unresolved pairs of particles around their common mo-
mentum axis ensures a local convergence of the antenna
subtraction term to the relevant matrix element. Owing
to the symmetry properties of the all-gluon final state,
many wedges yield identical contributions, thereby al-
lowing a substantial speed-up of their evaluation.
Jets in hadronic collisions can be produced through

a variety of different partonic subprocesses, and the all-
gluon process is only one of them. Our results on this
process can therefore not be directly compared with ex-
perimental data. The all-gluon process does however al-
low to establish the calculational method, and to qualify
the potential impact of NNLO corrections on jet observ-
ables. It should be noted that the NLO corrections to
hadronic two- and three-jet production were also first
derived in the all-gluon channel [42–44], well before full
results could be completed [6, 7, 45]. In both cases, the
all-gluon results were extremely vital both for establish-
ing the methodology and for assessing the infrared sensi-
tivity of different jet algorithms [44].
Our numerical studies for proton-proton collisions at

centre-of-mass energy
√
s = 8 TeV concern the single

jet inclusive cross section (where every identified jet in
an event that passes the selection cuts contributes, such
that a single event potentially enters the distributions
multiple times) and the two-jet exclusive cross section
(where events with exactly two identified jets contribute).
Jets are identified using the anti-kT algorithm with res-

olution parameter R = 0.7. Jets are accepted at central
rapidity |y| < 4.4, and ordered in transverse momentum.
An event is retained if the leading jet has pT1 > 80 GeV.
For the dijet invariant mass distribution, a second jet
must be observed with pT2 > 60 GeV.
All calculations are carried out with the

MSTW08NNLO gluon distribution function [46],
including the evaluation of the LO and NLO contri-
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FIG. 1: Inclusive jet transverse energy distribution, dσ/dpT ,
for jets constructed with the anti-kT algorithm with R = 0.7
and with pT > 80 GeV, |y| < 4.4 and

√
s = 8 TeV at NNLO

(blue), NLO (red) and LO (dark-green). The lower panel
shows the ratios of NNLO, NLO and LO cross sections.

butions [47]. This choice of parameters allows us to
quantify the size of the genuine NNLO contributions
to the parton-level subprocess. Factorization and
renormalization scales (µF and µR) are chosen dynami-
cally on an event-by-event basis. As default value, we
set µF = µR ≡ µ and set µ equal to the transverse
momentum of the leading jet so that µ = pT1.
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FIG. 2: Scale dependence of the inclusive jet cross section for
pp collisions at

√
s = 8 TeV for the anti-kT algorithm with

R = 0.7 and with |y| < 4.4 and 80 GeV < pT < 97 GeV at
NNLO (blue), NLO (red) and LO (green).

In Fig. 1 we present the inclusive jet cross section for
the anti-kT algorithm with R = 0.7 and with pT >
80 GeV, |y| < 4.4 as a function of the jet pT at LO,
NLO and NNLO, for the central scale choice µ = pT1.
The NNLO/NLO k-factor shows the size of the higher
order NNLO effect to the cross section in each bin with
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In Fig. 1 we present the inclusive jet cross section for
the anti-kT algorithm with R = 0.7 and with pT >
80 GeV, |y| < 4.4 as a function of the jet pT at LO,
NLO and NNLO, for the central scale choice µ = pT1.
The NNLO/NLO k-factor shows the size of the higher
order NNLO effect to the cross section in each bin with

Similar results expected for other partonic channels
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dijet production at NNLO (leading colour) :

Gehrmann-De Ridder,  Gehrmann, Glover,  Pires  2013
Standard Model Theory for Collider Physics                Daniel de Florian

H+jet at NNLO
R.Boughezal, F.Caola, K.Melnikov, F.Petriello, M.Schulze (2013)

3.2.4 Numerical results
We present here initial numerical results for Higgs production in association with one or more jets at
NNLO. A detailed series of checks on the presented calculation were performed in Ref. [44], and we
do not repeat this discussion here. We compute the hadronic cross section for the production of the
Higgs boson in association with one or more jets at the 8 TeV LHC through NNLO in perturbative QCD.
We reconstruct jets using the k⊥-algorithm with ∆R = 0.5 and p⊥,j = 30 GeV. The Higgs mass is
taken to be mH = 125 GeV and the top-quark mass mt = 172 GeV. We use the latest NNPDF parton
distributions [57, 58] with the number of active fermion flavors set to five, and numerical values of the
strong coupling constant αs at various orders in QCD perturbation theory as provided by the NNPDF
fit. We note that in this case αs(mZ) = [0.130, 0.118, 0.118] at leading, next-to-leading and next-to-
next-to-leading order, respectively. We choose the central renormalization and factorization scales to be
µR = µF = mH .

In Fig. 9 we show the partonic cross section for gg → H + j multiplied by the gluon luminosity
through NNLO in perturbative QCD:

β
dσhad

d
√

s
= β

dσ(s,αs, µR, µF )

d
√

s
× L(

s

shad
, µF ), (20)

where β measures the distance from the partonic threshold,

β =

√

1 −
E2

th

s
, Eth =

√
m2

h + p2
⊥,j + p⊥,j ≈ 158.55 GeV. (21)

The partonic luminosity L is given by the integral of the product of two gluon distribution functions

L(z, µF ) =

∫ 1

z

dx

x
g(x, µF )g

( z

x
, µF

)
. (22)

It follows from Fig. 9 that NNLO QCD corrections are significant in the region
√

s < 500 GeV. In par-
ticular, close to partonic threshold

√
s ∼ Eth, radiative corrections are enhanced by threshold logarithms

ln β that originate from the incomplete cancellation of virtual and real corrections. There seems to be
no significant enhancement of these corrections at higher energies, where the NNLO QCD prediction for
the partonic cross section becomes almost indistinguishable from the NLO QCD one.

We now show the integrated hadronic cross sections in the all-gluon channel. We choose to vary
the renormalization and factorization scale in the range µR = µF = mH/2, mH , 2mH . After convolu-
tion with the parton luminositites, we obtain

σLO(pp → Hj) = 2713+1216
−776 fb,

σNLO(pp → Hj) = 4377+760
−738 fb,

σNNLO(pp → Hj) = 6177−204
+242 fb.

(23)

We note that NNLO corrections are sizable, as expected from the large NLOK−factor, but the perturba-
tive expansion shows marginal convergence. We also evaluated PDF errors using the full set of NNPDF
replicas, and found it to be of order 5% at LO, and of order 1-2% at both NLO and NNLO, similarly to
the inclusive Higgs case [58]. The cross section increases by about sixty percent when we move from LO
to NLO and by thirty percent when we move from NLO to NNLO. It is also clear that by accounting for
the NNLO QCD corrections we reduce the dependence on the renormalization and factorization scales
in a significant way. The scale variation of the result decreases from almost 50% at LO, to 20% at NLO,
to less than 5% at NNLO. We also note that a perturbatively-stable result is obtained for the scale choice
µ ≈ mH/2. In this case the ratio of the NNLO over the LO cross section is just 1.5, to be compared
with 2.3 for µ = mH and 3.06 for µ = 2mH , and the ratio of NNLO to NLO is 1.2. A similar trend was
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observed in the calculation of higher-order QCD corrections to the Higgs boson production cross section
in gluon fusion. The reduced scale dependence is also apparent from Fig. 10, where we plot total cross
section as a function of the renormalization and factorization scale µ in the region p⊥,j < µ < 2mh.

Finally, we comment on the phenomenological relevance of the “gluons-only” results for cross
sections and K-factors that we report. We note that at leading and next-to-leading order, quark-gluon
collisions increase the H + j production cross section by about 30 percent, for the input parameters
that we use in this paper. At the same time, the NLO K-factors for the full H + j cross section are
smaller by about 10−15% than the ‘gluons-only’K-factors, presumably because quark color charges are
smaller than the gluon ones. Therefore, we conclude that the gluon-only results can be used for reliable
phenomenological estimates of perturbative K-factors but adding quark channels will be essential for
achieving precise results for the H + j cross section.
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‣ Another case of significantly reduced 
   scale dependence ~4%
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collisions increase the H + j production cross section by about 30 percent, for the input parameters
that we use in this paper. At the same time, the NLO K-factors for the full H + j cross section are
smaller by about 10−15% than the ‘gluons-only’K-factors, presumably because quark color charges are
smaller than the gluon ones. Therefore, we conclude that the gluon-only results can be used for reliable
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Boughezal, Caola, Melnikov, Petriello, Schulze 2013

Higgs + jet production (pure gluon only):



More on scale dependence 
e+e- to 3 jets up to NNLO:

Gehrmann-De Ridder,  Gehrmann, Glover,  GH,  2008

•Aleph data

• reduction of scale uncertainty

bands from scale variations

4 Reduction of scale dependence

R = R0 ×∆QCD = 3
∑

q

Q2
q ×∆QCD

∆QCD = 1 +
αs(µ2)

π
+

∞
∑

n=2

Cn

(

s

µ2

)(

αs(µ2)

π

)n

dR

dµ
= 0 ⇒ µ2 ∂R

∂µ2
+ β(αs)

∂R

∂αs
= 0

MZ/2 ≤ µ ≤ 2MZ

• better description of the data

• NNLO, NLO not within LO 
uncertainty band!

⇒
•  scale variations of LO result 

do not necessarily give a 
realistic error estimate

• NLO does a reasonable job, 
LO does not

•  choice of a convenient central 
scale is important (and not 

straightforward)



More on scale dependence Shortcomings of Leading Order Predictions

[Anastasiou et al. 04]



 K-factors 

Harlander, Kilgore ’02 

Anastasiou Melnikov ’02 

Ravindran, Smith van Neerven, ’03 

 NNLO: 

K =
σN(N)LO

σLO

Standard Model Theory for Collider Physics                Daniel de Florian

Higgs Boson

‣ Gluon-gluon fusion dominates due to large gluon luminosity
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‣ QCD corrections are huge!

Harlander, Kilgore (2002)
Anastasiou, Melnikov (2002) 
Ravindran, Smith, van Neerven (2003)

Graudenz, Spira, Zerwas (1993)
Dawson (1991); Djouadi, Spira, Zerwas (1991)NLO

NNLOMH/2 < µF , µR < 2MH

1/2 < µF /µR < 2

K =
σNNLO(NLO)

σLO
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 K-factors  very large !

 example Higgs production: 

Dawson; Djouadi, Graudenz, Spira, Zerwas 1991, 1995



 K-factors 

 example : 

 Note: K-factors for distributions 
are in general not constant !
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Figure 2: Contributing one-loop Feynman diagrams.

2.1 Treatment of top quarks

To take the top quark decay width into account in a gauge invariant way, the complex

mass scheme [14] is used. This amounts to replacing the top mass everywhere by a complex

number µt according to

µ2
t = m2

t − imtΓt (2.1)

The weak mixing angle remains real in our calculation, as we neglect non-resonant W and

Z boson contributions.

We investigate finite-top-width effects by comparing two different calculations for the

W+W−bb̄ final state: one takes into account finite width effects and nonresonant contribu-

tions of the top quarks fully at NLO, while the other uses the narrow width approximation

(NWA) where production and decay factorise, taking into account the NLO corrections to

the tt̄ production cross section.

The narrow width approximation is motivated as follows. In the limit Γt → 0 one can

write the denominator of the top quark propagators as

lim
Γt→0

1

(p2t −m2
t )

2 +m2
tΓ

2
t
=

π

mtΓt
δ(p2t −m2

t ) +O

�
Γt

mt

�
. (2.2)

Since the approximation introduces a factor of 1/Γt for each top resonance, singly-resonant

and non-resonant contributions (see Fig. 1) are suppressed in the Γt → 0 limit. Only

Feynman diagrams with two top quarks that can become resonant are kept in this limit,

because they are proportional to 1/Γ2
t .

In the Γt → 0 limit the process pp → W+W−bb̄ factorises into top quark pair produc-

tion and decay. At NLO the NWA neglects non-resonant diagrams and radiative corrections

that connect production and decay or both decays. Two example Feynman diagrams con-

tributing to the virtual corrections, which are not present in the NWA, are given in figure

2. One expects from eq. (2.2) that the contributions that are neglected in the NWA are

of the order of Γt/mt � 1%. While this is true for sufficiently inclusive observables, the

corrections can be much larger for observables like mlb [15].

– 3 –

g

g

b

e+

νµ

b

g t

W+

W−

νe

µ

g

g

e+

b

νµ

g
t

t

W−

W+

b

µ

b

g

νe

b

Figure 2: Contributing one-loop Feynman diagrams.

2.1 Treatment of top quarks

To take the top quark decay width into account in a gauge invariant way, the complex

mass scheme [14] is used. This amounts to replacing the top mass everywhere by a complex

number µt according to

µ2
t = m2

t − imtΓt (2.1)

The weak mixing angle remains real in our calculation, as we neglect non-resonant W and

Z boson contributions.

We investigate finite-top-width effects by comparing two different calculations for the

W+W−bb̄ final state: one takes into account finite width effects and nonresonant contribu-

tions of the top quarks fully at NLO, while the other uses the narrow width approximation

(NWA) where production and decay factorise, taking into account the NLO corrections to

the tt̄ production cross section.

The narrow width approximation is motivated as follows. In the limit Γt → 0 one can

write the denominator of the top quark propagators as

lim
Γt→0

1

(p2t −m2
t )

2 +m2
tΓ

2
t
=

π

mtΓt
δ(p2t −m2

t ) +O

�
Γt

mt

�
. (2.2)

Since the approximation introduces a factor of 1/Γt for each top resonance, singly-resonant

and non-resonant contributions (see Fig. 1) are suppressed in the Γt → 0 limit. Only

Feynman diagrams with two top quarks that can become resonant are kept in this limit,

because they are proportional to 1/Γ2
t .

In the Γt → 0 limit the process pp → W+W−bb̄ factorises into top quark pair produc-

tion and decay. At NLO the NWA neglects non-resonant diagrams and radiative corrections

that connect production and decay or both decays. Two example Feynman diagrams con-

tributing to the virtual corrections, which are not present in the NWA, are given in figure

2. One expects from eq. (2.2) that the contributions that are neglected in the NWA are

of the order of Γt/mt � 1%. While this is true for sufficiently inclusive observables, the

corrections can be much larger for observables like mlb [15].
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What is a convenient scale choice ?

 example from W+3 jets:   possible scale choices:  

4 Reduction of scale dependence
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C.Berger et al (Blackhat) ’09

  much better reflects the scale of the hard interaction HT


