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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their
generalizations, and provide comments on these generalizations. Where possible, concrete
recommendations are made to aid in future comparisons and combinations with ATLAS and
CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP
situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].
The problem consists of a number counting analysis, where one observes non events and
expects s + b events, b is uncertain, and one either wishes to perform a significance test
against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the
parameter of interest and b is referred to as a nuisance parameter (and should be generalized
accordingly in what follows). In the setup, the background rate b is uncertain, but can
be constrained by an auxiliary or sideband measurement where one expects ⇥b events and
measures no� events. This simple situation (often referred to as the ‘on/o⇥’ problem) can be
expressed by the following probability density function:

P (non, no� |s, b) = Pois(non|s + b) Pois(no� |⇥b). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process
and the expected number of counts due to background events can be related to the main
measurement by a perfectly known ratio ⇥ . In many cases a more accurate relation between
the sideband measurement no� and the unknown background rate b may be a Gaussian with
either an absolute or relative uncertainty �b. These cases were also considered in Refs. [1, 2]
and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The
first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic
uncertainty. To make this point more clearly, consider that it is common practice in HEP to
describe the problem as

P (non|s) =
�

db Pois(non|s + b)�(b), (2)

where �(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is
then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-
experiments). But what is the nature of �(b)? The important fact which often evades serious
consideration is that �(b) is a Bayesian prior, which may or may-not be well-justified. It
often is justified by some previous measurements either based on Monte Carlo, sidebands, or
control samples. However, even in those cases one does not escape an underlying Bayesian
prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-
counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

Let’s consider a simplified problem that has been studied quite a bit to 
gain some insight into our more realistic and difficult problems
‣ number counting with background uncertainty

● in our main measurement we observe non with s+b expected

‣ and the background has some uncertainty
● but what is “background uncertainty”?  Where did it come from?
● maybe we would say background is known to 10% or that it has some pdf

• then we often do a smearing of the background: 

● Where does           come from?
• did you realize that this is a Bayesian procedure that depends on some prior 

assumption about what b is?

What do we mean by uncertainty?
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their
generalizations, and provide comments on these generalizations. Where possible, concrete
recommendations are made to aid in future comparisons and combinations with ATLAS and
CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP
situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].
The problem consists of a number counting analysis, where one observes non events and
expects s + b events, b is uncertain, and one either wishes to perform a significance test
against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the
parameter of interest and b is referred to as a nuisance parameter (and should be generalized
accordingly in what follows). In the setup, the background rate b is uncertain, but can
be constrained by an auxiliary or sideband measurement where one expects ⇥b events and
measures no� events. This simple situation (often referred to as the ‘on/o⇥’ problem) can be
expressed by the following probability density function:

P (non, no� |s, b) = Pois(non|s + b) Pois(no� |⇥b). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process
and the expected number of counts due to background events can be related to the main
measurement by a perfectly known ratio ⇥ . In many cases a more accurate relation between
the sideband measurement no� and the unknown background rate b may be a Gaussian with
either an absolute or relative uncertainty �b. These cases were also considered in Refs. [1, 2]
and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The
first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic
uncertainty. To make this point more clearly, consider that it is common practice in HEP to
describe the problem as

P (non|s) =
�

db Pois(non|s + b)�(b), (2)

where �(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is
then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-
experiments). But what is the nature of �(b)? The important fact which often evades serious
consideration is that �(b) is a Bayesian prior, which may or may-not be well-justified. It
often is justified by some previous measurements either based on Monte Carlo, sidebands, or
control samples. However, even in those cases one does not escape an underlying Bayesian
prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-
counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

The “on/off” problem
Now let’s say that the background was estimated from some control 
region or sideband measurement.  
‣ We can treat these two measurements simultaneously:

● main measurement: observe non with s+b expected
● sideband measurement: observe noff with      expected

● In this approach “background uncertainty” is a statistical error
● justification and accounting of background uncertainty is much more clear

How does this relate to the smearing approach?

‣ while        is based on data, it still depends on some original prior 
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their
generalizations, and provide comments on these generalizations. Where possible, concrete
recommendations are made to aid in future comparisons and combinations with ATLAS and
CMS results. These comments are quite general, and each experiment is expected to have
well-developed techniques that are (hopefully) consistent with what is presented here.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP
situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].
The problem consists of a number counting analysis, where one observes non events and
expects s + b events, b is uncertain, and one either wishes to perform a significance test
against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the
parameter of interest and b is referred to as a nuisance parameter (and should be generalized
accordingly in what follows). In the setup, the background rate b is uncertain, but can
be constrained by an auxiliary or sideband measurement where one expects ⇥b events and
measures no� events. This simple situation (often referred to as the ‘on/o⇥’ problem) can be
expressed by the following probability density function:

P (non, no� |s, b)⌅ ⇤⇥ ⇧
jointmodel

= Pois(non|s+ b)
⌅ ⇤⇥ ⇧
mainmeasurement

Pois(no� |⇥b)⌅ ⇤⇥ ⇧
sideband

. (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process
and the expected number of counts due to background events can be related to the main
measurement by a perfectly known ratio ⇥ . In many cases a more accurate relation between
the sideband measurement no� and the unknown background rate b may be a Gaussian with
either an absolute or relative uncertainty �b. These cases were also considered in Refs. [1, 2]
and are referred to as the ‘Gaussian mean problem’.

Here we rely heavily on the correspondence between hypothesis tests and confidence
intervals [3], and mainly frame the discussion in terms of confidence intervals.

While the prototype problem is a simplification, it has been an instructive example. The
first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic
uncertainty. To make this point more clearly, consider that it is common practice in HEP to
describe the problem as

P (non|s) =
�

dbPois(non|s+ b)�(b), (2)

where �(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is
then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-
experiments). But what is the nature of �(b)? The important fact which often evades serious
consideration is that �(b) is a Bayesian prior, which may or may-not be well-justified. It

1

If we were actually in a case described by the ‘on/o�’ problem, then it would be better to
think of ⇤(b) as the posterior resulting from the sideband measurement

⇤(b) = P (b|no�) =
P (no� |b)⇥(b)�
dbP (no� |b)⇥(b)

. (3)

By doing this it is clear that the term P (no� |b) is an objective probability density that can
be used in a frequentist context and that ⇥(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(no� |⌅b) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/o� problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate �.

A frequentist solution to the on/o� problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a di�erent form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, no� ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.

2

�(b) ⌘(b)
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A General Purpose Statistical Model
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Visualizing probability models
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G(x|µ, ⇥) (µ, ⇥)
I will represent PDFs graphically as below (directed acyclic graph)
‣ eg. a Gaussian                  is parametrized by                    
‣ every node is a real-valued function of the nodes below 

G

x µ σ
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RooFit: A data modeling toolkit

53
Wouter Verkerke, UCSB 

Building realistic models

– Composition (‘plug & play’)

– Convolution

g(x;m,s)m(y;a0,a1)

=

⊗ =

g(x,y;a0,a1,s)
Possible in any PDF

No explicit support in PDF code needed

Wouter Verkerke, UCSB 

Building realistic models

• Complex PDFs be can be trivially composed using operator classes

– Addition

– Multiplication

+ =

* =

Wouter Verkerke, UCSB 

Parameters of composite PDF objects

RooAddPdf

sum

RooGaussian

gauss1
RooGaussian

gauss2
RooArgusBG

argus
RooRealVar

g1frac
RooRealVar

g2frac

RooRealVar

x
RooRealVar

sigma
RooRealVar

mean1

RooRealVar

mean2
RooRealVar

argpar
RooRealVar

cutoff

RooArgSet *paramList = sum.getParameters(data) ;

paramList->Print("v") ;

RooArgSet::parameters:

1) RooRealVar::argpar : -1.00000 C

2) RooRealVar::cutoff :  9.0000 C

3) RooRealVar::g1frac :  0.50000 C

4) RooRealVar::g2frac :  0.10000 C

5) RooRealVar::mean1  :  2.0000 C

6) RooRealVar::mean2  :  3.0000 C

7) RooRealVar::sigma  :  1.0000 C

The parameters of sum
are the combined 
parameters
of its components

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.
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Marked Poisson Process
Channel: a subset of the data defined by some selection 
requirements.  
‣ eg. all events with 4 electrons with energy > 10 GeV
‣ n: number of events observed in the channel
‣ ν: number of events expected in the channel

Discriminating variable: a property of those events that can be 
measured and which helps discriminate the signal from background
‣ eg. the invariant mass of two particles 
‣ f(x): the p.d.f. of the discriminating variable x

Marked Poisson Process:

54

f(D|⌫) = Pois(n|⌫)
nY

e=1

f(xe)

D = {x1, . . . , xn}
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Mixture model
Sample: a sample of simulated events corresponding to particular 
type interaction that populates the channel.
‣ statisticians call this a mixture model
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⌫
tot

=
X

s2samples

⌫sf(x) =
1

⌫

tot

X

s2samples

⌫sfs(x) ,

10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → !!qq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from !!!! and !!νν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → !!qq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the m!! selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → !!νν search

The H → ZZ → !!νν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → !!νν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
!ν!ν decays can lead to final states that are very similar
to H → ZZ → !!νν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → !ν!ν de-
cays relative to that from H → ZZ → !!νν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → !!νν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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Parametrizing the model
Parameters of interest (µ): parameters of the theory that modify the 
rates and shapes of the distributions, eg.
‣ the mass of a hypothesized particle
‣ the “signal strength” μ=0 no signal, μ=1 predicted signal rate

Nuisance parameters (θ or αp): associated to uncertainty in:
‣ response of the detector (calibration)
‣ phenomenological model of interaction in non-perturbative regime

Lead to a parametrized model: 
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⌫ ! ⌫(↵), f(x) ! f(x|↵)

↵ = (µ,✓)

f(D|↵) = Pois(n|⌫(↵))

nY

e=1

f(xe|↵)
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Z+jets top Diboson ...

syst 1

syst 2

...
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Tabulate effect of individual variations of sources of systematic uncertainty
‣ typically one at a time evaluated at nominal and “± 1 σ”
‣ use some form of interpolation to parametrize pth variation in terms of 

nuisance parameter αp 

Incorporating Systematic Effects

10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → !!qq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from !!!! and !!νν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → !!qq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the m!! selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → !!νν search

The H → ZZ → !!νν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → !!νν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
!ν!ν decays can lead to final states that are very similar
to H → ZZ → !!νν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → !ν!ν de-
cays relative to that from H → ZZ → !!νν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → !!νν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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Tabulate effect of individual variations of sources of systematic uncertainty
‣ typically one at a time evaluated at nominal and “± 1 σ”
‣ use some form of interpolation to parametrize pth variation in terms of 

nuisance parameter αp 

Incorporating Systematic Effects

10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → !!qq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from !!!! and !!νν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → !!qq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the m!! selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → !!νν search

The H → ZZ → !!νν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → !!νν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
!ν!ν decays can lead to final states that are very similar
to H → ZZ → !!νν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → !ν!ν de-
cays relative to that from H → ZZ → !!νν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → !!νν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → !!qq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from !!!! and !!νν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → !!qq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the m!! selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → !!νν search

The H → ZZ → !!νν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → !!νν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
!ν!ν decays can lead to final states that are very similar
to H → ZZ → !!νν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → !ν!ν de-
cays relative to that from H → ZZ → !!νν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → !!νν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → !!qq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from !!!! and !!νν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → !!qq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the m!! selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → !!νν search

The H → ZZ → !!νν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → !!νν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
!ν!ν decays can lead to final states that are very similar
to H → ZZ → !!νν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → !ν!ν de-
cays relative to that from H → ZZ → !!νν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → !!qq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from !!!! and !!νν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → !!qq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the m!! selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → !!νν search

The H → ZZ → !!νν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → !!νν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
!ν!ν decays can lead to final states that are very similar
to H → ZZ → !!νν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → !ν!ν de-
cays relative to that from H → ZZ → !!νν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → !!νν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

After parametrizing each 
component of the mixture 
model, the pdf for a single 
channel might look like this
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Simultaneous multi-channel model
Simultaneous Multi-Channel Model: Several disjoint regions of 
the data are modeled simultaneously.  Identification of common 
parameters across many channels requires coordination between 
groups such that meaning of the parameters are really the same.

where

Control Regions: Some channels are not populated by signal 
processes, but are used to constrain the nuisance parameters
‣ attempt to describe systematics in a statistical language
‣Prototypical Example: “on/off” problem with unknown 
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Dsim = {D1, . . . ,Dc
max

}

fsim(Dsim|↵) =

Y

c2channels

"
Pois(nc|⌫c(↵))

ncY

e=1

fc(xce|↵)

#

⌫b
f(n,m|µ, ⌫b) = Pois(n|µ+ ⌫b)| {z }

signal region

·Pois(m|⌧⌫b)| {z }
control region
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Constraint terms
Often detailed statistical model for auxiliary measurements that 
measure certain nuisance parameters are not available. 
‣ one typically has MLE for αp, denoted ap and standard error

Constraint Terms: are idealized pdfs for the MLE.

‣ common choices are Gaussian, Poisson, and log-normal 
‣New: careful to write constraint term a frequentist way
‣Previously:                                            with uniform η

Simultaneous Multi-Channel Model with constraints: 

where

61

fp(ap|↵p) for p 2 S

for p 2 SDsim = {D1, . . . ,Dc
max

} G = {ap},

f
tot

(D
sim

,G|↵) =

Y

c2channels

"
Pois(nc|⌫c(↵))

ncY

e=1

fc(xce|↵)

#
·
Y

p2S
fp(ap|↵p)

⇡(↵p|ap) = fp(ap|↵p)⌘(↵p)
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Conceptual building blocks
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Probability models can be constructed to simultaneously describe several channels, that is several
disjoint regions of the data defined by the associated selection criteria. I will use e as the index over
events and c as the index over channels. Thus, the number of events in the cth channel is nc and the
value of the eth event in the cth channel is xce. In this context, the data is a collection of smaller datasets:
Dsim = {D

1

, . . . , Dc
max

} = {{xc=1,e=1

. . . xc=1,e=n
c

}, . . . {xc=c
max

,e=1

. . . xc=c
max

,e=n
c

max

}}. In RooFit
the index c is referred to as a RooCategory and it is used to inside the dataset to differentiate events as-
sociated to different channels or categories. The class RooSimultaneous associates the dataset Dc with
the corresponding marked Poisson model. The key point here is that there are now multiple Poisson
terms. Thus we can write the combined (or simultaneous) model

fsim(Dsim|↵) =

Y

c2channels

"
Pois(nc|⌫(↵))

n
cY

e=1

f(xce|↵)

#
, (2)

remembering that the symbol product over channels has implications for the structure of the dataset.

Experiment

Ensemble

Channel
c ∈ channels

fc (x | α)

Event
e ∈ events
{1…nc}

Observable(s)
xec

Sample
s ∈ samples

Distribution
fsc (x | α)

Expected Number of Events
νs 

Constraint Term
fp(ap | αp )

p ∈ parameters with constraints

global observable
a

Parameter
α, θ, μ

Shape Variation
fscp(x | αp = X )

A

B

C

Legend:
A "has many" Bs. 
B "has a" C.
Dashed is optional.

Fig. 1: A schematic diagram of the logical structure of a typical particle physics probability model and dataset
structures.

2.2 Auxiliary measurements
Auxiliary measurements or control regions can be used to estimate or reduce the effect of systematic
uncertainties. The signal region and control region are not fundamentally different. In the language that
we are using here, they are just two different channels.

A common example is a simple counting experiment with an uncertain background. In the fre-
quentist way of thinking, the true, unknown background in the signal region is a nuisance parameter,
which I will denote ⌫B .5 If we call the true, unknown signal rate ⌫S and the number of events in the
signal region n

SR

then we can write the model Pois(n
SR

|⌫S + ⌫B). As long as ⌫B is a free parameter,
5Note, you can think of a counting experiment in the context of Eq. 1 with f(x) = 1, thus it reduces to just the Poisson

term.

5

Constrained Unconstrained
Normalization Variation OverallSys (⌘cs) NormFactor (�p)
Coherent Shape Variation HistoSys �csb –
Bin-by-bin variation ShapeSys & StatError �cb ShapeFactor �csb

Table 1: Conceptual building blocks for constructing more complicated PDFs: parameters.

2 The Likelihood Template

2.1 Index Convention

In what follows we use the term channel as a region of the data defined by the corresponding
event selection, as opposed to a particular scattering process. The channels are required to
have disjoint event selection requirements. We use the term sample for a set of scattering
processes that can be added together incoherently; thus scattering processes that interfere
quantum mechanically must be considered in the same sample.

We will use the following mnemonic index conventions:

• e 2 events

• b 2 bins

• c 2 channels

• s 2 samples

• p 2 parameters

We define the following subsets of parameters N = {�p} the unconstrained normalization
factors (ie. NormFactor), S = {↵p} the parameters associated to systematic that have ex-
ternal constraints (ie. OverallSys and HistoSys), � = {�csb} (the bin-by-bin uncertainties
with constraints (statistical errors, ShapeSys but not those associated to an unconstrained
ShapeFactor). We also use greek symbols for parameters of the model and roman symbols
for observable quantities with a frequentist notion of probability.

2.2 The Template

The parametrized probability density function constructed by the HistFactory is of a con-
crete form, but su�ciently flexible to describe many analyses based on template histograms.
In general, the HistFactory produces probability density functions of the form

P(nc, xe, ap |�p,↵p, �b) =
Y

c2channels

"
Pois(nc|⌫c)

ncY

e=1

fc(xe|↵)

#
·G(L

0

|�,�L) ·
Y

p2S+�

fp(ap|↵p) (5)

where fp(ap|↵p) is a constraint term describing an auxiliary measurement ap that constrains
the nuisance parameter ↵p (see Section 4.2). Denote the bin containing xe as be. We have
the following expression for the expected (mean) number of events in a given bin

⌫cb(�p,↵p, �b) = �cs �cb �cs(↵) ⌘cs(↵) �csb(↵) , (6)

4
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Example of Digital Publishing 

RooFit’s Workspace now provides the 
ability to save in a ROOT file the full 
likelihood model, any priors you might 
want, and the minimal data necessary 
to reproduce likelihood function.

Need this for combinations, as p-value 
is not sufficient information for a proper 
combination.
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HistFactory

32 page documentation of HistFactory tool + manual
‣ currently a “living document”
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http://cds.cern.ch/record/1456844
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Combined ATLAS Higgs Search
State of the art: At the time of the discovery, the combined Higgs search included 
100 disjoint channels and >500 nuisance parameters
‣ Models for individual channels come from about 11 sub-groups performing 

dedicated searches for specific Higgs decay modes
‣ In addition low-level performance groups provide tools for evaluating 

systematic effects and corresponding constraint terms

65
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Table 3: Summary of the individual channels contributing to the combination. The central number in the
three-part mass ranges indicates the transition from low-mH to high-mH optimised event selections.

Higgs Decay Subsequent Additional Sub-Channels mH L [fb−1]Decay Range
H → γγ – 9 sub-channels (pTt⊗ηγ ⊗ conversion) 110-150 4.9

H → ZZ
!!!′!′ {4e,2e2µ ,2µ2e,4µ} 110-600 4.8
!!ν  ν {ee,µµ} ⊗ {low pile-up, high pile-up} 200-280-600 4.7
!!q  q {b-tagged, untagged} 200-300-600 4.7

H →WW !ν!ν {ee,eµ ,µµ} ⊗ {0-jet, 1-jet, VBF} 110-300-600 4.7
!νqq′ {e,µ} ⊗ {0-jet, 1-jet} 300-600 4.7

H → τ+τ−

!!4ν {eµ}⊗{0-jet} ⊕ {1-jet, VBF,VH} 110-150 4.7

!τhad3ν {e,µ} ⊗ {0-jet} ⊗ {Emiss
T ≷ 20 GeV} 110-150 4.7⊕ {e,µ} ⊗ {1-jet, VBF}

τhadτhad2ν {1-jet} 110-150 4.7

VH → bb
Z→ νν Emiss

T ∈ {120−160,160−200,≥ 200 GeV} 110-130 4.6
W → !ν pWT ∈ {< 50,50−100,100−200,≥ 200 GeV} 110-130 4.7
Z→ !! pZT ∈ {< 50,50−100,100−200,≥ 200 GeV} 110-130 4.7

• H → ZZ(∗) → !+!−!+!−: This analysis is unchanged with respect to the previous combined203

search [?]. The search is performed for mH hypotheses in the full 110 GeV to 600 GeV mass204

range using data corresponding to an integrated luminosity of 4.8 fb−1 [?]. The main irreducible205

ZZ(∗) background is estimated using Monte Carlo simulation. The reducible Z+jets background,206

which has an impact mostly for low four-lepton invariant masses, is estimated from control re-207

gions in the data. The top-quark (t  t) background normalisation is validated using a dedicated208

control sample. The events are categorised according to the lepton flavour combinations. The209

mass resolutions are approximately 1.5% in the four-muon channel and 2% in the four-electron210

channel for mH∼120 GeV. The four-lepton invariant mass is used as a discriminating variable.211

• H → ZZ→ !+!−νν update: The analysis described in [?,?] was based on an integrated luminos-212

ity of 2.05 fb−1 and was optimised for two search regions with mH hypotheses above and below213

280 GeV and two lepton flavour categories. To achieve the best sensitivity, the present search,214

which uses an integrated luminosity of 4.7 fb−1 [?], is additionally split between the first 2.3 fb−1
215

of “low pile-up” collision data, where the average number of interactions per bunch crossing was216

about 6, and the latter 2.4 fb−1 of “high pile-up” collisions, where the average number of interac-217

tions per bunch crossing was about 12. The selection is unaltered between the periods. The !+!−218

pair invariant mass is required to be within 15 GeV of the Z-boson mass. The reverse requirement219

is applied to same-flavour leptons in the H →WW (∗) → !+ν!−ν channel to avoid overlaps. The220

transverse mass of the dilepton and missing transverse energy system is used as a discriminating221

variable.222

• H → ZZ → !+!−qq update: This analysis is updated with respect to the previous combined223

search [?]. The previous analysis used a dataset corresponding to an integrated luminosity of224

2.05 fb−1 [?], while the current analysis is based on an integrated luminosity of 4.7 fb−1 [?]. It225

takes advantage of an improved b-tagging algorithm [?] and of the larger sample of data to better226

constrain systematic uncertainties on the background yield. The analysis is separated into search227

regions above and below mH=300 GeV, where the event selections are independently optimised.228

The dominant background arises from Z+jets production, which is normalised from data using229
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Visualizing the combined model
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State of the art: At the time of the discovery, the combined Higgs 
search included 100 disjoint channels and >500 nuisance parameters

RooFit / RooStats: is the modeling language (C++) which provides 
technologies for collaborative modeling
‣ provides technology to publish likelihood functions digitally
‣ and more, it’s the full model so we can also generate pseudo-data

f
tot
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Evolution of Model Complexity
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FIG. 1. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → γγ, (b) H → ZZ(∗) → "+"−"+"− in the entire mass range, (c) H → ZZ(∗) → "+"−"+"− in
the low mass range, (d) H → ZZ → "+"−νν, (e) b-tagged selection and (f) untagged selection for H → ZZ → "+"−qq, (g) H →
WW (∗) → "+ν"−ν+0-jets, (h) H → WW (∗) → "+ν"−ν+1-jet, (i) H → WW (∗) → "+ν"−ν+2-jets, (j) H → WW → "νqq′+0-
jets, (k) H → WW → "νqq′+1-jet and (l) H → WW → "νqq′+2-jets. The H → WW (∗) → "+ν"−ν+2-jets distribution is
shown before the final selection requirements are applied.

5

 [GeV]effm
40 60 80 100 120 140 160 180 200

Ev
en

ts
 / 

15
 G

eV

0

500

1000

1500

2000

2500

3000

3500

4000

Data 2011

Total background

=125 GeV, 10 x SMHm

ATLAS

-1 Ldt = 4.7 fb∫ = 7 TeV, s

 + 0jlepτlepτ→H

(a)

 [GeV]ττm
50 100 150 200 250 300

Ev
en

ts
 / 

20
 G

eV

0

50

100

150

200

250

Data 2011

Total background

=125 GeV, 10 x SMHm

ATLAS

-1 Ldt = 4.7 fb∫ = 7 TeV, s

 + 1jlepτlepτ→H

(b)

 [GeV]ττm
50 100 150 200 250

Ev
en

ts
 / 

40
 G

eV

0

20

40

60

80

100

120

140

160

180

Data 2011

Total background

=125 GeV, 10 x SMHm

ATLAS

-1 Ldt = 4.7 fb∫ = 7 TeV, s

 + 2jlepτlepτ→H

(c)

 [GeV]MMCm
0 50 100 150 200 250 300 350 400

Ev
en

ts
 / 

10
 G

eV

0
200
400
600
800

1000
1200
1400
1600
1800

-1 Ldt = 4.7 fb∫ = 7 TeV, s

ATLAS

Data 2011

=125 GeV, 10xSMHm

Total background

 + 0/1jhadτlepτ→H

(d)

 [GeV]MMCm
0 50 100 150 200 250 300 350 400

Ev
en

ts
 / 

20
 G

eV

0

5

10

15

20

25

30

35

40

-1 Ldt = 4.7 fb∫ = 7 TeV, s

ATLAS

Data 2011

=125 GeV, 10 x SMHm

Total background

 + 2jhadτlepτ→H

(e)

 [GeV]ττm
60 80 100 120 140 160 180

Ev
en

ts
 / 

12
 G

eV

0

20

40

60

80

100

120

Data 2011

Total background

=125 GeV, 10 x SMHm

ATLAS -1 Ldt = 4.7 fb∫ = 7 TeV, shadτhadτ→H

(f)

 [GeV]bbm
80-150 80-150 80-150 80-150

Ev
en

ts
 / 

10
 G

eV

0
5

10
15
20
25
30
35
40
45
50

Data 2011

Total background

=125 GeV, 5 x SMHm

ATLAS
-1 Ldt = 4.7 fb∫ = 7 TeV, s

bllb→ZH

(g)

 [GeV]bbm
80-150 80-150 80-150 80-150

Ev
en

ts
 / 

10
 G

eV

0

20

40

60

80

100

120

140

160

180
Data 2011

Total background

=125 GeV, 5 x SMHm

ATLAS
-1 Ldt = 4.7 fb∫ = 7 TeV, s

bbνl→WH

(h)

 [GeV]bbm
80-150 80-150 80-150

Ev
en

ts
 / 

10
 G

eV

0

5

10

15

20

25

30

35

40
Data 2011

Total background

=125 GeV, 5 x SMHm

ATLAS
-1 Ldt = 4.6 fb∫ = 7 TeV, s

bbνν→ZH

(i)

FIG. 2. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → τlepτlep+0-jets, (b) H → τlepτlep 1-jet, (c) H → τlepτlep+2-jets, (d) H → τlepτhad+0-jets and
1-jet, (e) H → τlepτhad+2-jets, (f) H → τhadτhad. The bb invariant mass for (g) the ZH → "+"−bb̄, (h) the WH → "νbb̄ and (i)
the ZH → ννbb̄ channels. The vertical dashed lines illustrate the separation between the mass spectra of the subcategories in
pZT, p

W
T , and Emiss

T , respectively. The signal distributions are lightly shaded where they have been scaled by a factor of five or
ten for illustration purposes.

date Categories Nodes Parameters
Jan-09 3 50 10
Jun-10 6 374 37
Jun-11 24 7000 82
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Hypothesis testing
One of the most common uses of statistics in particle physics is 
Hypothesis Testing (e.g. for discovery of a new particle)
‣ assume one has pdf for data under two hypotheses:

● Null-Hypothesis, H0:  eg. background-only
● Alternate-Hypothesis H1: eg. signal-plus-background

‣ one makes a measurement and then needs to decide whether 
to reject or accept H0
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Hypothesis testing

Before we can make much progress with statistics, we need 
to decide what it is that we want to do.
‣ first let us define a few terms:

● Rate of Type I error 
● Rate of Type II 
● Power = 
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Hypothesis testing

Before we can make much progress with statistics, we need 
to decide what it is that we want to do.
‣ first let us define a few terms:

● Rate of Type I error 
● Rate of Type II 
● Power = 

Treat the two hypotheses asymmetrically
‣ the Null is special.  

● Fix rate of Type I error, call it “the size of the test”
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Hypothesis testing

Before we can make much progress with statistics, we need 
to decide what it is that we want to do.
‣ first let us define a few terms:

● Rate of Type I error 
● Rate of Type II 
● Power = 

Treat the two hypotheses asymmetrically
‣ the Null is special.  

● Fix rate of Type I error, call it “the size of the test”

Now one can state “a well-defined goal”
‣Maximize power for a fixed rate of Type I error
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Hypothesis testing

The idea of a “    “ discovery criteria for particle physics is really a 
conventional way to specify the size of the test
‣ usually     corresponds to 

● eg. a very small chance we reject the standard model
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal
‣ but in higher dimensions it is not so easy
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Hypothesis testing

The idea of a “    “ discovery criteria for particle physics is really a 
conventional way to specify the size of the test
‣ usually     corresponds to 

● eg. a very small chance we reject the standard model
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal
‣ but in higher dimensions it is not so easy
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6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary
Maybe select events with “cuts”:

xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.

H0 H0

H0

H1

H1H1
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xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.
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[G. Cowan]



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

The Neyman-Pearson Lemma

72

The Neyman & Pearson’s Theory

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H0 (background only)

- the Alternate Hypothesis H1 (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis

α = P (x /∈ W |H0)

Find the region W such that we minimize the probability of wrongly
accepting the H0 (when H1 is true)

β = P (x ∈ W |H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 6)

Kyle Cranmer

Brookhaven National Laboratory

(Convention: if data falls in W then we accept H0)
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The region     that minimizes the probability of wrongly 
accepting     is just a contour of the Likelihood Ratio

Any other region of the same size will have less power 

The likelihood ratio is an example of a Test Statistic, eg. 
a real-valued function that summarizes the data in a way 
relevant to the hypotheses that are being tested
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The Neyman-Pearson Lemma

P (x|H1)
P (x|H0)

> k�

W
H0
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A short proof of Neyman-Pearson

Consider the contour of the likelihood ratio that has size a given 
size (eg. probability under H0 is 1-   )
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P (x|H1)
P (x|H0)

> k�

�

W WC
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A short proof of Neyman-Pearson

75

Now consider a variation on the contour that has the same 
size
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A short proof of Neyman-Pearson
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P ( |H0) = P ( |H0)

Now consider a variation on the contour that has the same size 
(eg. same probability under H0)
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A short proof of Neyman-Pearson

77

Because the new area is outside the contour of the likelihood 
ratio, we have an inequality

P (x|H1)
P (x|H0)

< k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0)k�
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A short proof of Neyman-Pearson

78

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

And for the region we lost, we also have an inequality
Together they give...
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A short proof of Neyman-Pearson
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The new region region has less power.

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�
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2 discriminating variables
Often one uses the output of a neural network or multivariate algorithm in 
place of a true likelihood ratio.
‣ That’s fine, but what do you do with it?
‣ If you have a fixed cut for all events, this is what you are doing:

80

x1 x2

y2y1

q

q = lnQ = �s + ln
�

1 +
sfs(x, y)
bfb(x, y)

⇥
fb(q) fs(q) L

tot

= L1 · L2

q12 = lnL12 = lnL1 + lnL2 = q1 + q2
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Experiments vs. Events

Ideally, you want to cut on 
the likelihood ratio for your 
experiment
‣ equivalent to a sum of 

log likelihood ratios
Easy to see that includes 
experiments where one 
event had a high likelihood 
and the other one was 
relatively small
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x1 x2

y2y1

q1 q2

q12 = q1 + q2 q1

q2

q 12

fb(q12) fs+b(q12)
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An optimal way to combine
Special case of our 
general probability model 
(no nuisance parameters)
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Instead of simply counting 
events, the optimal test statistic is 
equivalent to adding events 
weighted by 

ln(1+signal/background ratio)

The test statistic is a map T:data → �

By repeating the experiment many 
times, you obtain a distribution for TT=
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T

f(T
)

kα

W Wc

f (T | H0)

p-values
Instead of choosing to accept/reject H0

one can compute the p-value 

83

p =

Z 1

T
o

f(T |H0)
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Instead of choosing to accept/reject H0

one can compute the p-value 
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P (x|H1)

P (x|H0)
< k�

P (x|H1)

P (x|H0)
> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

F i g . 2: A graphical proof of the Neyman-Pearson lemma.

p-value is given by

p(↵) =

Z 1

T
0

f(T |↵)dT =

Z
f(D|↵) ✓(T (D) � T

0

) dD = P (T � T
0

|↵) , (10)

where T
0

is the value of the test statistic based on the observed data and ✓(·) is the Heaviside function.10

Usually the p-value is just written as p, but I have written it as p(↵) to make its ↵-dependence explicit.
Given that the p-value depends on ↵, how does one decide to accept or reject the null hypothesis?

Remembering that ↵
poi

takes on a specific value for the null hypothesis, we are worried about how the
p-value changes as a function of the nuisance parameters. It is natural to say that one should not reject the
null hypothesis if the p-value is larger than the size of the test for any value of the nuisance parameters.
Thus, in a frequentist approach one should either present p-value explicitly as a function of ↵

nuis

or take
its maximal (or supremum) value

p
sup

(↵
poi

) = sup

↵
nuis

p(↵
nuis

) . (11)

As a final note it is worth mentioning that the size of the test, which serves as the threshold for
rejecting the null hypothesis, is purely conventional. In most sciences conventional choices of the size
are 10%, 5%, or 1%. In particle physics, our conventional threshold for discovery is the infamous 5�
criterion – which is a conventional way to refer to ↵ = 2.87 · 10

�7. This is an incredibly small rate of
Type-I error, reflecting that claiming the discovery of new physics would be a monumental statement.
The origin of the 5� criterion has its roots in the fact that traditionally we lacked the tools to properly
incorporate systematics, we fear that there are systematics that may not be fully under control, and we
perform many searches for new physics and thus we have many chances to reject the background-only
hypothesis. We will return to this in the discussion of the look-elsewhere effect.

3 . 3 E x c l u d e d a n d a l l o w e d r e g i o n s a s c o n fi d e n c e i n t e r v a l s

Often we consider a new physics model that is parametrized by theoretical parameters. For instance, the
mass or coupling of a new particle. In that case we typically want to ask what values of these theoretical

10The integral
R
dD is a bit unusual for a marked Poisson model, because it involves both a sum over the number of events

and an integral over the values of x
e

for each of those events.

11

T

f(T
)

Tobs

W Wc

f (T | α)

p(α)

p =

Z 1

T
o

f(T |H0)

If the model for the data 
depends on parameters α 
the p-value also depends 
on α.
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T

f(T
)

Tobs

W Wc

f (T | α)

p(α)

p-values
When the model has nuisance parameters, only reject the null if 
p(α) sufficiently small for all values of the nuisance parameters.
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F i g . 2: A graphical proof of the Neyman-Pearson lemma.

p-value is given by

p(↵) =

Z 1

T
0

f(T |↵)dT =

Z
f(D|↵) ✓(T (D) � T

0

) dD = P (T � T
0

|↵) , (10)

where T
0

is the value of the test statistic based on the observed data and ✓(·) is the Heaviside function.10

Usually the p-value is just written as p, but I have written it as p(↵) to make its ↵-dependence explicit.
Given that the p-value depends on ↵, how does one decide to accept or reject the null hypothesis?

Remembering that ↵
poi

takes on a specific value for the null hypothesis, we are worried about how the
p-value changes as a function of the nuisance parameters. It is natural to say that one should not reject the
null hypothesis if the p-value is larger than the size of the test for any value of the nuisance parameters.
Thus, in a frequentist approach one should either present p-value explicitly as a function of ↵

nuis

or take
its maximal (or supremum) value

p
sup

(↵
poi

) = sup

↵
nuis

p(↵
nuis

) . (11)

As a final note it is worth mentioning that the size of the test, which serves as the threshold for
rejecting the null hypothesis, is purely conventional. In most sciences conventional choices of the size
are 10%, 5%, or 1%. In particle physics, our conventional threshold for discovery is the infamous 5�
criterion – which is a conventional way to refer to ↵ = 2.87 · 10

�7. This is an incredibly small rate of
Type-I error, reflecting that claiming the discovery of new physics would be a monumental statement.
The origin of the 5� criterion has its roots in the fact that traditionally we lacked the tools to properly
incorporate systematics, we fear that there are systematics that may not be fully under control, and we
perform many searches for new physics and thus we have many chances to reject the background-only
hypothesis. We will return to this in the discussion of the look-elsewhere effect.

3 . 3 E x c l u d e d a n d a l l o w e d r e g i o n s a s c o n fi d e n c e i n t e r v a l s

Often we consider a new physics model that is parametrized by theoretical parameters. For instance, the
mass or coupling of a new particle. In that case we typically want to ask what values of these theoretical

10The integral
R
dD is a bit unusual for a marked Poisson model, because it involves both a sum over the number of events

and an integral over the values of x
e

for each of those events.

11

If the model for the data 
depends on parameters α 
the p-value also depends 
on α.
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The Profile Likelihood Ratio
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Consider our general model with a single parameter of interest µ 
‣ let µ=0 be no signal, µ=1 nominal signal

In the LEP approach the likelihood ratio is equivalent to:

‣ but this variable is sensitive to uncertainty on θ and makes no use of 
auxiliary measurements a

Alternatively, one can define profile likelihood ratio

‣ where                  is best fit with µ fixed  (the constrained maximum 
likelihood estimator, depends on data)

‣ and    and    are best fit with both left floating (unconstrained)
‣ Tevatron used QTev = λ(µ=1)/λ(µ=0) as generalization of QLEP

µ̂

�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G) )
f(D,G|µ̂, ✓̂)

ˆ̂✓(µ;D,G)

✓̂

QLEP =
L(µ = 1, ✓)

L(µ = 0, ✓)
=

f(D|µ = 1, ✓)

f(D|µ = 0, ✓)
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An example
Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0

86

where the ai are the parameters used to parameterize the fake-tau background and ν represents all nui-680

sance parameters of the model: σH ,mZ,σZ,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near mττ = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.
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�(µ = 0) =
L(µ = 0, ˆ̂✓(µ = 0))

L(µ̂, ✓̂)
=

f(D,G|µ = 0, ˆ̂✓(µ = 0;D,G) )
f(D,G|µ̂, ✓̂)

f(D,G|µ = 0, ˆ̂✓(µ = 0;D,G) )f(D,G|µ̂, ✓̂)
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Properties of the Profile Likelihood Ratio
After a close look at the profile likelihood ratio

one can see the function is independent of true values of θ
‣ though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the 
distribution of -2 ln λ (μ=μ0) given that the true value of μ is μ0 
converges to a chi-square distribution 
‣ more on this later, but the important points are:
‣ “asymptotic distribution” is known and it is independent of θ !

● more complicated if parameters have boundaries (eg. µ≥ 0)

Thus, we can calculate the p-value for the background-only 
hypothesis without having to generate Toy Monte Carlo!
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�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G) )
f(D,G|µ̂, ✓̂)
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Toy Monte Carlo

Profile Likelihood Ratio
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Explicitly build distribution by generating “toys” / pseudo experiments assuming a 
specific value of µ and ν.  

‣ randomize both main measurements D={x} and auxiliary measurements G={a}
‣ fit the model twice for the numerator and denominator of profile likelihood ratio
‣ evaluate -2ln λ(µ) and add to histogram

Choice of µ is straight forward: typically µ=0 and µ=1, but choice of θ is less clear
‣ more on this later

This can be very time consuming.  Plots below use millions of “toy” pseudo-
experiments 
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“The Asimov paper”
Recently we showed how to generalize this asymptotic approach
‣ generalize Wilks’s theorem when boundaries are present
‣ use Wald’s result for distribution for alternate hypothesis f(-2logλ(µ) | µ’)

89

Eur.Phys.J.C71:1554,2011

Asymptotic formulae for likelihood-based tests of new physics
Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells

http://arxiv.org/abs/1007.1727v2
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q
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f(q
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µ
med[q

’)µ|
µ

f(q

p−value

Figure 2: Illustration of the the p-
value corresponding to the median
of qµ assuming a strength parame-
ter µ′ (see text).

procedure can be extended to the case where several search channels are combined, and in
Sec. 4.3 we describe how to give statistical error bands for the sensitivity.

4.1 The median significance from Asimov values of the test statistic

By using the Asimov data set one can easily obtain the median values of q0, qµ and q̃µ, and
these lead to simple expressions for the corresponding median significance. From Eqs. (53),
(60) and (68) one sees that the significance Z is a monotonic function of q, and therefore
the median Z is simply given by the corresponding function of the median of q, which is
approximated by its Asimov value. For discovery using q0 one wants the median discov-
ery significance assuming a strength parameter µ

′ and for upper limits one is particularly
interested in the median exclusion significance assuming µ

′ = 0, med[Zµ|0]. For these one
obtains

med[Z0|µ′] =
√

q0,A , (79)

med[Zµ|0] =
√

qµ,A . (80)

When using q̃µ for establishing upper limits, the general expression for the exclusion
significance Zµ is somewhat more complicated depending on µ

′, but is in any case found by
substituting the appropriate values of q̃µ,A and σA into Eq. (68). For the usual case where one
wants the median significance for µ assuming data distributed according to the background-
only hypothesis (µ′ = 0), Eq. (68) reduces in fact to a relation of the same form as Eq. (60),
and therefore one finds

med[Zµ|0] =
√

q̃µ,A . (81)

4.2 Combining multiple channels

In many analyses, there can be several search channels which need to be combined. For
each channel i there is a likelihood function Li(µ,θi), where θi represents the set of nuisance
parameters for the ith channel, some of which may be common between channels. Here
the strength parameter µ is assumed to be the same for all channels. If the channels are
statistically independent, as can usually be arranged, the full likelihood function is given by
the product over all of the channels,

20
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Figure 9: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue)
from both the asymptotic formulae
and Monte Carlo histograms (see
text).

The vertical line in Fig. 9 gives the median value of qµ assuming a strength parameter
µ

′ = 0. The area to the right of this line under the curve of f(qµ|µ) gives the p-value of
the hypothesized µ, as shown shaded in green. The upper limit on µ at a confidence level
CL = 1−α is the value of µ for which the p-value is pµ = α. Figure 9 shows the distributions
for the value of µ that gave pµ = 0.05, corresponding to the 95% CL upper limit.

In addition to reporting the median limit, one would like to know how much it would vary
for given statistical fluctuations in the data. This is illustrated in Fig. 10, which shows the
same distributions as in Figure 9, but here the vertical line indicates the 15.87% quantile of the
distribution f(qµ|0), corresponding to having µ̂ fluctuate downward one standard deviation
below its median.

0 5 10 15 20 25 30
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10!3

10!2

10!1

100

q
µ

15.87% quantile (median!1#)

Figure 10: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue) as
in Fig. 9 and the 15.87% quantile of
f(qµ|0) (see text).

By simulating the experiment many times with Monte Carlo, we can obtain a histogram
of the upper limits on µ at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ (yellow)
error bands are obtained from the MC experiments. The vertical lines indicate the error
bands as estimated directly (without Monte Carlo) using Eqs. (88) and (89). As can be seen
from the plot, the agreement between the formulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding upper limit on µ for a specific value of the peak
position (mass). In a search for a signal of unknown mass, the procedure would be repeated
for all masses (in practice in small steps). Figure 12 shows the median upper limit at 95% CL
as a function of mass. The median (central blue line) and error bands (±1σ in green, ±2σ in
yellow) are obtained using Eqs. (88) and (89). The points and connecting curve correspond
to the upper limit from a single arbitrary Monte Carlo data set, generated according to the
background-only hypothesis. As can be seen, most of the plots lie as expected within the
±1σ error band.

28

Comparison of asymptotic and ensembles
Compare asymptotic distributions to distributions obtained with large 
ensembles of pseudo-experiments generated with Monte Carlo techniques
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Figure 11: Distribution of the
upper limit on µ at 95% CL, as-
suming data corresponding to the
background-only hypothesis (see
text).
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Figure 12: The median (central
blue line) and error bands (±1σ in
green, ±2σ in yellow) for the 95%
CL upper limit on the strength pa-
rameter µ (see text).

6 Implementation in RooStats

Many of the results presented above are implemented or are being implemented in the
RooStats framework [15], which is a C++ class library based on the ROOT [16] and RooFit [17]
packages. The tools in RooStats can be used to represent arbitrary probability density func-
tions that inherit from RooAbsPdf, the abstract interfaces for probability density functions
provided by RooFit.

The framework provides an interface with minimization packages such as Minuit [18].
This allows one to obtain the estimators required in the the profile likelihood ratio: µ̂,

θ̂, and ˆ̂
θ. The Asimov dataset defined in Eq. (24) can be determined for a probability

density function by specifying the ExpectedData() command argument in a call to the
generateBinned method. The Asimov data together with the standard HESSE covariance
matrix provided by Minuit makes it is possible to determine the Fisher information matrix
shown in Eq. (28), and thus obtain the related quantities such as the variance of µ̂ and the
noncentrality parameter Λ, which enter into the formulae for a number of the distributions
of the test statistics presented above.

The distributions of the various test statistics and the related formulae for p-values, sensi-
tivities and confidence intervals as given in Sections 2, 3 and 4 are being incorporated as well.
RooStats currently includes the test statistics tµ, t̃µ, q0, and q,qµ, and q̃µ as concrete imple-
mentations of the TestStatistic interface. Together with the Asimov data, this provides
the ability to calculate the alternative estimate, σA, for the variance of µ̂ shown in Eq. (30).
The noncentral chi-square distribution is being incorporated into both RooStats and ROOT’s
mathematics libraries for more general use. The various transformations of the noncentral

29

G. Cowan, KC, E. Gross, O. Vitells
Eur.Phys.J. C71 (2011) 1554 

[arXiv:1007.1727]

This is a significant development as 
building this distribution from 
Monte Carlo approaches can take
100,000 CPU hours for Higgs search!
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Experimentalist Justification
So far this looks a bit like magic.  How can you claim that you 
incorporated your systematic just by fitting the best value of your 
uncertain parameters and making a ratio?
It won’t unless the the parametrization is sufficiently flexible.
So check by varying the settings of your simulation, and see if the 
profile likelihood ratio is still distributed as a chi-square
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log Likelihood Ratio
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Here it is pretty stable, but 
it’s not perfect (and this is 
a log plot, so it hides some 
pretty big discrepancies)

For the distribution to be 
independent of the nuisance 
parameters your 
parametrization must be 
sufficiently flexible.
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A very important point
If we keep pushing this point to the extreme, the physics problem 
goes beyond what we can handle practically
The p-values are usually predicated on the assumption that the true 
distribution is in the family of distributions being considered
‣ eg. we have sufficiently flexible models of signal & background to 

incorporate all systematic effects
‣ but we don’t believe we simulate everything perfectly
‣ ..and when we parametrize our models usually we have further 

approximated our simulation.
● nature -> simulation -> parametrization

At some point these approaches are limited by honest systematics 
uncertainties (not statistical ones).  Statistics can only help us so much 
after this point. Now we must be physicists!
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Look-elsewhere effect

93

LookJelsewhere!effect!
•  Approxima.on!best!above!3σ!
•  Example:!

–  qtest=!4.5!(2.1σ)!!
–  3!crossings!at!0.5σ!!
–  significance!reduced!
!to!about!0.3σ!!

–  trials!factor!about!22!

12/7/11! Higgs!Combina.on!Confnote!Approval!

p0
global ! p0

local + N(qref )  e"(qtest"qref )/2

3!crossings! Local&
σ&

Crossings& σ&
ref.&

Trials&
factor&

Global&
σ&

3.5! 3! 1.0! 47! 2.3!

5.0! 3! 2.0! 290! 3.8!

7.0! 3! 2.0! 400! 6.1!

4!R. B. Davies,Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika 64 (1977);  Biometrika 74 (1987).

Typically our signal model has
some parameter (eg. mH), which does
not affect the null (background only).

This modifies the distribution of the 
likelihood ratio test statistic

we call this the “look-elsewhere effect”

Recently Gross & Vitells found the results 
of Rice, Davies, and Leadbetter for a fast 
asymptotic approximation for the global 
p-value

E. Gross & O. Vitells, Eur.Phys.J. C70 (2010); 
Astropart.Phys. 35 (2011) 
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Deviations from the asymptotic distributions
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Even if we fix the location of the 
signal some systematic effects are 
equivalent to small uncertainty in the 
location (e.g. energy calibration).

Eilam Gross, Ofer Vitells: Trial factors for the look elsewhere effect in high energy physics 5
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Fig. 1. (top) An example pseudo-experiment with background only. The solid line shows the best signal
fit, while the dotted line shows the background fit. (bottom) The likelihood ratio test statistic q(m). The
dotted line marks the reference level c0 with the upcrossings marked by the dark dots. Note the broadening
of the fluctuations as m increases, reflecting the increase in the signal gaussian width.

Figure 3 shows the corresponding trial factor,
compared to the bound calculated from eq.(3)
and the asymptotic approximation of eq.(12).
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Fig. 3. The trial factor estimated from toy Monte
Carlo simulations (solid line), with the upper bound
of eq.(3) (dotted black line) and the asymptotic ap-
proximation of eq.(12) (dotted red line). The yellow
band represents the statistical uncertainty due to the
limited sample size.

We consider in addition a case where the
number of degrees of freedom is more than one.
For this purpose, we assume several indepen-
dent channels, each identical to the one described
above, and where the signal normalizations (µ1, ..., µs)
are free parameters. (This could represent, for
example, a case where one is searching for a res-
onance in several decay channels, with unknown
branching ratios). The reference level is chosen
to be c0 = s− 1 as discussed in the previous sec-
tion. The resulting distributions and trial factors
for s = 2, 3 are shown in figures 4 and 5. As be-
fore, the the bound (3) agrees with the observed
p-value, within statistical variation. The rate at
which the asymptotic approximation (11) con-
verges to the bound becomes slower when the
number of degrees of freedom increases, mak-
ing it less accurate, however the trend of linear
growth is evident.

4 Conclusions

The look-elsewhere effect presents a case when
the standard regularity conditions of Wilks’ the-
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Fig. 1. (top) An example pseudo-experiment with background only. The solid line shows the best signal
fit, while the dotted line shows the background fit. (bottom) The likelihood ratio test statistic q(m). The
dotted line marks the reference level c0 with the upcrossings marked by the dark dots. Note the broadening
of the fluctuations as m increases, reflecting the increase in the signal gaussian width.

Figure 3 shows the corresponding trial factor,
compared to the bound calculated from eq.(3)
and the asymptotic approximation of eq.(12).
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of eq.(3) (dotted black line) and the asymptotic ap-
proximation of eq.(12) (dotted red line). The yellow
band represents the statistical uncertainty due to the
limited sample size.

We consider in addition a case where the
number of degrees of freedom is more than one.
For this purpose, we assume several indepen-
dent channels, each identical to the one described
above, and where the signal normalizations (µ1, ..., µs)
are free parameters. (This could represent, for
example, a case where one is searching for a res-
onance in several decay channels, with unknown
branching ratios). The reference level is chosen
to be c0 = s− 1 as discussed in the previous sec-
tion. The resulting distributions and trial factors
for s = 2, 3 are shown in figures 4 and 5. As be-
fore, the the bound (3) agrees with the observed
p-value, within statistical variation. The rate at
which the asymptotic approximation (11) con-
verges to the bound becomes slower when the
number of degrees of freedom increases, mak-
ing it less accurate, however the trend of linear
growth is evident.

4 Conclusions

The look-elsewhere effect presents a case when
the standard regularity conditions of Wilks’ the-
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A more subtle effect
Even if we fix the location of the 
signal some systematic effects are 
equivalent to small uncertainty in the 
location (e.g. energy calibration).

These parameters are slowing 
convergence to the asymptotic 
distribution and variance may not 
reduce with more data.

O. Vitells found exact solution by 
Leadbetter for the case of only one such 
nuisance parameter
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Energy scale uncertainties “look elsewhere effect”

Consider a model with a mass (location) parameter M0 and a signal strength parameter µ,
defined by the likelihood function

L0(µ,M0). (1)

We now introduce an energy scale (ES) nuisance parameter δ constrained by a Gaussian
(pseudo)-measurement term, that shifts the signal location. The likelihood function is now

L(µ,M0, δ) = L0(µ,M0(1 + δ))G(δ∗|δ,σES ). (2)

(Note: it is assumed here that δ has no other effect on the model other then shifting the
signal). The profile likelihood test statistic at a fixed mass M0 is

q(M0) = −2 log
L(µ = 0,M0,

ˆ̂δ = δ∗)

L(µ̂,M0, δ̂)
(3)

Defining M ≡ M0(1 + δ), this can be written as

q(M0) = max
M

{
2 log

L0(µ̂,M)

L0(µ = 0)
−
(
M/M0 − 1− δ∗

σES

)2
}

(4)

= max
M

{
q0(M)−

(
M/M0 − 1− δ∗

σES

)2
}

where q0(M) is the profile likelihood test statistic of the model without the ES uncertainty,
which is a χ2 random field. We see that the local test statistic q(M0) involves a maximization
over M which is constrained by the Gaussian term to the region near M0. The uppcrossings
of the constrained field above a level u0 are equal to the upcrossings of the unconstrained χ2

field above u(M) = u0 +
(
M/M0−1−δ∗

σES

)2
, as illustrated in Fig.1.

We recall that the expected number of upcrossings of q0(M) above a fixed level u is (Rice
formula):

E[Nu] = N1e
−u/2. (5)

We are now interested in the upcrossings of q0(M) above u(M). A generalization of Eq.(5)
for the upcrossings above an arbitrary curve exists for a stationary gaussian process (H.R.
Leadbetter, 1965). The expected number of upcrossings is given by:

E[Nu] = σ2

∫
φ(u(M))

[
φ

(
u′(M)

σ2

)
+

u′(M)

σ2

{
Φ

(
u′(M)

σ2

)
− 1

2

}]
dM (6)
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Figure 1: Example of q0(M) and the gaussian constraint. We are interested in upcrossings
of q0(M) above the dotted line.

where φ and Φ are the standard normal density and cumulative probability functions, u′(M)
is the derivative of u(M), and σ2 is related to N1 via

σ2 =
2πN1

|∆| (7)

|∆| being the length of the mass range. (σ2 can be thought of as representing the mass
resolution).

Note that Eq.(6) gives the upcrossings of a Gaussian field while q0(M) is a χ2 field (which
is a Gaussian field squared), so one has to substitute

√
u for u in (6) to get the equivalent

crossings of q0(M). It is then easily verified that Eq.(6) reduces to Eq.(5) for a constant level.

The stationarity assumed in Eq.(6) means that σ2 is constant in the range, which might not
hold for a general case. However since only the small region around M0 contributes to the
number of upcrossings then it suffices to require stationarity in this region which in general
will be true, as long as σES is not very large. σ2 might however change as a function of M0 and
therefore (7) will not hold for the entire range. The integral in Eq.(6) is rather complicated
but can be easily evaluated numerically for any given σ2.

Numerical simulation

We use a simple model of a gaussian signal on top of a flat background, with an unbinned
likelihood. The mass range is set to [0,200] and the signal width to 5 (the total number of
background events in the range is 2000). An example of q0(M) is shown in Fig.(1). The signal
width is kept fixed so Eq (7) is used to calculate σ2, where N1 is the mean number of zero-
level upcrossings in the entire range, when the ES uncertainty is not included in the model;
it is found to be equal to 4.17 from the simulations. Fig.(2)-(4) shows the mean number
of upcrossings in 20000 background simulations for several values of σM . The generalized
Rice formula (calculated numerically) is shown as the solid black line and is consistent with
the simulations. The upper and lower bounds calculated in the appendix are also shown as
dotted colored lines, and the 1

2χ
2 probability as the dotted black line, which is the limit of

no ES uncertainty.

2

q0

(H.R. Leadbetter, 1965

note: used in Higgs discovery papers


