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The Insertable B-Layer (IBL)

e Motivation:

- Excellent vertex detector performance is crucial

» improve heavy flavor tagging, primary and secondary
vertex reconstruction/ separation

- Additional innermost layer will boost tracking performance

» adds additional redundancy of the detector in case of
radiation damage

® Oiriginally scheduled for LS-2 (2016) then LS-2 was
postponed to 2017-18, so that: advance the IBL project
schedule and instal it in LS-1(2013-14)



IBL Support
Tube (IST)

The Insertable B-Layer (IBL)

® Layout based on performance
studies in G4 and available space

® |BL mounted on new beam pipe

Inner
Positioning _

® [ength: ~ 64cm Tube (IPT)

Beam Pipe
(BP)

® Envelope: Rin=31 mm, Roye=40 mm

N,
-

e FEI4 R/O chip in IBM 130nm CMOS |

® |4 stave (each stave 32 FEI4 chips

- cell size: 50um x 250um

- 80 (col) x 336 (row) = 26880



Stave and module arrangement

Transition to cables

Jnderside of stave:
BL. modules

Services
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IBL is also a tech step to HL-LHC

® Sensor with an higher radiation hardness

- 5x10'> neg/em? NIEL (improved radiation hardness by factor 5)

® New readout chip (FEI4) with finer segmentation, larger active fraction and
increased hit-rate capability

- new readout architecture and smaller cell size 250x50 um?
- large single-chip (21x19 mm?)
® Lighter detector: less radiation length in support and cooling

- improve radiation length per layer from 2.7% to ~1.9% to minimize multiple
scattering in closest layer

- high efficiency CO> cooling at -40 °C coolant temperature
® New off-detector readout system
- matched to FEI4 pixel chip

- increase readout speed by a factor 2



The FEI4 readout chip

® Motivation

- FEI3 inefficiency rises steeply with the

hit rate.

- bottleneck: congestion in double

column readout ~> way-out:

» more local in-pixel storage (130nm)

» data storage made locally at the
PXL level unit until triggered

pixels
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The FEI4 readout chip

FEI4 in IBM 130nm CMOS
- array size: 80 (col) x 336 (row)

- average hit rate at 1% inefficiency = 400 MHz/cm?; max trigger rate: 200kHz

-  Fully qualified up to 250 Mrad (few samples irradiated to 750 Mrad and working!):

after receiving 3x lifetime expected dose, some dead/noisy pixel were observed, most of

which were recovered by retuning the FE

-  extensive use of dual interlocked storage cells (DICE) for critical configuration information.

Tests performed at CERN PS w/ 24 GeV protons.The SEU cross-section of hardened cells

are ~10"> cm-2 per DICE bit
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Pixel size [um?] 50x400 50x250
Pixel array 18x160 80x336
Chip size [mm?] 7.6x10.8 20x19
Active fraction 74% 89%
Analog current [pA/pix] 26 10
Digital current [uA/pix] 17 10
Analog Voltage [V] 1.6 1.4
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FEI4 pre-production

® [EI4-A wafers received in late 2010 and

Bl Bl f——f1_ |E1
used as first chip-test, IBL module o € |0 [00]0 B | o
prototyping and sensor/ module o WE[0[0[0[0][0]0ENE
qualification throughout all 2011/2012 «£10/0([0/0(0({0,0/0E
, , , € (0,00/0]0({0,0|0 eE
p the first fully integrated chip was a big success_ge_o_ 01000000 E
» demonstrated good analog behavior with EE 0[0[{0f0[0[0|0|0FE
several different sensor technologies (silicon EE{O 0/0)0/0)0]0 OfE
planar/3d and pCVD diamond) € [00/010)0 OE/E?“
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» demonstrated digital functionality needed for AT AT=F

IBL

® Good chip yield approx %3 (i.e. ~40/wafer)

¢ Demonstrated bump-bonding on very large Bdsedon” the prototype o

& thin chip at IZM studied, minor design changes
lwas implemented for the _
production FE iteration (FEI4-B)

® Built first IBL modules with full IBL specs !




FEI4 production

® [wo fabrication runs: Engineering & Production

- a change was made to one via mask for production run,
to patch an ESD protection deficiency in the digital
voltage regulator

® Scale of the production: a total of |34 FEI4-B wafers
have been purchased & received !!!

- at 60% yield, that amounts to |.6m? of detector grade
active area. This is the same active area as the present

pixel detector, and nearly as many channels as ATLAS
and CMS combined



The IBL sensor technologies

® Several promising new sensor technologies have been
developed so far:

- Planar n-in-n and n-in-p

- 3D full & active-edge and double-side & slim-edge
- pCVD diamond

® Because of the tigh IBL construction schedule, the slime-
edge Planar n-in-n and the 3D double-side silicon
technologies have been retained for prototyping with the
FEI4 in view of the IBL construction

- pCVD is employed for ATLAS DBM (no covered in this talk)
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The IBL Planar n-in-n
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® 200 um thick oxigenated n*-in-n planar sensor

® inactive edge minimized by shifting guard-rings (|3) underneath
active pixel region

® manufactured at CiS as the present Pixel sensor



The IBL 3D n-in-p

FBK e CNM

™

| oxide B metal B passivation oxide [ metal B passivation
- p Si p* Si B nSi pSi [ p'poly-Si @ n’ poly-Si p* Si
230 um thick 3D p-type sensors

column through ~full bulk with two electrodes per pixel (so called: 2E-type)

depletion horizontally (short depletion width leads to low bias voltages)

manufactured at FBK and CNM



The IBL sensors specs

Active size W x L [mm?] 16.8 x 40.9 16.8 x 20.0
Total size W x L [mm?] 18.59 x 41.32 |18.75x20.45|
Thickness [mm] 0.20 0.23

Typical deplation voltage [V] <35 <15

Typical initial operation voltage [V] | 60 (Vdep + 30V) 25

At of at end of lifetime [V] 1000 180

® Sensors specification for IBL

- qualify to 5x10'> neq cm-?
- sensor max power dissipation: 200 mW/cm? at -15 °C

- single-hit efficiency > 97%



Module production for IBL

® |BL will build ~2x number of installed modules

® ATLAS Pixel extended Institute Board endorsed the
recommendation of the review pannel (July 201 |):

- produce enough Planar sensors to build 100% of the IBL
- produce 3D sensor to build of 25% of the IBL

—> Sensor productions completed for both sensor technologies

Mixed scenaric : Planar (28%) and 3D (25%)
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Fully assembled module

® Finished successfully pre-production equipped with FEI4-A&B

- test final module design
- prepare and test assembly and QA procedure
- lab-tests with calibration, Am241 and Sr90

- good performance so far

® Started production equipped with FEI4-B
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Local support - Stave

® Carbon-fiber support structure with minimal material budget X/X, ~0.6% for support and
cooling

® Optimized stiffness and thermal conductivity
® Match thermal expansion
® Material qualification for use in high-radiation environments (300 Mrad)

® Detector cooling with a CO; system working -40°C to minimize the leakage current of the
sensors
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IBL Stave prototypes

® | oaded 3x prototypes and |x production staves so
far:

Stave -|: equipped with prototype flex, digital modules
(dummy sensors + FEI4-A), temporary services.

Stave 0-A:as close as possible to production stave

scenario, equipped with real modules with FEI4-A on
board.

Stave 0-B: very close to the production stave, equipped
with real modules with FEI4-B on board.

Stave |:production stave under loading ...



Production flow overview

Planar at CiS \ . ‘3 o
3D at FBK & CNM Bump bonding Module assembly .and QA .1 B
at |ZM at assembly sites L 0
4o =
2 o
Q. O
Y -
Stave flex > |Flex loading & QA » |Stave-flex assembly & QA | _ &) =
Bare stave > | Stave metro & fitting g J2GA !
Stave & module | |Module loading | |Wing gluing | | Th. cycle &| |Stave electrical & | |Envelop
reception-tests | |onto stave & Wire bonding| |Metrology | |functional tests QA

at Loading site

0

Stave burn-in and QA

Pipe extension & Brazing

at CERN

Stave to beam pipe integration




Loading procedure

|. Module reception-tests & module selection

2. Stave inspection, metrology, thermal cycling, metrology
3. Loading - one side after the other

4. Wing attachment

5.HV insulation insertion + spacer for wire bonding protection
6. Wire bonding and pull test

/. Stave electrical/functional tests one side after the other
8. Metrology survey

9. Thermal cycling

|0.Metrology survey

| |. Final stave electrical/functional tests

|2. Stave envelope check
| 3. Shipment to CERN for QA & Integration



Loading procedure

Before cut After cut

Glued Wings

Wires bonding

-



The Stave prototype

Stave on a handling frame with
cable and PCB saver



Stave System-test and QA

® Two systems (based on CO; cooling plant):
- one at Loading site for Stave QC
- one at CERN ALTAS Cleanroom (SR1) for long-term QA and source-tests
»  stave-setup equipped for running two stave-tests in parallel

» includes 2x Am241| and |Ix Sr90 sources on linear stages with automated scanning

Linear Vit Mot\on
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Scmtﬂlator




Stave prototype: test-results

® Several systematic
(system-related) tests:

Leakage current [uA)

- tuning at different
threshold, gain, supply
voltages

- test of all modules IV
- test of noise

- LVDS signal transmission
and power studies

- source-tests of modules
- cross-talk

- test for merged and
disconnected bumps
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Stave prototype: test-results

® (General stave works in calibration and source scans
® All modules functional

® Operational threshold of 3000e with typical noise of 140e-160e

= found minimal threshold in cold stave tests of 1500e

| Throshold distribution Modulo 92020450 ot A
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Stave Testing & Integration

® |[ntegrate all 14 staves onto 7T o repeQZ‘ 14 Limes

beam-pipe

Stave burn-in and QA

MPC work set-up

- including services I}

v

Brazing & QA (pressure tests)

Beam-pipe +IPT+dummy IST

-~
~

- dedicated brazing stand

~ -
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Integration of a new stave

v

- Multi-purpose container (MPC)

Service installation

for precision stave loading

v

Next stave

Connectivity test of the stave
and its neighbor

® Commissioning each stave

v

Warm/cooled tests

before integration (stave testing 5

v

stand), and after with each

Service connection to Off-
detector components

v

Sealing for cold tests

I I On-d r&
integration _<
commissioning

v

Commissioning tests (cold)

® Full 4th layer On and Off L

v

detector commissioning after all
staves integrated

Removal of temporary tubing
+ cable wrapping
+ connectivity tests

-

) s lints o s 1)
(Intermediate flex, type 1)

(At PP1)

(Integrated stave + neighbor)

Preparation
for installation
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IBL schedule overview

Not all IBL topics 2013 2014
Q1 Q2 Q3 Q4 Q1 Q2

Module production

Stave production

Flex production

Stave Ioading & QC

Stave QA Stave 0
Type 1 production and tests Prototypes
Beam pipe preparation

IPT assembly

MPC assembly
Integration tool

Brazing stand installation in SR1

Stave cooling extension - Brazing Tests and validation —

Stave integration

Type 0/1 integration

Stave tests
Prep. for commissioning work

Full commissioning test

Option 1 Option2

O

IBL inside Pixel detector

Installation of the Pixel detector

D. Ferrere, Pixel Week (12/2/2013)
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Summary

® The FEI4 readout chip is qualified and delivered
® Planar n-in-n and 3D are qualified and manufactured
® Module hybridization is in production

® Mechanics and service are qualified and in
production

® Evaluation of pre-production staves done

® Assembly stave production started

27
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