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PARTICLE PHYSICS

Introduction ) covrenron (Y

Statistics plays a vital role in science, it is the way that we:
» quantify our knowledge and uncertainty
» communicate results of experiments
Big questions:
» how do we make discoveries, measure or exclude theoretical parameters, ...
» how do we get the most out of our data
» how do we incorporate uncertainties
» how do we make decisions

Statistics is a very big field, and it is not possible to cover everything in 3 hours.
In these talks | will try to:

- explain some fundamental ideas & prove a few things
> enrich what you already know
> eXxpose you to some new ideas

| will try to go slowly, because if you are not following the logic, then it is not very
interesting.

- Please feel free to ask questions and interrupt at any time
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Further Reading I

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;
~ W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.
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My favorite statistics book by a statistician:

Stuart, Ord, Arnold. “Kendall's Advanced Theory of Statistics” Vol. 2A Classical Inference &
the Linear Model.
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http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/

Other lectures

Fred James'’s lectures
http://preprints.cern.ch/cgi-bin/setlink?base=AT &categ=Academic_Training&id=AT00000799

http://www.desy.de/~acatrain/
Glen Cowan’s lectures

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

Louis Lyons
http://indico.cern.ch/conferenceDisplay.py?confld=a063350

Bob Cousins gave a CMS lecture, may give it more publicly

Gary Feldman “Journeys of an Accidental Statistician”
http://www.hepl.harvard.edu/~feldman/Journeys.pdf

The PhyStat conference series at PhyStat.org:

PhYSTaT Phystat Physics Statistics Code Repository

An open, loosely moderated repository for code, tools, and documents relevant to statistics in physics applications. Search and download access is universal; package
submission is loosely moderated for suitability.

Using the Site

= Lists of packages

= Search for a package

= Submit a Package

= Comment on a package (not yet available)

About the Repository

= Repository Policies and Procdures

= The Phystat Repository Steering Committee

= Comment on the repository site or policies

PHYSTAT Conference Links

= PHYSTAT @307 (CERN) @05 (Oxford) €303 (SLAC) €»02 (Durham)
= Phystat Workshops: @08 (Caltech) @06 (BIRS/Banff) @00 (Fermilab) 00 (CERN)

= More Conferences and Workshops ...

>
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Outline oz @
Lecture 1: Preliminaries

» Probability Density Function vs. Likelihood

» Point estimates and maximum likelihood estimators
Part 2: Building a probability model

» Examples of different “narratives”

» A generic template for high energy physics
Lecture 2: Hypothesis testing

» The Neyman-Pearson lemma and the likelihood ratio

» Composite models and the profile likelihood ratio

» Review of ingredients for a hypothesis test

Lecture 3: Limits & Confidence Intervals
» The meaning of confidence intervals as inverted hypothesis tests
» LHC-style CLs
» Asymptotic properties of likelihood ratios
» Bayesian approach
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cenrer ror W
Terms CoSMOLOGY AND o
PARTICLE PHYSICS '

The next lectures will rely on a clear understanding of these terms:

- Random variables / “observables” x

> Probability mass and probility density function (pdf) p(x)
- Parametrized Family of pdfs / “model” p(xla)

- Parameter o

- Likelihood L(a)

- Estimate (of a parameter) &(x)

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 8




Random variable / observable ) (‘T’
“Observables” are quantities that we observe or measure directly
» They are random variables under repeated observation

Discrete observables:
» number of particles seen in a detector in some time interval
» particle type (electron, muon, ...) or charge (+,-,0)

Continuous observables:
» energy or momentum measured in a detector
» invariant mass formed from multiple particles

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 9




Probability Mass Functions ) e, @8

When dealing with discrete random variables, define a
Probability Mass Function as probability for it" possibility

P(wz) — Pi

Q -
% ;_
KA &

Defined as limit of long term frequency )

» probability of rolling a 3 := limit #triais—~ (# rolls with 3 / # trials)
+ you don’t need an infinite sample for definition to be useful

And it is normalized

ZP(J;Z-) =1

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 10




Probability Density Functions ) (‘Tt’
When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function

P(x € |x,x + dx]) = f(z)dx

Note, f(x)is NOT a probability

X04

0.35

PDFs are always normalized ,,

0.25
0.2

![Zf@szl ’

0.1

0.05

0
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Probability Density Functions ) (‘Tt’
When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function

P(x € |x,x + dx]) = f(z)dx

Note, f(x)is NOT a probability

204 ;— o _;

_ 0.35 - =

PDFs are always normalized ;- -
0,25% ..... ,'fff';.""""",'f','. ......................... Ty b —:

- e i Sy L S
f(aj)dx — 1 0.155 1 width T 9] | ;

0.1 | ReoGaussian pdf("line ot skl Hmcmmeniblih »X,MWidth);

— 0O o 3
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Parametrized families / models ) (‘T’
Often we are interested in a parametried family of pdfs
» We will write these as: f(x|a) said “f of x given &’
- where a are the parameters of the “model” (written in greek characters)
A discrete example:

» The Poisson distribution is a probability mass function for n, the
number of events one observes, whe_nuone expects u events
. n €
Pois(n|p) = p ol
A continuous example

» The Gaussian distribution is a probability density function for a
continuous variable x characterized by a mean « and standard

deviation o
1 (z—p)?
G X ,O- — 6_ 202
(z|p, o) Gro

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 12




The Likelihood Function oz @
Consider the Poisson distribution describes a discrete event count »

for a real-valued mean u. , e M
Pois(n|p) = pu" ——
n

The likelihood of u given n is the same
equation evaluated as a function of u TET

» Now it's a continuous function (d)

» But it is not a pdf!

=2 1In L(ne=3 I )

L(p) = Pois(n|u)

Common to plotthe -In L (or -21In L)

» helps avoid thinking of it as a PDF

: . ST N R B R
» connection to 2 distribution 03 6,9 12 15

Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)

dIII|III|III|III|III|III|III
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Repeated observations ) e A |

In particle physics we are usually able to perform repeated

observations of x that are independent & identically distributed
» These repeated observations are written {x;}

» and the likelihood in that case is
= 1| f(zila)
)

» and the log-likelihood is

log L(« Zlogf T;| o)

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 14
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Estimators ) S e |
Given some model f (x|a) and a set of observations {x;} often one
wants to estimate the true value of a (assuming the model is true).

An estimator is function of the data written &(x1, . . . )
» Since the data are random, so is the resulting estimate
» often it is just written &, where the x-dependence is implicit
» one can compute expectation of the estimator
Ela(@)a) = [ a(x)f(zla)da
Properties of estimators:
»bias E|a(x)|a] — a (unbiased means bias=0)
» variance E[(a(z) — a)?|a] = / (6(x) — a) f(2]a)da
» asymptotic bias limit of bias with infinite observations

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 15




Maximum likelihood estimators ) (‘Tt’
There are many different possible estimators, but the most well-
known and well-studied is the maximum likelihood estimator (MLE)

7

B I I | I I | I I | I I | I I ]
&(x) = argmax, L(a) = argmax,, f(z|a) o -
B d |
This is just the value of a that maximizes the likelihood s —
B =2 1In L(ne=3 I ) ]
0 E N B
Example: the Poisson distribution T R E
ek 2 -
Pois(n|u) = " —— - g
(nlp) = 1" — £ E
. . M . . . . . : | EI | | Ii | | | | | | | | | :
Maximizing L(u) is the same as minimizing -In L(x) %0 3 6 , 9 12 15
d d n Figure from R. Cousins
- — _ _ | — - ’
g Ll =0= - (“ nln“+§%) L= Am. J. Phys. 63 398 (1995)
= [ =n

In this case, the MLE is unbiased b/c E[n]=u

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 16




A second example I

Consider a set of observations {x;} and we want to estimate the
mean of a Gaussian with known o

1 (z—p)?
G(z|p,0) = e 27
which gives 2mo
d d (5 — p)* (i — )
~in In L(,u)’ﬂ =0= i (Z 572 + In \V/2 ﬂq) = Z —
v const t

. 1
= U = N Z Z; (an unbiased estimator) .
0

However, the MLE 6% = %Z(xz — u)? is biased
1z'

It can be shown that ¢* = —— > (=i —1)° is unbiased

Thus, the MLE is asymptotially unbiased .

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013
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Covariance & Correlation ) Commocoay AND G

Define covariance cov[x,y] (also use matrix notation V) as

coviz,y] = Elzy] — papy = E[(x — pz)(y — py)]
Correlation coefficient (dimensionless) defined as

covlz, y]

Pry =
Ox0y

If x, y, independent, i.e., f(z,y) = fz(z)fy(y), then

Elry] = / / zy f(x,y) dedy = papiy
— coV|[z,y] =0 x and y, ‘uncorrelated’

N.B. converse not always true.

[G. Cowan]
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Correlation Coefficient examples
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p=0.75

(a)

(b)

p=—0.75

6 8 10 0 2 4

10

p = 0.25

10

[G. Cowan]
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Correlation Coefficient examples ) “T”
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http://en.wikipedia.org/wiki/Correlation_and_dependence
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Mutual Information ) ‘ﬂTﬁ
A more general notion of ‘correlation’ comes from  Mutual
Information:

p(x.y)
00, &84 plx 100( ), I(X;Y) = H(X) - H(X|Y)
)= Z Z pi(x) pa(y) g '

yeY zeX H(Y) - H(Y|X)
H(X)+ H(Y) - H(X,Y)

» it is symmetric: 1(X;Y) = [(Y;X)
» if and only if XY totally independent: [(X;Y)=0
» possible for X,Y to be uncorrelated, but not independent

A

Y Mutual Information doesn’t

seem to be used much within
HEP, but it seems quite useful

>

X
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Cramér-Rao Bound S
The minimum variance bound on an estimator is given by the
Cramér-Rao inequality:
» simple univariate case:
var(f) = E[(0 — 6)?]

» For an unbiased estimator the Cramér-Rao bound states

. 1
) > ——
var(f) > 100)
» where 1(60) is the Fisher information

9, 9,
(1(9))-,-,j =FK [Wln 4 65, & B)Wlnf(‘& 9)|9]

» General form for multiple parameters

COV[HW]%J > 1 5 (0)

Maximum Likelihood Estimators asymptotically reach this bound

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 22




Change of variables ) ((Tﬁ

What happens with x— cos(x)
1 import numpy as np 2000
2 import matplotlib.pyplot as plt
4 N_MC=100000 # number of Monte Carlo Experiments 1500
5 nBins = 50 # number of bins for Histograms
6
7 data_x, data_y = [],[] #lists that will hold x and y 1000
8
9 ¥ do experiments 500

10 for i in range(N_MC):

11 ¥ generate observation for x

12 X = np.random.uniform(@,2%np.pi) 0
‘3 7
14 y = np.cos(x)

15 data_x.append(x)

16 data_y.append(y)

17

18 ¥setup figures 8000
19 fig = plt.figure(figsize=(13,5))

20 fig_x = fig.add_subplot(1,2,1)

21 fig_y = fig.add_subplot(1,2,2) 6000
22

3 fig_x.hist(data_x,nBins)
24 fig_x.set_xlabel('angle')

26 fig_y.hist(data_y,nBins)
27 fig_y.set_xlabel('cos(angle)"')

29  plt.show()

0.0 0.5 1.0
cos(angle)
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Change of variables ) (¢T9
If f(x) is the pdf for x and y(x) is a change of variables, then the pdf
g(y) must satisfy

y(zp)

Pz, <z <ump) = /xb f(z)dx = /( | g(y)dy = P(y(x,) <y < y(xp))

We can rewrite the integral on the right

y(xy) T dy
/ g(y)dy=/ g(y(z)) |5 |dx
y(a7a) L q, da:‘

therefore, the two pdfs are related by a Jacobian factor

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 24




An example

CENTER FOR ((/l
COSMOLOGY AND L

PARTICLE PHYSICS

y(x) = cos(x)

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

2.5

2.0

1.5

1.0

0.5

0.0

7 -1.0 -0.5

0.0 0.5 1.0
cos(angle)
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cenven ron &
Summary > e |
Change of variable x, change of parameter 0

For pdf p(xI0) and change of variable from x to y(x):
p(y(x)I6) = p(x10) / Idy/dxl.

Jacobian modifies probability density, guaranties that
P(y(X,)<y<y(x))) = P(Xx;, <x<X,),i.e., that

Probabilities are invariant under change of variable x.

— Mode of probability density is not invariant (so, e.g.,
criterion of maximum probability density is ill-defined).

— Likelihood ratio is invariant under change of variable x.
(Jacobian in denominator cancels that in numerator).

For likelihood £(0) and reparametrization from 0 to u(0):
L(0) = L(u(6)) ().
— Likelihood £ (0) is invariant under reparametrization of
parameter 0 (reinforcing fact that £ is not a pdf in 0).

Bob Cousins, CMS, 2008
Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 26




.y cenren ror &
Probability Integral Transform ) commeroer e Y
Consider a specific change of variables related to the cumulative
for some arbitrary f(x)

o) = [ fa)as

Using our general change of variables formula:

f(x) =g(y) %

P =@

Thus g(y) = 1

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 27




Summary »Esa Y
Probability Integral Transform

“...seems likely to be one of the most fruitful conceptions
introduced into statistical theory in the last few years”
— Egon Pearson (1938)

Given continuous x € (a,b), and its pdf p(x), let
y(x) =/, p(x)dx .
Theny e (0,1) and p(y) =1 (uniform) for all y. (!)
So there always exists a metric in which the pdf is uniform.

Many issues become more clear (or trivial) after this
transformation®. (If x is discrete, some complications.)

The specification of a Bayesian prior pdf p(u) for parameter
u is equivalent to the choice of the metric f(u1) in which
the pdf is uniform. This is a deep issue, not always
recognized as such by users of flat prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
Bob Cousins, CMS, 2008
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Bayes’ Theorem I

Bayes’ theorem relates the conditional and
marginal probabilities of events A & B

P(AB) = - (B]‘f(‘g; 4

= P(A) is the prior probability. It is "prior" in the sense
that it does not take into account any information
about B.

= P(AIB) is the conditional probability of A, given B. It is
also called the posterior probability because it is
derived from or depends upon the specified value of B.

= P(BA) is the conditional probability of B given A.

= P(B) is the prior or marginal probability of B, and acts
as a normalizing constant.

7(0]x) = / (””‘f&”(e) x L(0)m ()

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 29
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.. in pictures (from Bob Cousins) ) o @

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures

PA) = —— P(B) =

Whole space

'D P(AIB) =

¢ ¢
@ P(BIA) = T

P(A) x P(BIA) =

.‘
I
!
2
>
D
Z

P(B) x P(AIB) = - P(A N B)

9
— B

@D 9 q
— B

Bob Cousins, CMS, 2008 = P(BIA) = P(AIB) X P(B) / P(A)
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... in pictures (from Bob Cousins) ) (‘Tf’
P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures

P(A) = —— P(B) =

@
Whole space L

0
'B P(AIB) = " P(BIA) =

P(Aﬁ B): -

.‘-

Don't forget about “Whole space™(2. | will drop it from the
notation typically, but occasionally it is important.

Bob Cousins, CMS, 2008 = P(BIA) = P(AIB) X P(B) / P(A)
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Louis’s Example > (479

P (Data;Theory) % P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 31




Axioms of Probability

These Axioms are a mathematical starting
point for probability and statistics

1. probability for every element, E, is non-

negative P(E)y>0 VECF=2°

2. probability for the entire space of
possibilitiesis 1 P(Q2) = 1.

3. If elements E; are disjoint, probability is
additive P(E,UE,uU---)=Y P(E).

Consequences:
P(AuUB)= P(A)+ P(B) — P(AN B)
P(Q\ F)=1- P(FE)

Kolmogorov
axioms (1933)

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013
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Different definitions of Probability
Frequentist
» defined as limit of long term frequency

» probability of rolling a 3 := limit of (# rolls with 3 / # trials)
- you don’t need an infinite sample for definition to be useful
- sometimes ensemble doesn’t exist
« 9. P(Higgs mass = 125 GeV), P(it will snow tomorrow)
» Intuitive if you are familiar with Monte Carlo methods

» compatible with orthodox interpretation of probability in Quantum
Mechanics. Probability to measure spin projected on x-axis if spin of beam
IS polarized along +z , 1
Subjective Bayesian (=117 =3
- Probability is a degree of belief (personal, subjective)

- can be made quantitative based on betting odds

- most people’s subjective probabilities are not coherent and do not obey
laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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Modeling:
The Scientific Narrative
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Building a model of the data ) (‘T’
Before one can discuss statistical tests, one must have a “model” for
the data.

» by “model”, | mean the full structure of P(data | parameters)
- holding parameters fixed gives a PDF for data
- provides ability to generate pseudo-data (via Monte Carlo)
- holding data fixed gives a likelihood function for parameters

« note, likelihood function is not as general as the full model because it
doesn’t allow you to generate pseudo-data

Both Bayesian and Frequentist methods start with the model
» it's the objective part that everyone can agree on

» It's the place where our physics knowledge, understanding, and
Intuiting comes in

» building a better model is the best way to improve your statistical
procedure
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The Scientific Narrative ) (‘T’
The model can be seen as a quantitative summary of the analysis

» If you were asked to justify your modeling, you would tell a
story about why you know what you know

- based on previous results and studies performed along the way

» the quality of the result is largely tied to how convincing this
story is and how tightly it is connected to model

| will describe a few “narrative styles”
» The “Monte Carlo Simulation” narrative
» The “Data Driven” narrative

» The “Effective Modeling” narrative

Real-life analyses often use a mixture of these
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The simulation narrative ) ST e |

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — Lo

do — |M|*dQ)

P =
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The simulation narrative ) (‘T*

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
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The simulation narrative ) “Tg

Phase space Q) defines initial measure, sampled via Monte Carlo

(f13)]7
1) CElE)
P — LO’

1 ) The language of the Standard Model is Quantum Field Theory

P =

‘W, wer —Lp, g Lo g
4 4 4GWG

o J

kinetic energies and self—mteractlons of the gauge bosons

_ 1 1 _ 1
LA*(i0, — 597 W, — EQ/YBM)L + Ry"(i0, — §g'YBN)R

Vo
kinetic energies and electroweak interactions of fermions

1 1

1, . ,
5 |(i8), — 597 Wi = 59 YB,)o|" — V()

-~

7

W=*,Z ~,and Higgs masses and couplings

"= a - _
9" (v Tuq) G, + (G1LoR + G:Rp.L+ h.c.)
~ v o . D . .
interactions between quarks and gluons fermion masses and couplings to Higgs
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The simulation narrative ) gzzmm?cs?

splitting functions, Sudokov form factors, and hadronization models

2 ) a) Perturbation theory used to systematically approximate the theory.
b)
c) all sampled via accept/reject Monte Carlo P(particles | partons)

g_) e hard scattering

<

e partonic decays, e.g.
t — bW

~
i
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The simulation narrative ) @T*

splitting functions, Sudokov form factors, and hadronization models

2 ) a) Perturbation theory used to systematically approximate the theory.
b)
c) all sampled via accept/reject Monte Carlo P(particles | partons)

e hard scattering

e partonic decays, e.g.
t — bW

e parton shower
evolution

e colour singlets
e colourless clusters

e cluster fission
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The simulation narrative ) cowenrer @Y

PARTICLE PHYSICS

3 Next, the interaction of outgoing particles with the detector is simulated.
Detailed simulations of particle interactions with matter.
Accept/reject style Monte Carlo integration of very complicated function
P(detector readout | initial particles)

| I I I | 1 I 1

om iIm m im am sm 6m /im
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
= = = - Neutral Hadron (e.g. Neutron)
''''' Photon

47

@l‘ ,' L

Silicon
Tracker

Electrromagnetic
: , " Calorimeter
v

Hadron Superconducting
Calorimeter Solenoid

lron return yoke interspersed

Transverse slice with Muon chambers Hi T 8

through CMS
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The simulation narrative ) (‘Tt’

4 From the simulated response of the detector, we run reconstruction
algorithms on the simulated data as if it were from real data. This allows us
to look at distribution of any observable that we can measure in data.
P( observable | detector readout)

10°

ATLAS e data

I Multijet
—— Signal (mH=4OO GeV

\s=7TeV

>

S 10°

0 I Z+jets
< 1 04 H— eevv (mH=4OO GeV) ] top

§2] _ -1 Il Diboson
£ 10° f L dt = 35 pb 0 v
>

LLl

102
10 +

e+

IIII|_|1[| 111 ol IIII|_|1[| 111 L

10"

1072

3

107 50 100 150 200 250
ET° [GeV]
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The simulation narrative ) d{’

4 From the simulated response of the detector, we run reconstruction
algorithms on the simulated data as if it were from real data. This allows us
to look at distribution of any observable that we can measure in data.
P( observable | detector readout)

> 10°g—— g
mu+ o 5- ATLAS e data ]
S)) 10 I Z+jets 3
- 104 H— eevv (mH=4OO GeV) [Jtop
%) . B Db 3
e oy Sre-wet  BRIET
_ Multij 3
e+ o L|>J 10° \s=7Tev :Si;:;?t(mHﬂOO GeVE
1hi 10 \f 3
1 E
10" :
1072
-3
107 50 100 150 200 250

ET° [GeV]

mu-
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The Effective Model Narrative

In contrast, one can describe a distribution with some parametric function

CENTER FOR

>

» “we fit background to a polynomial”, exponential, ...

» While this is convenient and the fit may be good, the narrative is weak
PHYSICAL REVIEW D 79, 112002 (2009)
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The Effective Model Narrative ) ((T"
In contrast, one can describe a distribution with some parametric function

» “we fit background to a polynomial”, exponential, ...
» While this is convenient and the fit may be good, the narrative is weak

>  {0000— T~ - "~ T T T T T T T T T o]
8 B Selected diphoton sample 7]
qV 8000 — [ Data 201142012 ]
; | Sig+Bkg Fit (mH=126.8 GeV) _
T ey mmmmmeee Bkg (4th order polynomial) =
2 6000 — ATLAS Preliminary —
- - TR H-vy .
4000 — |

B s=7TeV,J-Ldt=4.8 o _

2000 — 1 ~0

B @=8Tev,JLdt=2o.7fb‘ s

Q bO():—: —_— e :_:
o 400 £~ =
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2 200 - + =
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G>J -200;_ 1 1 1 1 1 _;
T 100 110 120 130 140 150 160

m,., [GeV]

Kyle Cranmer (NYU) HCP Summer School, Sept. 2013 43




The data-driven narrative ) (‘Tt’
Regions in the data with negligible signal expected used as control samples
- simulated events are used to estimate extrapolation coefficients

- extrapolation coefficients may have theoretical and experimental
uncertainties

: | | T TT | T TT | T TT | T TT | T TT | T TT
'_5104;C MS P rellmlnary =
~ C —e— Signal, m =160 GeV 1] ””
2 B 7] W+Jets, W ] ABCD methOd
& [ di-boson >
® 403 _
> 107 ¢ - E
o - Il Drell-Yan .
] e*e’ Channel i
10°F E
1E 4
- 7
- | |
L o o
» 17
10 0 20 40 60 80 100 120 140 160 180 200

m, [GeV/c?]
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The data-driven narrative > .
Regions in the data with negligible signal expected used as control samples
- simulated events are used to estimate extrapolation coefficients

- extrapolation coefficients may have theoretical and experimental
uncertainties

c
510 CMS Preliminary E
~ C —e— Signal, m =160 GeV 1] ””
4‘2 B |:| W+Jets, tHW : ABCD methOd
S I ™ di-boson -
Q403 _
> 107 ¢ N E
o - I Drell-Yan ]
. e*e’ Channel ]
102 =
10
1=

-1
107 ™20 40 60 80 100 120 140 160 180 200
m, [GeV/c?]
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What do we mean by uncertainty? ) comereey e 3
Let’s consider a simplified problem that has been studied quite a bit to
gain some insight into our more realistic and difficult problems

» number counting with background uncertainty

- in our main measurement we observe non with s+b expected
Pois(non|s + b)

» and the background has some uncertainty
- but what is “background uncertainty”? Where did it come from?
- maybe we would say background is known to 10% or that it has some pdf 7T(b)
« then we often do a smearing of the background:

P(n0n]5) = / db Pois(noy|s + b) (b)),

- Where does 7(b) come from?

- did you realize that this is a Bayesian procedure that depends on some prior
assumption about what b is?
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The “on/off” problem I
Now let’s say that the background was estimated from some control
region or sideband measurement.
» We can treat these two measurements simultaneously:
- main measurement: observe non with s+b expected

- sideband measurement: observe nox with 7b expected
P(non, nog|s, b) = Pois(nen|s + b) Pois(neg|70)

\ . A
VO TV

TV
joint model main measurement sideband

- In this approach “background uncertainty” is a statistical error
- justification and accounting of background uncertainty is much more clear

How does this relate to the smearing approach?
P(n0n]5) = / db Pois(noy|s + b) 7 (b)),
» while m(b) is based on data, it still depends on some original priorn(b)

 Plnaglbn(®
fdbp(nofﬂb)n(b).

w(b) = P(b|nos)
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A General Purpose Statistical Model
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Visualizing probability models ) (‘T’
| will represent PDFs graphically as below (directed acyclic graph)
» eg. a Gaussian G(x|u, o) is parametrized by (u, o)

» every node is a real-valued function of the nodes below

100

3
llllr[llllllllllllll
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PARTICLE PHYSICS

RooFit: A data modeling toolkit CommoLac ane (‘T’

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.

RooAddPdf
sum
RooGaussian RooRealVar RooGaussian RooRealVar RooArgusBG
gaussl glfrac gauss2 g2frac argus
RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar RooRealvVar
meanl sigma X mean2 argpar cutoff
Histogram ot x\sy__ X y xS y_xy
agn \ 7 Hent=0
. — Composition (‘plug & play’) w10
- Add|t|0n TSI B R x = 2388
T [ — . N N RMS y = 08657
g i Bt 1.002 .
‘%‘"' b Bl 0.002{
E £,F a
.93 z:_ w- 10015
ngn.— g" o%esj .00 - .:
- 5s T p———
Mj .54 s —
Zﬂ- ‘“-:*- om ?
o0 2 o] 25
FAA 21, | | | | ¥ [ 15 F a0
W T e 1 1 L 1 L 1 L n s 1 15 z 25 : ] W 3 I ] 20 2 1 3 B 1 1 ) 2 4
I L ] o ! P
* g(x;m,s)
4 4 .
a(x,y; /S)
Possible in any PDF
No explicit support in PDF code needed
— Multiplication .
P — Convolution
= = 1.0018
ogsn'- £ 10016 & ”
%L gn 1.0014 i 3
4 | e -
‘gp.:. ‘; 1.0008 ’;W :‘::"‘:t“‘“:‘\ '31.1 ‘g
&m *l. - W it 1 4
s b B SR L i 3 L
el e —
LU Lge 199 ey I
3 o 8 : o 0.02
- aonzE i I
T R 0 A o T % ] w2 o
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n

Wouter Verkerke,
Wouter Verkerke, UCSB
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Marked Poisson Process ) ooy ano (‘Tf’

PPPPPPPPPPPPPPP

Channel: a subset of the data defined by some selection
requirements.

» eg. all events with 4 electrons with energy > 10 GeV
» n. number of events observed in the channel
» . number of events expected in the channel

Discriminating variable: a property of those events that can be
measured and which helps discriminate the signal from background

» eg. the invariant mass of two particles
» fix): the p.d.f. of the discriminating variable x

D={xy,...,x,}

Marked Poisson Process: "

f(D|v) = Pois(n|v) H f(ze)

e=1
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Mixture model I
Sample: a sample of simulated events corresponding to particular
type interaction that populates the channel.

» statisticians call this a mixture model

f(ﬂ?)zi ST vf@), M= ), v

Vtot 1
sEsamples sEsamples

> 1 06 T Tt
o ATLAS

5 e data
g 10 I Z+jets
; 10* H — eevv (m =400 GeV) E top
2, : Dib
2 oy Jroewe  Ee
> _ Multijet
w102 Ve =7TeV : Si;n”aT (m =400 GeV)

10 .
1
10"
1072
3
107 50 100 150 200 250

ET™* [GeV]
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Parametrizing the model o = (u,0) ) “T’
Parameters of interest (u): parameters of the theory that modify the
rates and shapes of the distributions, eg.

» the mass of a hypothesized particle

» the “signal strength” u=0 no signal, u=1 predicted signal rate
Nuisance parameters (0 or ap): associated to uncertainty in:

» response of the detector (calibration)
» phenomenological model of interaction in non-perturbative regime

Lead to a parametrized model: v — v(a), f(z) — f(z|a)

:j:

f(D|a) = Pois(n|v(a f(z.|a)

e:1
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Incorporating Systematic Effects ) «Tﬁ

Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and “+ 1 0~

» use some form of interpolation to parametrize p* variation in terms of
nuisance parameter o,

> 10— Z+jets |to Diboson
8 105 ATLAS ) data J p
0 I Z+jets
2 40 H— eevv (m =400 GeV) [ top syst 1
2 10° f L dt = 35 pb” 55\;21";;”
(I>) > \/g =7 TeV - Multijet SySt 2
w10 - —— Signal (m =400 GeV)
10 .
1
10
102
-3
107 50 100 150 200 250
EMS* [GeV] n
f(D|a) = Pois(n|v(a)) | | flze|a)
e=1
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Incorporating Systematic Effects ) ((Tﬁ

Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and “+ 1 0~

» use some form of interpolation to parametrize p* variation in terms of
nuisance parameter o,

s 1.7 S L ]
o) sf ATLAS . dat R s .
E?) 10 -Ziths - B
; 104 H— eevv (mH=4OO GeV) |:|to.p - -
5 10° Jra-se' BBV ™ 3 E
_ Multi - SRR ]
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10 s C B
1 - .
10 — =
10 0;~J—T_-r-:|| ........ ||E
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0 50 100 150 200 250 X
™S [GeV] "
f(D|a) = Pois(n|v(a)) | | flze|a)
e=1
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Incorporating Systematic Effects ) (@’
Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and “+ 1 0~

» use some form of interpolation to parametrize p* variation in terms of
nuisance parameter o,

10°

ATLAS e data
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10 4

1

10"
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E 5 [ARoobiot of == | [Hisgres Tib X spt |
e 10 [ Z+jets g
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o _ I Multijet 22§

107 50 100 150 200 250
ET° [GeV] n
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e=1
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Visualizing the model for one channel ) “T’
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Visualizing the model for one channel ) ((T"

10°

L B e E
After parametrizing each E 105 ATLAS o 2 -
component of the mixture S 10 Hoeewmooced) g -
model, the pdf for a single § 10° Jra=asen O Wt E
channel might look like this G ol T — S e
10 R -
1 :

10"

10
10% 50 100 150 200 250
ET° [GeV]

T e
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Simultaneous multi-channel model ) e, @

Simultaneous Multi-Channel Model: Several disjoint regions of
the data are modeled simultaneously. ldentification of common

parameters across many channels requires coordination between
groups such that meaning of the parameters are reaIIy the same.

fsim(Dsim’a) — H POlS nc‘yc H fc ajce

cEchannels

Where DSlm — {D]_) cee 7Dcmax}

Control Regions: Some channels are not populated by signal
processes, but are used to constrain the nuisance parameters

» attempt to describe systematics in a statistical language
» Prototypical Example: “on/off” problem with unknown v,
f(n, m|u, vy) = Pois(n|u + vp) - Pois(m|Tuy)

v

signal region control region
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Constraint terms ) e A |
Often detailed statistical model for auxiliary measurements that
measure certain nuisance parameters are not available.

» one typically has MLE for «,, denoted a, and standard error

Constraint Terms: are idealized pdfs for the MLE.
fp(aplap) for pes
» common choices are Gaussian, Poisson, and log-normal
» New: careful to write constraint term a frequentist way
» Previously: m(ayplap) = fplap|ap)n(ay)  with uniform n

Simultaneous Multi-Channel Model with constraints:

fiot (Dsim, G|at) = H Pois(nc|ve(a)) H fe(Tee|ox H fo(aplop)

cEchannels e=1 pPES

where Dgim =1{D1,-- -, Depaf G ={ap} for peSs
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Conceptual building blocks ) «Tﬁ

A Ensemble
B .
Experiment
v =
~N
S N
C N\
Channel Constraint Term
Legend:
A "has many" Bs. ¢ € channels fp(ap I ap)
B "has a" C. f (xla) . .
Dashed is optional. c p € parameters with constraints
I
Event Sample
global observable
e € events s € samples
a
{1...nC}
We will use the following mnemonic index conventions:
Observable(s) Distribution Expected Number of Events ® ¢ € events
Yec foex19) Ys e b € bins
? \ e c € channels
“' e s € samples
Shape Variation Parameter
fscp(x | a, =X) @ 0, e p € parameters
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Example of Digital Publishing o, @

PARTICLE PHYSICS '

: T ~10l
g2 ROOT Object Browser 5’
Fim Edit View Opsons Inspect Clasees Help

File View Options |_A RooPlot of "x" |
£y wspace.root LI | [2—9_ “"_.-I'.;ggglgé—égl <:|| | I gl §1oo_—
All Folders Contents of "Y"ROOT Files/wspace.root" g E
S 80/

(_Jmot .
(_)PROOF Sessions j P
D fuse rive ke ke oofit/'wo hkdir '
D ROOT Files MyWorkSpace ;1 “*_

) 20—

RooFit's Workspace now provides the

o

ability to save in a ROOT file the full : ' =

likelihood model, any priors you might ;“:‘:'““""" ]

want, and the minimal data necessary § R

to reproduce likelihood function. 3 :

Need this for combinations, as p-value < :

is not sufficient information for a proper g

combination. R Ly Y T e R o1
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HistFactory I
http://cds.cern.ch/record/1456844

Information Discussion (0) Files Linkbacks

Preprint
Report ‘
CERN-OPEN-2012-016
number
Title HistFactory: A tool for creating statistical models for use with RooFit and RooStats

Author(s) Cranmer, Kyle (New York U.) ; Lewis, George (New York U.) ; Moneta, Lorenzo (CERN) ;
Shibata, Akira (New York U.) ; Verkerke, Wouter (NIKHEF, Amsterdam)

Collaboration ROOT Collaboration

Abstract The HistFactory is a tool to build parametrized probability density functions (pdfs) in the
RooFit/RooStats framework based based on simple ROOT histograms organized in an XML file. The
pdf has a restricted form, but it is sufficiently flexible to describe many analyses based on template
histograms. The tool takes a modular approach to build complex pdfs from more primative
conceptual building blocks. The resulting PDF is stored in a RooWorkspace which can be saved to
and read from a ROOT file. This document describes the defaults and interface in HistFactory 5.32.

32 page documentation of HistFactory tool + manual
» currently a “living document”
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Combined ATLAS Higgs Search ) o, @

PARTICLE PHYSICS

State of the art: At the time of the discovery, the combined Higgs search included
100 disjoint channels and >500 nuisance parameters

» Models for individual channels come from about 11 sub-groups performing
dedicated searches for specific Higgs decay modes

» In addition low-level performance groups provide tools for evaluating
systematic effects and corresponding constraint terms

Higgs Decay SuIb;s:Cqu]ent Additional Sub-Channels Rzltflge L [fb~1]
H — yy — 9 sub-channels (pr, ®n, ® conversion) 110-150 4.9
ey {4e,2e2u,2u2e,4u} 110-600 4.8
H—Z7ZZ vy {ee,uu} ® {low pile-up, high pile-up} 200-280-600 4.7
lqq {b-tagged, untagged } 200-300-600 4.7
H— WW tviv {ee,eu,upu} ® {O—Jet, 1—Jet, VBF} 110-300-600 4.7
vqq' {e,u} ® {0-jet, 1-jet} 300-600 4.7
04y {eu} ®{0-jet} & {1-jet, VBF,VH} 110-150 4.7

N {e,u} ® {0-jet} @ {EM*® =20 GeV}

H—1t't (Thad3V & le.u} @ {1-jgt, VBF} 110-150 4.7
Thad Thad 2"V {1—jet} 110-150 4.7
Z— vV EMss € 1120 — 160,160 — 200, > 200 GeV} 110-130 4.6
VH — bb W—tv  pl e {<50,50— 100,100 —200,> 200 GeV} 110-130 4.7
Z— p% € {< 50,50 — 100, 100 — 200, > 200 GeV} 110-130 4.7
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Visualizing the combined model ) @Tg
State of the art: At the time of the discovery, the combined Higgs
search included 100 disjoint channels and >500 nuisance parameters

RooFit / RooStats: is the modeling language (C++) which provides
technologies for collaborative modeling

» provides technology to publish likelihood functions digitally
» and more, it's the full model so we can also generate pseudo-data

Ne

fiot (Dsim, 9|ax) = H Pois(n.|v.(a)) H (ce|at) H folap|ay)

cEchannels e=1 PES
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