

#### GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

# Recent Achievements of the ATLAS Upgrade Planar Pixel Sensors R&D Project

### **Jens Weingarten**

(2<sup>nd</sup> Institute Of Physics, Georg-August-Universität Göttingen)

for the ATLAS PPS Collaboration



- Planar IBL Production
- Radiation Hardness
- Thin sensors
- Slim/Active edge
- HL-LHC Intermediate Layers
- Simulation
- Testbeams

Presenting the work of many people. Sorry, if I mislabelled/-represented your plots/results/work.



### **Planar IBL Production**

IBL sensor production finished:

- 9 batches from CiS, 150 accepted wafers
  - → 544 functional double-chip sensors (target was 448 DC) plus 409 single-chip sensors (R&D)
  - ightarrow 160 tiles built into modules
  - ightarrow 220 available with UBM

|                    | batch 1 | batch 2 | batch 3 | batch 4 | batch 5 | batch 6 | batches<br>7-9 | sum   |
|--------------------|---------|---------|---------|---------|---------|---------|----------------|-------|
| received<br>wafers | 20      | 22      | 18      | 20      | 17      | 22      | 31             | 150   |
|                    |         |         |         |         |         |         |                |       |
| received DCS       | 80      | 88      | 72      | 80      | 68      | 88      | 124            | 600   |
| good DCS           | 69      | 76      | 64      | 70      | 62      | 83      | 121            | 544   |
| yield              | 86.3%   | 86.4%   | 88.9%   | 87.5%   | 91.2%   | 94.3%   | 97.6%          | 90.6% |



18/02/2013





Plots stolen from T. Wittig

-40

-30

-20

-10 ( voltage [V]

#### 8th "Trento" Workshop on Advanced Silicon Radiation Detectors

-80

-70

-60

-50



#### Radiation hardness of planar n- and p-bulk sensors

- → Irradiations reaching the 1-2E16 n<sub>eq</sub>/cm<sup>2</sup> region: (here: compare 'thick' sensors, O(300um))
  - n-type sensors shown to work at 2E16 n<sub>eq</sub>/cm<sup>2</sup> (old ATLAS production, V<sub>bias</sub> >= 1kV, 4ke < Q<sub>mip</sub> < 8ke)</li>
  - p-type sensors shown to work at 1E16 n<sub>eq</sub>/cm<sup>2</sup> (MPP CiS production, V<sub>bias</sub> <= 1kV, Q<sub>mip</sub> <= 6ke)</li>
  - p-type strip sensors studied up to 2E16 n<sub>eq</sub>/cm<sup>2</sup> (Liverpool Micron production, V<sub>bias</sub> <= 1kV, Q<sub>mip</sub> < 5ke)</li>





18/02/2013



### **Radiation Hardness**

Try to separate FE- and sensor effects:

- 'low temperature' In bumping (FE-I3)
- new fan-out structure to connect pixels to external readout (e.g. ALIBAVA or commercial CSA)









Plots from Dortmund (A. Rummler and T. Plümer)

#### 18/02/2013



#### One of the earliest testbeam results:

Main loss of hit efficiency at the bias dot and the trail leading to it ('bias rail').

(True for both n- and p-bulk sensors)







### **Radiation Hardness**



18/02/2013



p-bulk

# **Thin Sensors**

#### Thin sensors

- perform as expected (similar to thick ones) before irradiation ٠
- offer substantial advantages above fluences of 5E15 n<sub>eg</sub>/cm<sup>2</sup>

8-10ke

d=150 mum, Φ=4

- studying thickness between 150um and 75um •
- samples irradiated up to 2E16 n<sub>eq</sub>/cm<sup>2</sup> •
- → much more detail in the next few talks





Irack y [µm] 40 30

20

#### 18/02/2013

Collected charge [ke]

10



# **Slim/Active Edge**

#### Scribe-Cleave-Passivate technology

- reduce edge width significantly
- treatment is post-processing and low-temperature
- different scribe-techniques, DRIE looks most promising
- trying to industrialize cleaving
- surface termination non-trivial





x Diode 1



# **Slim/Active Edge**

### Active Edge sensors

- MPP/VTT:
  - towards 4-side buttable sensors using TSV
  - MPW run at VTT: different edge designs, 100um and 200um thick, p-spray
  - flip-chip done at VTT
  - 100um samples:  $V_{dep} \sim$  7-10V,  $V_{break} \sim$  120V,  $Q_{mip} \sim 6\pm 1$ ke





18

Charge [ke]

20

16

12

10

Plots stolen from A. Macchiolo

14



# **Slim/Active Edge**

CCE [%] 70 • • LPNHE/FBK: 60 DRIE trench etching, sidewall doped by diffusion ٠ Ю  $oldsymbol{\ominus}$ different GR and edge designs 50 ٠ unirrad. a lot of simulation done (Silvaco 2D TCAD) The formerly "dead" region (due to GRs) ٠ 40 now collects a significant amount of signal, first sensors in hand ٠ even after irradiation 30 → first measurements look promising  $\phi = 1 \times 10^{15} \text{ n}_{eg}/\text{cm}^2$ 20  $\Phi = 10^{15} \text{ n}_{\text{prxel}}/\text{cm}^2$  ,  $V_{\text{bias}} = 400 \text{ V}$ Pixel 10 Electric Field [V/cm] Edge region 0 200 400 600 800 1000 V<sub>BIAS</sub> [V] 1.E-07 Fully depleted sensor Current (A) Distance to trench fum 1.E-08 - 1GR, 150um 2GR, 200um -3GR, 250um distance edge / pix 5GR, 250um 10GR, 400um 3GR ASYM, 200um support wafe 1.E-09 -50 -100 -150 -200 250 Substrate Voltage (V) Plots stolen from M. Bomben

18/02/2013







# **HL-LHC Intermediate Layers**

- 1. MCz seems promising in this mixed radiation field
  - irradiate, test , compare to DOFZ material
- 2. main topic: cost reduction
  - → 2x2 chip sensors to reduce handling cost
    - most institutes producing 'pseudo'-quad modules using two existing 1x2 chip tiles
    - dedicated sensor productions planned or under way at CiS (n- and p-type), Micron, HPK
    - improving resolution in R $\phi$  by reducing pixel pitch  $\rightarrow$  25 x 500 um<sup>2</sup> (compatible w/ FE-I4 bump pattern)
    - (also working on PCB and R/O system (KEK))









# Simulation

### TCAD simulation activities

- trying to model 3D electric field distribution for two pixels
- model different bias grid designs
- problem: restricted number of mesh points (esp. on electrodes)
  - numerical calculation doesn't converge for n-in-n and n-in-p samples
- improving simulation by accurate modeling of doping concentration
  - ➔ dopant depth profiling by
    - Secondary Ion Mass Spectroscopy (SIMS): total dopant density profile
    - Spreading Resistance Profiling (SRP) or Scanning Spreading Resistance Measurement: carrier density profile











Plots stolen from V. Linhard and N. Dinu

18/02/2013



### Testbeam

#### Testbeams in 2012 and beyond

- ~62 days in 4 periods at DESY and CERN
- sometimes running on two beamlines in parallel
- took nearly 900 GB of data
- hundreds of configurations of different samples tested
- 'Too many testbeams this year.' M. Bomben
  - same people running TB and analyzing results
  - very busy getting analysis done in time



- no beam at CERN in 2013, restart 2014 not clear yet
  - → many requests submitted to DESY (4-6 GeV electrons, very busy)
  - → beam time requested at SLAC (15 GeV electrons...



Very good and fruitful collaboration between ATLAS Pixel Upgrade R&D groups

- common hardware
- common beam requests
- → simplified TB organization

Plots and photo stolen from M. Bomben

#### 18/02/2013



# Thank you for your attention.



18/02/2013



# **HL-LHC Intermediate Layers**

#### Seabas system



