

Optimization of timing performance of large-area FBK SiPMs in the scintillation light readout.

A. Gola, A. Ferri, C. Piemonte, A. Picciotto, T. Pro, N. Serra, A. Tarolli, N. Zorzi

http://srs.fbk.eu

Overview of the SiPM technology at FBK

RGB-SiPM HD

Redesigned cell border, for obtaining small cells with high Fill Factor (FF).

The 15 um cell RGB-HD has the same FF of the 50 um cell RGB technology.

SiPM:

size: **4x4mm²** cell size: **30x30um²** # cells: ~17000

SiPM: size: **2.2x2.2mm²**

cell size: **15x15um²** # cells: 21316

Fill factor = 74% Fill factor = 48%

2.2x2.2mm² 15um

Response to fast light pulse from LED

Photo-detection efficiency

very short decay!!

The NUV SiPM is based on a p-on-n junction, for increased PDE at short wavelengths.

PDE vs. wavelength for a NUV-SiPM and RGB-SiPM with 50x50um² cell, 42% fill factor.

NUV-SiPM: 1x1mm² 50x50um² .*Total* and *primary* dark count rate at 0.5 phe.

Effects of the SiPM noise: Dark Count Rate

Effect of dark noise in LED

Leading Edge Discriminator (LED) is commonly used for time pick-off with PMTs.

In large area SiPMs the dark rate can be quite high and consequently also the effect described above.

SiPM Signal filtering: DLED

We exploit the difference between rise time and decay time to obtain a signal:

- **"free" from baseline fluctuations**
- **identical initial part of the gamma signal**

Then, we use the LED on the differential signal s² (t).

A. Gola **A. Gola A. Gola Example 2013** 9 **Important**: electronic noise is $\sim \sqrt{2}$ higher in differential signal so its effect must be negligible for DLED to be effective

Detectors tested

Detector "cube"

LYSO crystal 3x3x5mm³

height \sim side

to test ultimate SiPM performance

Detector "PET"

 $\overline{}$

LYSO crystal 3x3x15mm³

height \sim 5 x side

real PET configuration (timing affected by light propagation in crystal)

SiPMs used

- **3x3mm²**
- **4x4mm²**

67um cell-size

produced by FBK, Trento

DLED vs. LED performance

Detector cube, 3x3mm² SiPM

DLED $\Delta T = 500$ **ps good up to 1ns**

Low over-voltage:

low gain, low dark rate \rightarrow electronic noise dominates \rightarrow DLED slightly worse than LED

Medium over-voltage:

gain increases dark noise ampl. > elect. noise →LED is flat (increase of PDE is compensated by increase of noise) **→ DLED improves following PDE**

High over-voltage:

high dark noise/rate

- \rightarrow LED starts deteriorating
- \rightarrow DLED still improves for high PDE and good noise compensation

LED strongly improves with temperature because of noise (DCR) reduction.

DLED improves less with temperature and only at high over-voltages.

LED@-20C is almost equivalent to DLED@20C

Hardware Implementation

The DLED is difficult to integrate in an ASIC \rightarrow Pole-Zero Compensation.

The passive recharge of the cells of the SiPM corresponds to a single real pole in the pulse response of the detector in the frequency domain.

 \rightarrow Pole cancellation through a zero at the same frequency in the front end.

CRT with PZ

The results are comparable or slightly better with the PZ method than with $DLED \rightarrow$ less noise without numerical differentiation.

Effects of the SiPM noise: Optical Cross-talk Amplification

CRT limit at high over-voltage

With Pole-Zero noise compensation and smaller detectors we observe almost no dependence of the measured CRT on the DCR of the detector \rightarrow timing resolution should be limited by PDE of the device only.

CRT limit at high over-voltage

There is some other effect that prevents to operate the device at higher over-voltage and PDE.

A. Gola **A. Gola Trento Workshop 2013 19**

The scintillator reflects the photons emitted by the hot carriers during the avalanche.

Increase in the collection efficiency of the optical cross-talk photons.

A. Gola 20

Reverse SiPM Current

The phenomenon can be easily observed from the reverse current of the device, measured with and without the scintillator.

The current increase is larger for the shorter scintillator.

A. Gola **Construction Construction Const**

DCR amplification

It is possible to define a DCR amplification coefficient due to the scintillator enhanced cross-talk.

A. Gola 22

Correlation with Timing

The γ coefficient shows an almost perfect correlation with the CRT.

Basically, the SiPM stops working.

A. Gola 23

Possible Solutions

For reaching higher over-voltage and PDE, it is necessary to reduce the amount of cross-talk:

- Color filters in the scintillator
	- Suppression of external cross-talk
- **Optical Trenches and Double Junction**
	- Suppression of internal cross-talk (total CT is determined by both internal and external components)
- Smaller cells with smaller gain but same fill-factor
	- Updated fabrication technology and cell-edge layout

Conclusion

We have demonstrated that the effect of dark noise on timing measurements with SiPM coupled to LYSO crystal can be largely compensated.

The baseline compensation can be implemented with a simple, ASIC compatible, analog circuit.

Once the effects of the DCR are removed, we can observe a different phenomenon, limiting the timing resolution of the SiPM, related to the optical cross-talk, increased by the scintillator.

Possible solutions are under investigation, however the HD technology seems a very promising option.

Acknowledgments

HyperImage project

SUBLIMA project

FBK-INFN MEMS2 agreement

Back-up slides

In the next slides:

- • **CRT vs Temperature**
- • **Threshold level**
- • **crystal height**
- • **SiPM size**

Leading Edge Discriminator

LED is widely used in PMT-based systems

What is the effect of noise on timing?

First approach: SiPM signal shape

In this case we increase both the quenching resistor and the quenching capacitor in order to enhance the fast component The quenching resistor and the
quenching capacitor in order
to enhance the fast component
and decrease the slow one.

Steeper rising edge of the gamma pulse and lower baseline fluctuation

