

Heavy Flavour Experiment Lecture 1

Johannes Albrecht (TU Dortmund)

30. & 31. August 2013

Experimentelle Physik V Teilchenphysik

- I have taken inspiration from many recent results and conference talks
- Many thanks to those who (un)knowingly helped me
 - Vava Gligorov & Barbara Storaci (discussion leaders)
 - T. Gershon, V. Gibson, S. Hansmann-Menzemer, U. Uwer,
 F. Teubert, T. Nakada, A. Shires, S. Wandernoth ...
- This is a school talk, not an overview of the field
 - the topics presented are a subjective choice, covering fewer topics in more detail
 - For complete overviews, look at recent conferences, e.g.
 EPS13: https://indico.cern.ch/getFile.py/access?contribId=864&sessionId=28&resId=1&materialId=slides&confId=218030
 LHCC: http://indico.cern.ch/categoryDisplay.py?categId=3427
 - FPCP: http://fpcp2013.if.ufrj.br/fpcp-2013/

- Lecture 1:
 - Introduction to "heavy flavour physics"
 - The Experiments:
 Flavour physics at e⁺e⁻ and at hadron colliders
 - Precision measurements of the quark mixing matrix
- Lecture 2:
 - "Golden modes for New physics searches" loop zoology

• High energy:

"real" new particles can be produced and discovered via their decays

• High **precision**:

"virtual" new particles can be discovered in loop processes

Direct and indirect searches are both needed, both equally important, and complement each other

Contribution of New Physics as correction to the Standard Model

Standard Model

Contribution of New Physics as correction to the Standard Model

Standard Model

New Physics

What is the scale of λ_{NP} ? What is its coupling C_{NP} ?

30. August 2013

Johannes Albrecht

GIM Mechanism

Observed branching ratio $K^0 \rightarrow \mu\mu$

$$\frac{BR(K_L \to \mu^+ \mu^-)}{BR(K_L \to all)} = (7.2 \pm 0.5) \cdot 10^{-9}$$

In contradiction with theoretical expectation in the 3-Quark Model

 $M \sim \sin \theta_c \cos \theta_c$

GIM Mechanism

Observed branching ratio $K^0 \rightarrow \mu\mu$

$$\frac{BR(K_L \to \mu^+ \mu^-)}{BR(K_L \to all)} = (7.2 \pm 0.5) \cdot 10^{-9}$$

In contradiction with theoretical expectation in the 3-Quark Model

Glashow, Iliopolus, Maiani (1970):

Prediction of a 2nd up-type quark, additional Feynman graph cancels the "u box graph".

 $M \sim \sin \theta_c \cos \theta_c$

 $M \sim -\sin \theta_c \cos \theta_c$

 $m_t > 50 \text{ GeV}$

ARGUS Experiment, 1987:

Observation of B⁰-B⁰ Oscillation

- Before the LHC, λ_{NP} ~1TeV was expected
 - Fine tuning at EW scale reduced
 - But: NP effects expected in flavour physics \rightarrow NP flavour problem
 - → Ad-hoc solution: introduce Minimal Flavour Violation to avoid fine tuning in the flavour sector
 - After Higgs discovery: scale of New Physics fully unclear

- Before the LHC, λ_{NP} ~1TeV was expected
 - Fine tuning at EW scale reduced
 - But: NP effects expected in flavour physics \rightarrow NP flavour problem
 - → Ad-hoc solution: introduce Minimal Flavour Violation to avoid fine tuning in the flavour sector
 - After Higgs discovery: scale of New Physics fully unclear

- So far: no significant sign of New Physics
 - The scale for NP get pushed higher
 - NP flavour problem reduced
 → chances to see NP in the flavour sector have increased
 (hypotheses like MFV look less likely)

- Focus in these lectures will be on
 - Flavour changing interactions of charm and beauty quarks
- But quarks feel the strong interaction and hadronize
 - Various different beauty hadrons
 - Many, many possible decays to different final states
 → Hadronization introduces great complications, BUT also increases the observability of CP violation effects
- Many aspects of flavour physics left out in this lecture
 - Neutrino physics: have own phenomenology
 - Light quark flavour physics
 - Charged lepton physics
 - Top-flavour physics: different, as the top does not hadronize

Rich phenomenology with beauty quarks

- The beauty quark ...
 - − Is the heaviest quark that forms hadronic bound states
 → high mass: many accessible final states
 - Must decay outside the 3rd family
 - All decays are CKM suppressed
 - Long lifetime (~1.6ps)
- Beauty-decays:
 - Dominant decay process: "tree"
 b→c transition
 - − Very suppressed "tree" $b \rightarrow u$ transition
 - − FCNC "penguin" b-> s and b→ d transitions
 - Flavour oscillations (b \rightarrow t "box" diagrams)
 - CP violation expect large CP asymmetries in some B decays

B–Physics Around the World

30. August 2013

Johannes Albrecht

Flavour Physics Experiments

B-factories (BaBar & Belle)

- e⁺e⁻ experiment at SLAC / KEK
- Dedicated B-physics experiment

General purpose detectors (ATLAS, CMS, CDF, D0)

- Proton colliders @ CERN / Tevatron
- 4π multi purpose detectors

LHCb

- Proton colliders @ CERN
- Dedicated B-physics experiment

CDF II Detector

Experimental environment: e⁺e⁻

Lepton collider (collision of pointlike objects)

Hadron collider (collision of extended objects)

[Karl Jakobs]

e⁺e⁻: Asymmetric B Factories

PEPII at SLAC 9.0 GeV e^{-} on 3.1 GeV e^{+} 8.0 GeV e^{-} on 3.5 GeV e^{+}

KEKB at KEK

Y (4S) resonance

19/56 Mcb

- Symmetric collider: B-mesons produced ~ at rest
 Short lifetime make flight distance unmeasurably small
- Asymmetric collider (KEKB, PEPII): with boost βγ ~ 0.6

$$\Delta t \approx \frac{\Delta z}{\langle \beta \gamma \rangle c}$$
$$\langle |\Delta z| \rangle \approx 200 \ \mu \mathrm{m}$$

• Beam energy precisely known \rightarrow constrain B kinematics

Experimental environment: pp (or pp̄)

Lepton collider (collision of pointlike objects)

Hadron collider (collision of extended objects)

[Karl Jakobs]

- Protons are complicated objects
 - Valence & sea quarks, gluons
- Available energy of "proton" collision depends on partons

$$s' = x_1 \cdot x_2 \cdot s$$

x_i = Bjorken x (fractional momentum) of parton

- Energy of particular collision unknown, but distributions known
 - hadron colliders "scan" a wide energy range
 - Average s' ~ 0.1 s
 - Dominant process @ LHC: gluon fusion

- B hadron mass ~ 5 GeV
 - asymmetric x-values
 - strongly boosted ($\beta\gamma$ ~100)
 - average flight length ~ 7mm
- Boost allows time dependent analyses of fast B_s mixing
- B hadron admixture:
 - 40% B⁰
 - 40% B⁺
 - 10% B_s
 - 10% Λ_b
 - <1% others (B_c, B*, B**, ...)

ATLAS / CMS

- Central detectors, $|\eta|$ <2.5
- High Luminosity (>10³⁴cm⁻²s⁻¹)
 → high pileup ~20
- Trigger
 - Relatively low rate (~200-400Hz)
 - High PT muon triggers
- Analysis
 - Mostly modes with dimuons
 - Limited flavour tagging
- Particle identification
 - Excellent muon ID
 - Limited K / π separation

<u>LHCb</u>

- Forward spectrometer, 1.9< η < 5
- Lower Luminosity (4x10³²cm⁻²s⁻¹)
 → pileup ~1.5
- Trigger
 - High trigger rate (~5kHz)
 - Muon & hadron triggers, softer thresholds
 - Large bandwidth for charm
- Analysis
 - Hadronic and low M modes accessible
 - Excellent flavour tagging & $\sigma_{\! t}$
- Particle identification
 - Excellent muon ID
 - Dedicated RICH PID (K / π)

Keys for b-physics I: Data

Full dataset: ATLAS = CMS = 10 * LHCb

Keys for b-physics III: IP and vertex resolution

Primary vertex resolutions (25 tracks):

	LHCb [µm]	ATLAS [µm]	CMS [µm]
σ(x)	15.8	60	20-40
σ(y)	15.2	60	20-40
σ(z)	76	100	40-60

30. August 2013

Johannes Albrecht

Keys for b-physics IV: Particle Identification

Keys for b-physics IV: Particle Identification

 $\frac{B \rightarrow h h}{B^0 \rightarrow K \pi}$

The LHCb experiment is equipped with two Cherenkov detectors

Kaon identification:

 $K \rightarrow K$: 95.5% $\pi \rightarrow K$: 7.1%

30. August 2013

Johannes Albrecht

B Production Rates

	BaBar / Belle (ee)	CDF / D0 (pp)	ATLAS / CMS (pp)	LHCb (pp)
√s [GeV]	10.58 (Y(4S))	1980	7000 / 8000	7000 / 8000
BB production	coherent BB state	Incoherent BB state		
σ _{bb} [μb] in acceptance	0.0011	6.3	75	94
L [fb ⁻¹]	550 / ~1000	~10	~30	3
bb pairs in acceptance [10 ¹¹]	0.01	0.6	22	3

What does 1/ab mean? N(bb) = Lumi * x-section

30. August 2013

Pick 3 measurements/quantities:

- CKM angle sin 2β
- CKM angle γ
- B_s mixing frequency: Δm_s

CKM matrix I

[repetition from detailed discussion from David Straub yesterday]

V_{CKM} describes the rotation between weak (d', s', b') and mass eigenstates (d, s, b)

Quarks s'

$$= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \qquad \qquad b \xrightarrow{f} V_{ub}^{-}$$

Antiquarks

$$\begin{pmatrix} \overline{d}' \\ \overline{s}' \\ \overline{b}' \end{pmatrix} = \begin{pmatrix} V_{ud}^* & V_{us}^* & V_{ub}^* \\ V_{cd}^* & V_{cs}^* & V_{cb}^* \\ V_{td}^* & V_{ts}^* & V_{tb}^* \end{pmatrix} \begin{pmatrix} \overline{d} \\ \overline{s} \\ \overline{b} \end{pmatrix}$$

transition amplitude $\sim V_{ii}$

[repetition from detailed discussion from David Straub yesterday]

- CKM matrix is complex and unitary
- Four independent parameters

$$\hat{V}_{\rm CKM}^{+}\hat{V}_{\rm CKM}=1$$

- Fundamental constants of nature that must be measured
- Reflects hierarchy of quark transitions

Unitarity triangles

[repetition from detailed discussion from David Straub yesterday]

CKM matrix is unitary:

All 6 triangles have the same area, a measure of CPV in the SM

30. August 2013

Johannes Albrecht

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

- Pick a quark phase convention such that V_{cb}^{*}V_{cd} is real
- Normalize all sides by -V_{cb}^{*}V_{cd}

Over-constraining the Unitarity Triangle

1st CKM measurement: sin 2β

30. August 2013

Johannes Albrecht

38/56

sin 2 β : Golden decay $B^0 \rightarrow J/\psi K_s$

$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B^0} \to J/\psi K_S) - \Gamma(B^0 \to J/\psi K_S)}{\Gamma(\overline{B^0} \to J/\psi K_S) + \Gamma(B^0 \to J/\psi K_S)} = \sin(2\beta)\sin(\Delta mt)$$

\rightarrow Requires knowledge of production flavour of the B

30. August 2013

Johannes Albrecht

Flavour tagging – B-factories

• Time evolution of Υ(4s) decay

Flavour tagging

Time evolution of Υ(4s) decay

Effective tagging power: εD²~30% (at B-factories)

30. August 2013

Johannes Albrecht

How to extract sin 2β

How to extract sin 2β

How to extract sin 2β

30. August 2013

Johannes Albrecht

Measurement of CP violation in the B⁰ system

30. August 2013

Johannes Albrecht

46/56 Hich

World average of sin 2β

2nd CKM measurement: γ

30. August 2013

Johannes Albrecht

48/56

- The CKM angle γ plays a unique role in flavour physics
 CP violating parameter that can be measured through tree decays
- A benchmark Standard Model reference point
 - Doubly important in case NP is observed

Variants use different B or D decays \rightarrow require final state common to D⁰ and \overline{D}^0

Importance of γ from $B \rightarrow D K$

- Theoretical side:
 - Dominant, single tree diagram (suppression of loops)
 - All parameters can be determined from data
- Experimental side:
 - Many different final states \rightarrow different observables
 - All parameters can be determined from data
 - CKM angle $\boldsymbol{\gamma}$
 - δ_B : weak & strong phase differences
 - r_B : ratio of amplitudes

Latest Measurements on $B \rightarrow D K$

Evidence for direct CP violation (y≠0)

30. August 2013

Johannes Albrecht

51/56 KHCb

• Several different modes with each limited sensitivity on γ

Analysis	$N_{\rm obs}$	Parameters
$B^+ \to Dh^+, \ D \to hh, \ \text{GLW/ADS}$	13	$\gamma, r_B, \delta_B, r_B^{\pi}, \delta_B^{\pi}, R_{K/\pi},$
		$r_{K\pi}, \delta_{K\pi}, A_{CP}^{D \to KK}, A_{CP}^{D \to \pi\pi}$
$B^+ \to DK^+, \ D \to K^0_{\rm s} h^+ h^-, \ {\rm GGSZ}$	4	γ, r_B, δ_B
$B^+ \to Dh^+, \ D \to K\pi\pi\pi, \ ADS$	7	$\gamma, r_B, \delta_B, r_B^{\pi}, \delta_B^{\pi}, R_{K/\pi},$
		$r_{K3\pi}, \delta_{K3\pi}, \kappa_{K3\pi}$
CLEO $D^0 \to K\pi, D^0 \to K\pi\pi\pi$	9	$x_D, y_D, \delta_{K\pi}, \delta_{K3\pi}, \kappa_{K3\pi},$
		$r_{K\pi}, r_{K3\pi}, \mathcal{B}(K\pi), \mathcal{B}(K\pi\pi\pi)$
$C\!P$ violation in the charm system	2	$A_{CP}^{D \to KK}, A_{CP}^{D \to \pi\pi}$
charm mixing	3	$x_D, y_D, \delta_{K\pi}, r_{K\pi}$

LHCb measurements sensitive to γ

External inputs

Combine them using a frequentist approach

 γ from B+DK ADS(1 fb^-1)/GLW(1 fb^-1)/GGSZ(3 fb^-1) combined: $\gamma = (67 \pm 12)^\circ$

52/56 **Mich**

γ only from tree processes

Sensitivity: BaBar & Belle each ~16°; latest LHCb ~12°

30. August 2013

Summary of CKM measurements

 $sin 2\beta$

Adding many complimentary measurements

30. August 2013

Johannes Albrecht

54/56 *інср*

Tree vs loop

Tree Processes only

SM dominant → no new effects expected Loop processes only

New Physics is expected to appear in loops

Tree vs loop

Apex known with 10-20%, aim at <1%

30. August 2013

Johannes Albrecht

3rd CKM measurement: B_{s,d} mixing frequency

30. August 2013

Johannes Albrecht

58/56

Bs mixing

Phenomenological Schroedinger equation describing oscillation and decay

$$i\frac{d}{dt}\begin{pmatrix}B_s^0\\B_s^0\end{pmatrix} = \left(M - \frac{i}{2}\Gamma\right)\begin{pmatrix}B_s^0\\B_s^0\end{pmatrix} \qquad \qquad M = \begin{pmatrix}M_{11} & M_{12}\\M_{12}^* & M_{22}\end{pmatrix}; \Gamma = \begin{pmatrix}\Gamma_{11} & \Gamma_{12}\\\Gamma_{12}^* & \Gamma_{22}\end{pmatrix}$$

Mass eigenstates \neq flavour eigenstates \rightarrow mass difference \propto osc. frequency

$$B_L \rangle = p |B_s^0\rangle + q |\overline{B_s^0}\rangle B_H \rangle = p |B_s^0\rangle - q |\overline{B_s^0}\rangle$$

$$\Delta m_s = m_H - m_L = 2|M_{12}|$$
$$\Delta \Gamma_s = \Gamma_L - \Gamma_H$$
$$\phi_M = \arg(M_{12})$$

Dominant Feynman diagrams (Standard Model)

Δm_s from $B_s \rightarrow D_s \pi^+$

New J. Phys. 15 (2013) 053021

Very high statisticsLow background level

- Can resolve B_s mixing frequency due to high boost

$$D = (1 - 2\omega)$$

D:1.....

- Opposite side taggers
 - exploits bb pair production by partially reconstructing the second B-hadron in the event
 - Same side kaon tagger
 - exploits hadronization of signal B_s -meson
 - Combined tagging power (in $B_s^0 \rightarrow D_s^- \pi^+$)

$$- \varepsilon D^2 = 3.5 \pm 0.5\%$$

$$D = (1 - 2\omega)$$

Dilution

- Opposite side taggers
 - exploits $b\overline{b}$ pair production by partially reconstructing the second B-hadron in the event
- Same side kaon tagger
 - exploits hadronization of signal B_s -meson
- Combined tagging power (in $B_s^0 \rightarrow D_s^- \pi^+$)

 $- \varepsilon D^2 = 3.5 \pm 0.5\%$

Compare this to e^+e^- colliders: $\epsilon D^2 \sim 30\%$

$\Delta m_s \text{ from } B_s \rightarrow D_s \pi^+$

New J. Phys. 15 (2013) 053021

- Very high statistics
- Low background level
- Can resolve B_s mixing frequency due to high boost

Uses flavour tagging: opposite side (*Eur.Phys.J. C72(2012) 2022*) same side (LHCb-CONF-2012-033)

 $\Delta m_s = 17.768 \pm 0.023(stat) \pm 0.006(syst) ps^{-1}$

B_{s.d} mixing and the CKM matrix

Slide shown by D. Straub, flavour theory lecture I

Our final result reads

$$A(B^{0} \to \bar{B}^{0}) = \frac{G_{F}^{2}}{6\pi^{2}} m_{W}^{2} m_{B} \left(V_{tb}^{*} V_{td}\right)^{2} S_{0}(x_{t}) \hat{\eta}_{B} f_{B}^{2} \hat{B}$$

and we needed

- CKM elements,
- short-distance contributions (box diagram!),
- QCD corrections, and
- input from the lattice.

