

Fabrication of new p-type pixel strip detectors with enhanced multiplication effect in the n-type electrodes

Marta Baselga Bacardit RD50 Project

CNM-Barcelona, Giulio Pellegrini , <Giulio.Pellegrini@cnm-imb.csic.es> Liverpool University, Gianluigi Casse, <gcasse@hep.ph.liv.ac.uk> UC Santa Cruz, Hartmut Sadrozinki, <hartmut@ucsc.edu> IFAE, Barcelona, Sebastian Grinstein, <sgrinstein@ifae.es> KIT, Karlsruhe, Prof. Wim de Bôer, <wim.de.boer@kit.edu> IFCA Santander, Ivan Vila, <ivan.vila@csic.es> University of Glasgow, Richard Bates, <richard.bates@glasgow.ac.uk> INFN Florence, Mara Bruzzi, <mara.bruzzi@unifi.it> CERN, M. Moll, <Michael.Moll@cern.ch>

Mask set Technological simulation Electrical simulation for FZ Conclusions

Motivation

- 1. Thin p-type epitaxial substrates
- 2. Low gain avalanche detectors

Old results: Simulation of the electric field

Standard strip

Strip with P-type diffusion

Strip with P-type diffusion: 2D and 1D doping profiles

Mask set Technological simulation Electrical simulation for FZ Conclusions

Motivation

- 1. Thin p-type epitaxial substrates
- 2. Low gain avalanche detectors

Simulation of the electric field: Curves at 500V

No irradiated

- Standard strip: Electric field strength at the junction increases after irradiation
- Strip with P-type diffusion: electric field strength at the junction is held after irradiation

Irradiated $\phi_{\it eq} = 1 \cdot 10^{16} {\it n/eqcm^2}$

Irradiation trap model: cceptor: E= E, + 0.46 eV; n=0.9; σ, = 5

acceptor,	L= L, + 0.40 CV, I]=0.5,	0, - 3 × 10 ,	0h = 3 x 10
Acceptor;	E= E _c + 0.42 eV; η=1.613;	$\sigma_e = 2 \times 10^{-15};$	$\sigma_{\rm h} = 2 \times 10^{-14}$
Acceptor;	$E = E_c + 0.10 eV;$	η=100;	$\sigma_{e} = 2 \times 10^{-15};$
σ _h = 2.5 x	10-15		
Donor;	E= E _v - 0.36 eV; η=0.9;	σ _e = 2.5 x 10 ⁻¹⁴	; $\sigma_{\rm h}$ = 2.5 x 10 ⁻¹⁵

 Impact Ionization Model: Universty of Bolonia

¹P. Fernandez et al, "Simulation of new p-type strip detectors with trench to enhance the charge multiplication effect in the n-type electrodes"

Mask set Technological simulation Electrical simulation for FZ Conclusions

Motivation

- 1. Thin p-type epitaxial substrates
- 2. Low gain avalanche detectors

Pads detectors with multiplication

Mask set Technological simulation Electrical simulation for FZ Conclusions Motivation

- 1. Thin p-type epitaxial substrates
- 2. Low gain avalanche detectors

Mask layout: Strip detectors with multiplication

Round diode do not have p+ implant

Ongoing measurements of the detectors in Liverpool and Freiburg

Mask set Technological simulation Electrical simulation for FZ Conclusions

Motivation

- 1. Thin p-type epitaxial substrates
- 2. Low gain avalanche detectors

NEW PROJECT

Mask set Technological simulation Electrical simulation for FZ Conclusions Motivatio

- 1. Thin p-type epitaxial substrates
- 2. Low gain avalanche detectors

1. Thin p-type epitaxial substrates

Detector proposed by Hartmut Sadrozinski and Abe Seiden (UCSC), **Ultra-Fast Silicon Detectors (UFSD)**.

Provide in the same detector and readout chain:

- Ultra-fast timing resolution [10's of ps]
- Precision location information [10's of μ m]

We propose to achieve high electric field using thin p-type epitaxyal substrates^a grown on thick support wafers, p+ type doped, that acts as the backside ohmic contact. Different thicknesses will be used to study the multiplication effect induced by the high electric field at the collecting electrodes, depending on availability we propose to use: 10, 50, 75 μ m. Need very fast pixel readout.

^aH. Sadrozinski, "*Exploring charge multiplication for fast timing with silicon sensors*" 20th RD50 Workshop, Bari 2012

Motivation

- 1. Thin p-type epitaxial substrates
- 2. Low gain avalanche detectors

2. Low gain avalanche detectors (LGAD)

Creating a n++/p+/p- junction along the centre of the electrodes. Under reverse bias conditions, a high electric field region is created at this localised region, which can lead to a multiplication mechanism².

²P. Fernandez et al, "Simulation of new p-type strip detectors with trench to enhance the charge multiplication effect in the n-type electrodes", Nuclear Instruments and Methods in Physics Research A658 (2011) 98–102.

Wafers Substrates Strip detectors Mask

Mask set

Wafers Substrates Strip detectors Mask

Wafers

Total of 24 wafers with three different annealings (shallow, standard and deep)

	Epitaxial $9.8 \mu m$	Epitaxial 50.4 μm	FZ
With	2 Shallow	2 Shallow	2 Shallow
p-implant	1 Standard	1 Standard	1 Standard
	1 Deep	1 Deep	1 Deep
Without	2 Shallow	2 Shallow	2 Shallow
p-implant	1 Standard	1 Standard	1 Standard
	1 Deep	1 Deep	1 Deep
Total:	8	8	8

Wafers **Substrates** Strip detectors Mask

Substrates

Epitaxial

Substrate: 100mm, 525 μm Boron type with resistivity 0.006 $\Omega\cdot cm$ < 100 > Epilayer:

Thick	Resistivity
9.8µ <i>m</i>	$110.5\Omega \cdot cm$
50.4 μ m	96.7Ω · <i>cm</i>

FΖ

p-type 285 $\mu m < 100 >$ resistivity $(12 \pm 7) k\Omega \cdot cm$

Wafers Substrates Strip detectors Mask

Strip detectors

Pitch $p = 80 \mu m$

	Strip	Metal	P-implant	w/p				
	$[\mu m]$	$[\mu m]$	$[\mu m]$					
AC1	24	20	6	0.3				
AC2	24	24	6	0.3				
AC3	24	28	6	0.3				
AC4	48	44	30	0.6				
AC5	48	48	30	0.6				
AC6	48	52	30	0.6				
AC7	62	58	44	0.775				
AC8	62	62	44	0.775				
AC9	62	66	44	0.775				
AC and DC	32	40	14	0.4				

Wafers Substrates Strip detectors Mask

Strips AC

Wafers Substrates Strip detectors Mask

Strips DC

Wafers Substrates Strip detectors Mask

FE-I4

Ê		:	::	:	:	: :	:::	:	:	•	:	:		::	: :	:		:	:	:	:	: :		:	:	
•	(0• • •	0	0 ••••	0	() • • •					0		0••••0	0	· · ·	0	0	0		0	(g	0	0		
••][•••••								• • •								(· · · · · · · · · · · · · · · · · · ·				
••						0						0	0					0) [0* * *) (ba 🔹 🔹 🔹			

Wafers Substrates Strip detectors Mask

FE-I4 with one guard ring

Wafers Substrates Strip detectors Mask

FE-I3

Wafers Substrates Strip detectors Mask

FE-I3 with one guard ring

Wafers Substrates Strip detectors Mask

Pixels with polysilicon bias resistor

Wafers Substrates Strip detectors Mask

Diodes

Diodes without and with p-implant $1000 \mu m$ diameter

2D simulations Doping profiles

Technological simulation for epitaxial wafers

2D simulations Doping profiles

Centre Nacional de Microelectrònica

Technological simulation for the FZ wafer

2D simulations Doping profiles

Doping profiles for epitaxial wafers

2D simulations Doping profiles

Doping profiles for FZ wafer

AC1

Electric field for FZ wafers for AC1 detector at 200V

With multiplication Without multiplication

Electric field for FZ wafers for AC2 detector at 200V

With multiplication Without multiplication

AC3

Electric field for FZ wafers for AC3 detector at 200V

With multiplication Without multiplication

- We have measured pads with multiplication from the previous fabrication
- Measurements of strip detectors are ongoing
- More electrical simulations need to be performed
- The fabrication of the new devices will begin soon in the clean room facility at CNM Barcelona (end of February)
- More information in Hartmut Sadrozinki's talk "Ultra Fast Silicon Detectors"

Thanks for your attention