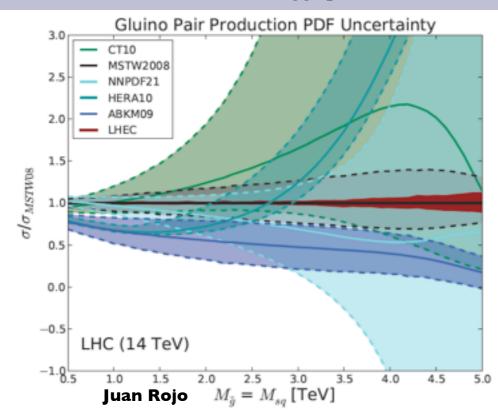

Impact of LHC data on PDF analysis

Juan Rojo CERN, PH Division, TH Unit


Snowmass 2013 QCD Workshop Fermilab, 31/01/2013

Parton Distributions at the LHC

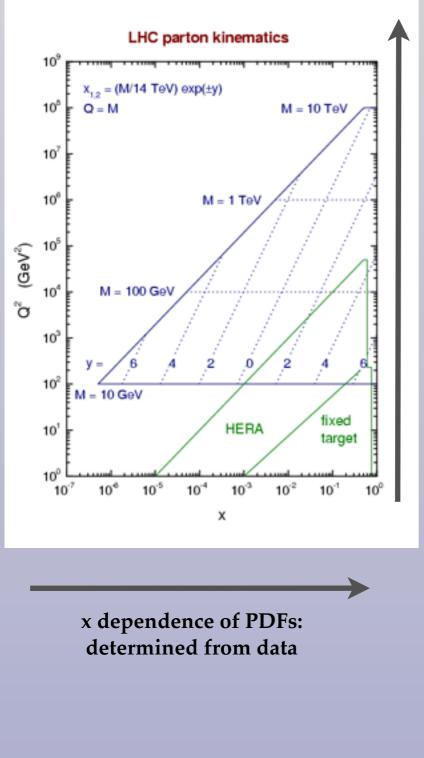
Parton Distributions, and their associated **theoretical and experimental uncertainties** play a crucial for **hadron collider phenomenology**:

PDFs one of main TH uncertainties in Higgs production: limit coupling extraction, ...

New CDF Result (2.2 fb⁻¹) Transverse Mass Fit Uncertainties

	electrons	muons
W statistics	19	16
Lepton energy scale	10	7
Lepton resolution	4	1
Recoil energy scale	5	5
Recoil energy resolution	7	7
Selection bias	0	0
Lepton removal	3	2
Backgrounds	4	3
pT(W) model	3	3
Parton dist. Functions	10	10
QED rad. Corrections	4	4
Total systematic	18	16

PDFs are dominant systematic in the very precise W mass @ Tevatron (even more at LHC), which indirectly constraints Higgs mass and checks for SM consistency


PDF uncertainties affect substantially theory predictions for BSM high mass production (SUSY, Z', KK)

> And many other cases: alphas determination, CKM elements, effective lepton mixing angle, cross section rations between CM energies, neutrino astrophysics

> > Snowmass QCD workshop, FNAL, 31/01/2013

Experimental data in global PDF fits

Q² dependence of PDFs: determined by pQCD

A global dataset covering a wide set of hard-scattering observables is required to constrain all possible PDF combinations in the whole range of Bjorken-x

For example, **inclusive jets** are sensitive to the **large-x gluon**, while **HERA neutral current** data pins down the **small-x quarks**

Solution For PDF constraints

Process	Subprocess	Partons	x range	
$\ell^{\pm} \{p, n\} \to \ell^{\pm} X$	$\gamma^* q \rightarrow q$	q, \bar{q}, g	$x \gtrsim 0.01$	
$\ell^{\pm} n/p \rightarrow \ell^{\pm} X$	$\gamma^* d/u \rightarrow d/u$	d/u	$x\gtrsim 0.01$	
$pp ightarrow \mu^+ \mu^- X$	$u\bar{u}, d\bar{d} ightarrow \gamma^*$	\overline{q}	$0.015 \lesssim x \lesssim 0.35$	
pn/pp $ ightarrow \mu^+\mu^-$ X	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	ā d∕ū	$0.015 \lesssim x \lesssim 0.35$	
$ u(\bar{\nu}) N \rightarrow \mu^{-}(\mu^{+}) X$	$W^*q ightarrow q'$	q, \bar{q}	$0.01 \lesssim x \lesssim 0.5$	
$\nu N \rightarrow \mu^- \mu^+ X$	$W^*s \rightarrow c$	5	$0.01 \lesssim x \lesssim 0.2$	
$\bar{\nu} N \rightarrow \mu^+ \mu^- X$	$W^*\bar{s} \rightarrow \bar{c}$	ŝ	$0.01 \lesssim x \lesssim 0.2$	
$e^{\pm} p \rightarrow e^{\pm} X$	$\gamma^* q \rightarrow q$	g, q, \bar{q}	$0.0001 \lesssim x \lesssim 0.1$	
$e^+ p \rightarrow \bar{\nu} X$	$W^+\left\{d,s ight\} ightarrow\left\{u,c ight\}$	d, s	$_{ imes}\gtrsim0.01$	
$e^{\pm}p \rightarrow e^{\pm}c\bar{c}X$	$\gamma^* c ightarrow c$, $\gamma^* g ightarrow c ar c$	с, g	$0.0001 \lesssim x \lesssim 0.01$	
$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^*g \rightarrow q\bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$	
$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g, q	$0.01 \lesssim x \lesssim 0.5$	
$p\bar{p} \to (W^{\pm} \to \ell^{\pm} \nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	$u, d, \overline{u}, \overline{d}$	$_{ imes}\gtrsim$ 0.05	
$p\bar{p} \rightarrow (Z \rightarrow \ell^+ \ell^-) X$	$uu, dd \rightarrow Z$	d	$_{ imes}\gtrsim 0.05$	
MSTW08, arXiv:0901.0002				

pre-LHC dataset

LAPTH, Annecy, 15/11/2012

3

Juan Rojo

PDF whishlist at the LHC

At the LHC, there is a long list of **PDF-related important measurements** to be pursued. Will be the main topic of this talk. Some of these already available, and used in PDF analysis.

Data ready to be used in PDF analysis:

Inclusive jets and dijets, central and forward: large-x quarks and gluons

Isolated photons: medium-x gluons

Inclusive W and Z production and asymmetries: quark flavor separation, strangeness

Ongoing/future measurements for PDF constraints:

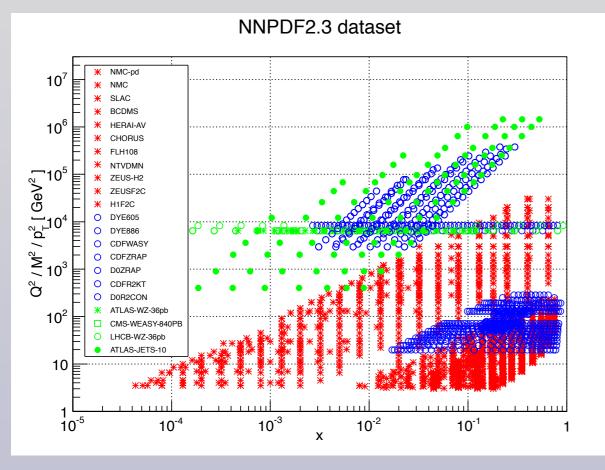
W production with charm quarks: **direct handle on strangeness**

W,Z production with jets: **medium and small-x gluon**

General Off resonance Drell-Yan and W production at small and high mass: **quarks at very small and very large-x**

Top quark differential distributions: large-x gluon

Z+charm: intrinsic charm PDF

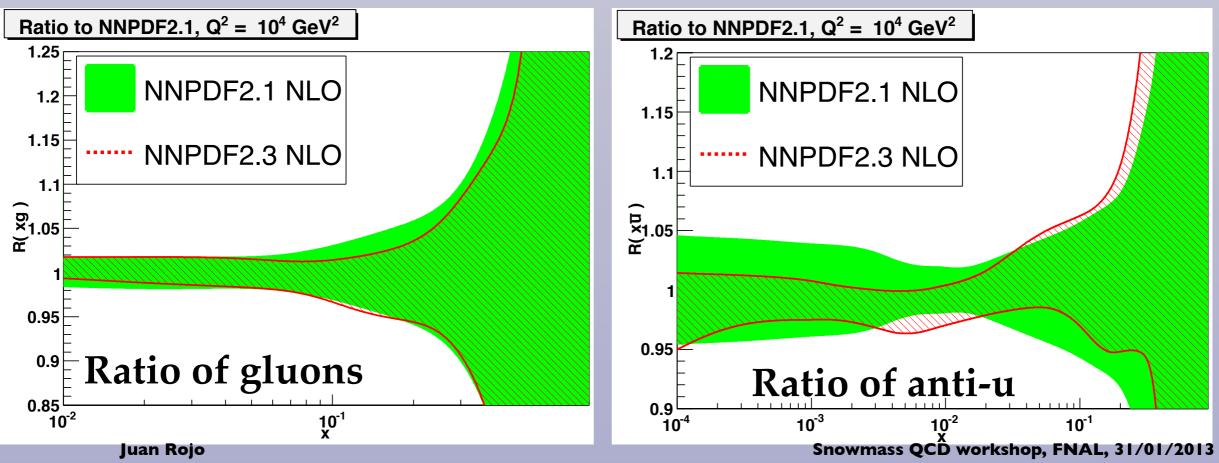

Single top production: gluon and bottom PDFs

Charmonium production: **small-x gluon**

Solution Available data on jets, photons and W,Z based on 2010/2011 run. Much more stringent constraints are expected to be larger with the **full 8 TeV dataset** and with **13/14 TeV** data

4

LHC data and PDF analysis (I)

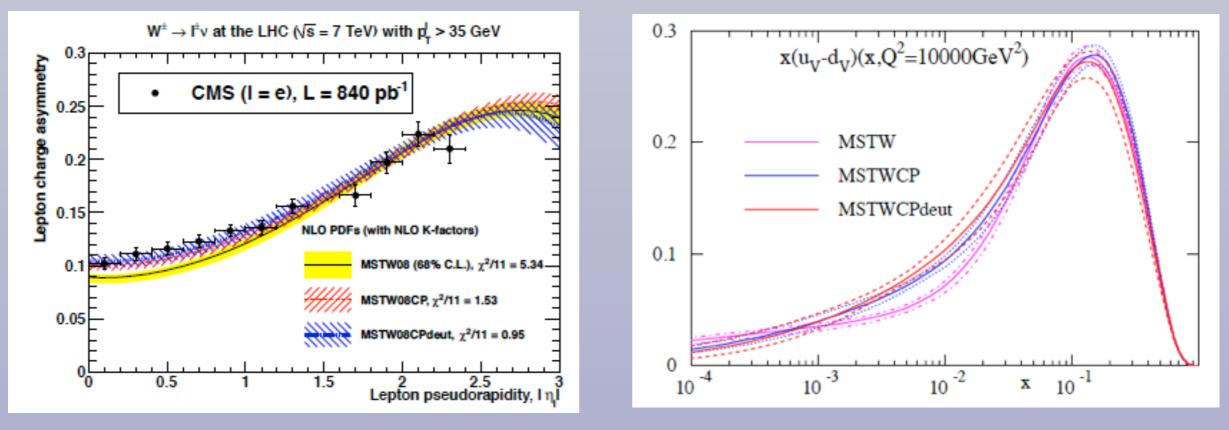


LHC data already part of global PDF analysis, *ie*. the recent **NNPDF2.3** sets.

The **inclusive jet data** help to constrain the large-x gluon

The **W** and **Z** production data from CMS, ATLAS and LHCb constrain medium-x antiquarks

We are already working in adding **more LHC data**, like the **2011 CMS jets** and the ATLAS and CMS Drell-Yan distributions

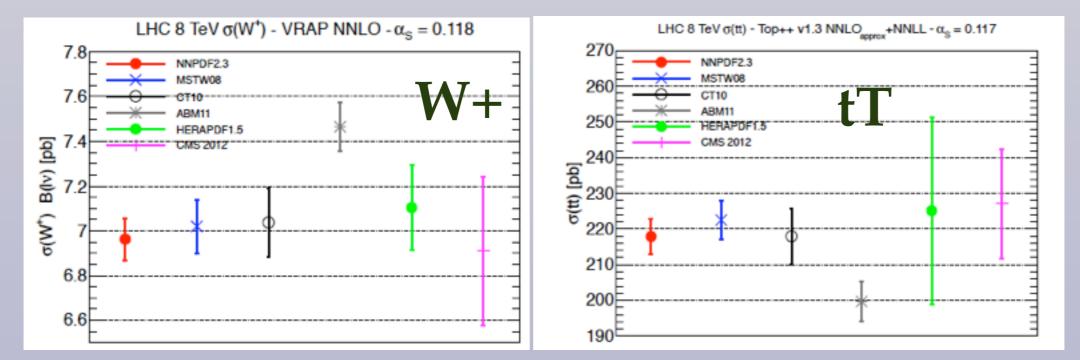

LHC data and PDF analysis (II)

LHC data already studied in the context of the MSTW analysis

MSTW2008 leads to the **poor description of the ATLAS and CMS asymmetry** data (undershooting data at central rapidities)

By including the LHC data with PDF reweighting, a good fit quality is achieved by a larger uv-dv PDF at medium x

Similar effects can be achieved starting from the MSTW08 dataset but with a **more flexible parametrization with Chebyshev polynomials,** as well as with an improved treatment of deuteron corrections


arXiv:1211.1215

LHC data and PDF analysis (III)

A systematic comparison of all modern NNLO PDFs with LHC data on inclusive cross sections and differential distributions performed in arXiv:1211.5142: "Parton Distribution benchmarking with LHC data"

Reasonable agreement between NNPDF2.3, CT10 and MSTW08 found, both for central values and errors, with larger differences with HERAPDF1.5 and ABM

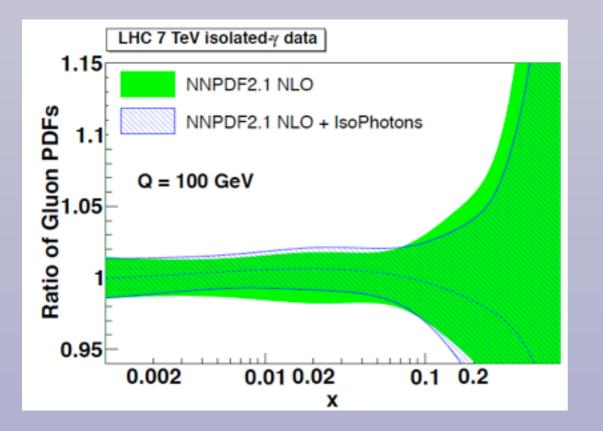
\triangleright Quantitative comparisons with χ^2 estimator, NNPDF2.3 best overall description (as expected since it is the only set that already includes all the data)

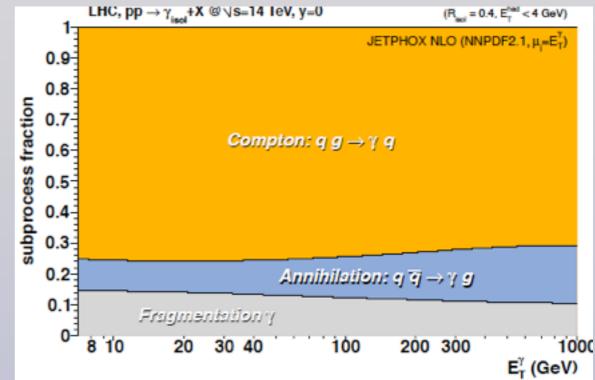
	NLO $\alpha_s = 0.119$				
Dataset	NNPDF2.3	MSTW08	CT10	ABM11	HERAPDF1.5
ATLAS W, Z	1.271	2.003	1.061	1.561	1.757
CMS W el asy	0.822	4.698	1.421	1.929	0.693
LHCb W	0.673	0.919	1.063	2.332	4.124
ATLAS jets	1.004	0.972	1.352	1.345	1.111

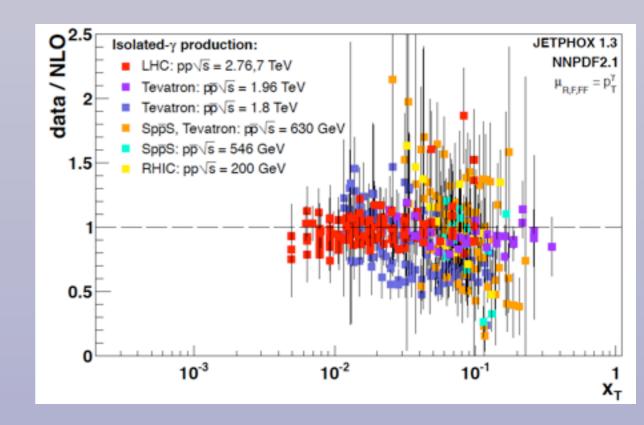
 χ^2

Isolated photons

Photon production in hadronic collisions is directly sensitive to the gluon via QCD Compton scattering


Photon production was used in **early PDF fits** for gluon constraints, then replaced by jets due to poor data/theory agreement of **some fixed-target data**


Recently we revisited the data/theory comparison of all isolated
 collider photon data with the most updated theory, JetPhox
 +NNPDF2.1, and found an excellent overall agreement


Solution Section Section Section And Secti

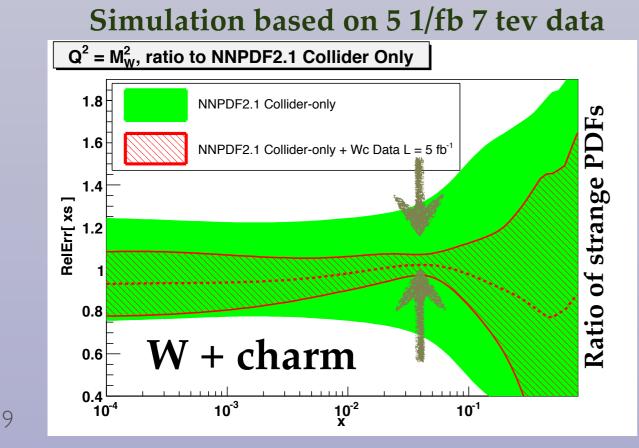
Need a **fast interface** to include photon data in PDF fits

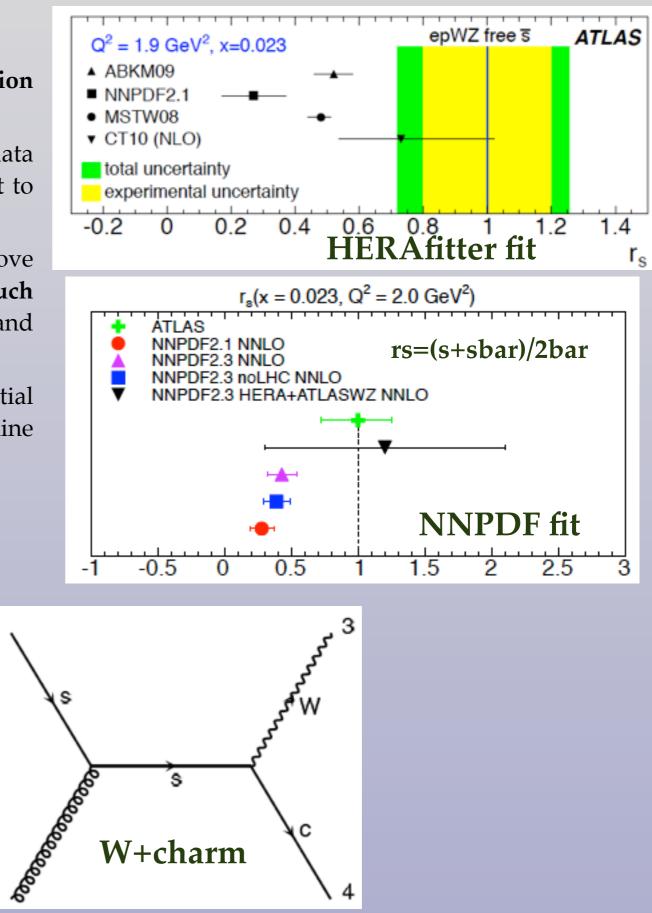
Juan Rojo

D'Enterria and J. R, arXiv:1202.1762

Pinning down strangeness

2


Strangeness is the worst known of all light quark PDFs


In global PDF fits determined by neutrino charm production data (NuTeV+CHORUS)

A HERAfitter analysis of ATLAS inclusive W and Z data points to a larger strangeness than usually assumed (difficult to reconcile with neutrino DIS data)

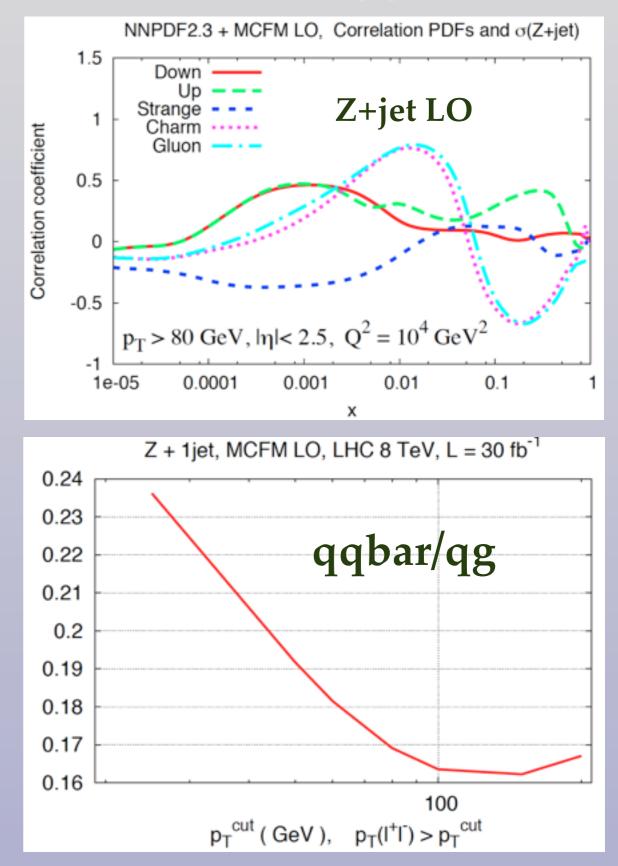
A NNPDF2.3 analysis based on the same data as above confirms the larger central value of strangeness, but with much larger uncertainties (factor 3): no tension between LHC and neutrino data

♀ W+c data from ATLAS and CMS (total xsecs and differential distributions) will be instrumental to conclusively determine strangeness from collider-only data

New avenues to the gluon (I)

♀ In global PDF fits, the gluon is directly constrainedby jet data only (and HERA at small-x)

Jets are NLO with **large scale uncertainties** (though NNLO close, **arxiv:1301.7310**), and experimental errors substantial because of the **JES**

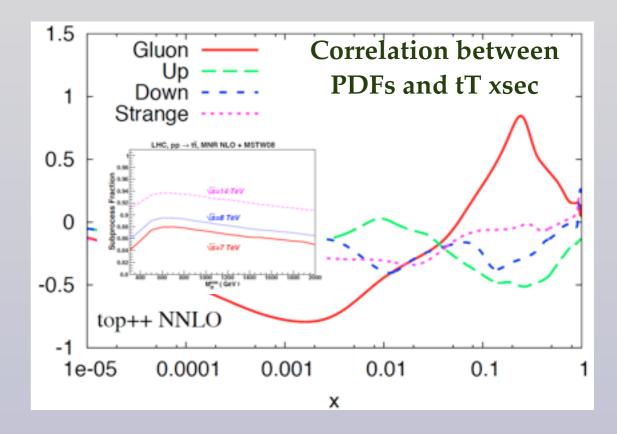

Given the crucial role of the gluon for LHC physics, complementary LHC observables directly sensitive the gluon would be beneficial

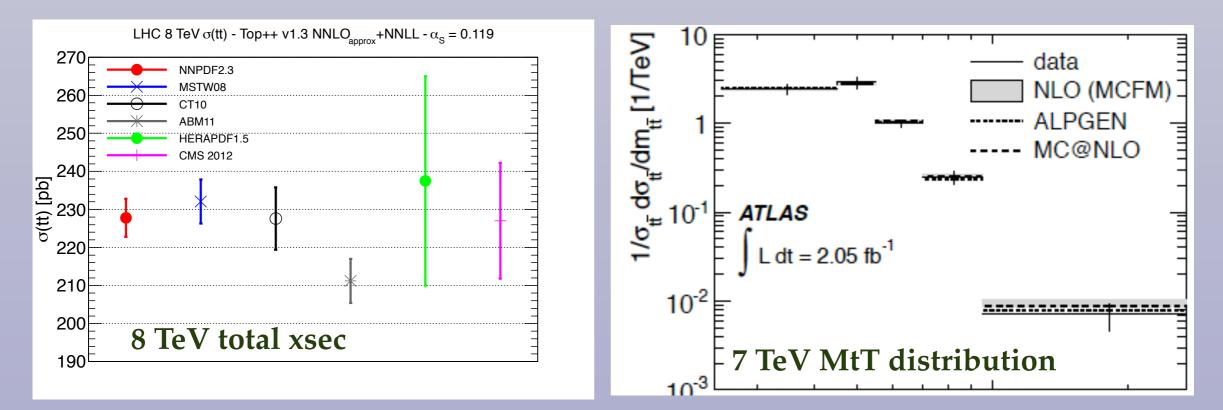
One possibility is Z/W boson production at large pT (in association with jets). Cross section > 80% dominated by gluon-quark scattering (ISR of extra jets gluon dominated)

Free measurement can be only with leptons (double differential in pT and rapidity), thus with **very small systematic errors**

Statistical errors will be negligible

This measurement will be equivalent to measuring the partonic luminosity relevant for gg > H


New avenues to the gluon (II)


Another interesting possibility would be to use top quark data to constrain the gluon PDF: at the **LHC tT is gg dominated**

Full NNLO available for total cross sections, in the near future also for distributions

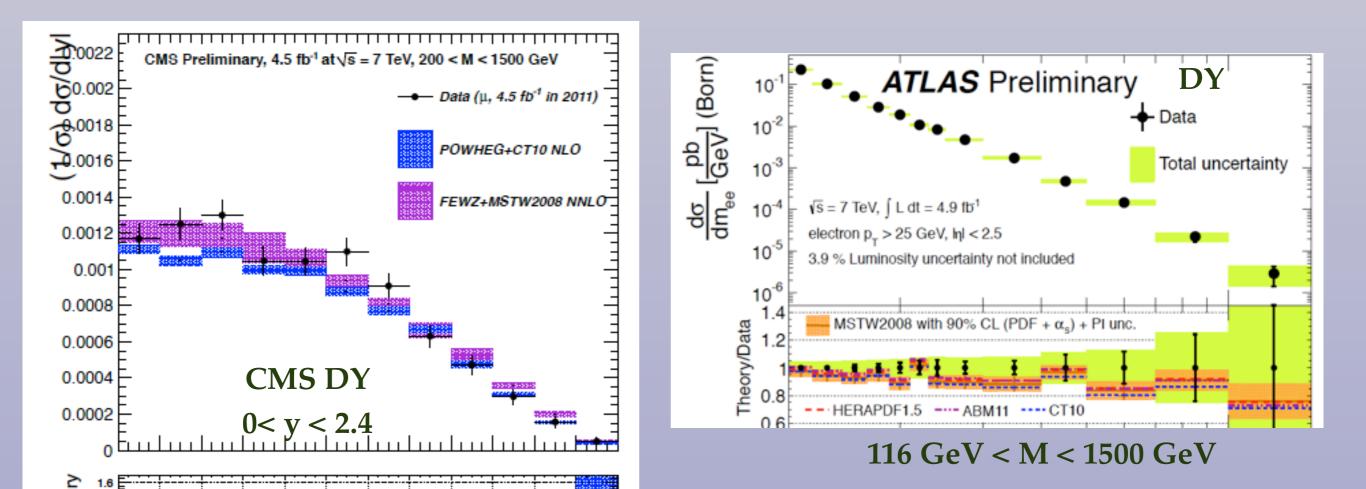
Fotal cross sections already help to **discriminate between different PDF sets**. Also a **direct handle on the strong coupling** (CMS determination: **CMS-PAS-TOP-12-022**)

Ultimate constraining power from ATLAS and CMS differential distributions

Snowmass QCD workshop, FNAL, 31/01/2013

Juan Rojo

Low and high mass Drell-Yan

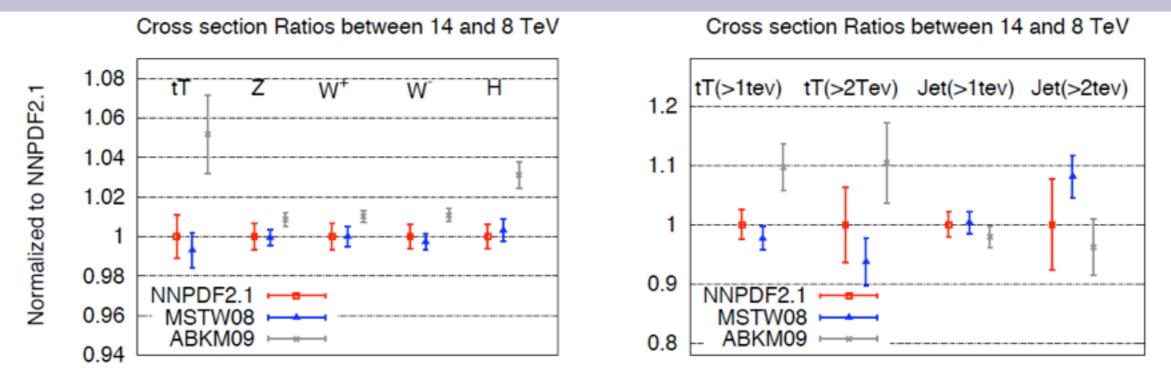

Fin global PDF fits, **fixed target Drell-Yan data** are **instrumental for quark flavor separation**, but several issues: **low energies** (thus larger scale errors), **nuclear correction**s, **no covariance matrix**: we would like to replace them with collider data

$$x_1^0 = \sqrt{\tau}e^y = \frac{M}{\sqrt{s}}e^y$$
, $x_2^0 = \sqrt{\tau}e^{-y} = \frac{M}{\sqrt{s}}e^{-y}$

At the LHC, **low mass DY** constraints small-x quarks, with **large mass DY** determines large-x quarks and antiquarks: **essential for high mass BSM searches.**

Binning in rapidity improves the constraining power

At large masses, it is crucial to properly account for electroweak corrections



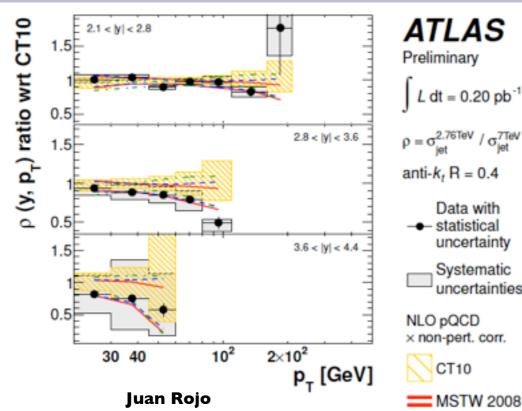
Cross section Ratios between 7, 8 and 14 TeV

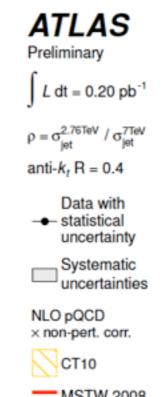
The staged increase of the LHC beam energy provides a new class of interesting observables: cross section ratios for different beam energies

$$R_{E_2/E_1}(X) \equiv \frac{\sigma(X, E_2)}{\sigma(X, E_1)} \quad R_{E_2/E_1}(X, Y) \equiv \frac{\sigma(X, E_2)/\sigma(Y, E_2)}{\sigma(X, E_1)/\sigma(Y, E_1)}$$

- These ratios can be computed with very high precision due to the large degree of correlation of theoretical uncertainties at different energies
- Experimentally these ratios can also be measured accurately since many systematics, like luminosity or jet energy scale, cancel partially in the ratios
- These ratios allow **stringent precision tests of the SM**, in particular **PDF discrimination**

M. Mangano, J. Rojo, arXiv:1206.3557


Juan Rojo


13

Cross section Ratios between 7, 8 and 14 TeV

©Cross section ratios **cancel most of theory systematics**, **PDFs dominant** remainder, specially at large masses

Cross Section	$R^{\mathrm{th,nnpdt}}$	$\delta_{\rm PDF}(\%)$	δ_{α_s} (%)	δ_{scales} (%)	8 over 7 TeV Inclusive Jets, NNPDF2.1 + FastNLO v2
$t\bar{t}/Z$	2.12	± 1.3	-0.8 - 0.8	-0.4 - 1.1	8 PDF systematics
$t\overline{t}$	3.90	± 1.1	-0.5 - 0.7	-0.4 - 1.1	─ 6 Scale systematics
Z	1.84	± 0.7	-0.1 - 0.3	-0.3 - 0.2	× 4
W^+	1.75	± 0.7	-0.0 - 0.3	-0.3 - 0.2	
W^-	1.86	± 0.6	-0.1 - 0.3	-0.3 - 0.1	
W^+/W^-	0.94	± 0.3	-0.0 - 0.0	-0.0 - 0.0	2 Astematics
W/Z	0.98	± 0.1	-0.1 - 0.0	-0.0 - 0.0	ο -2
ggH	2.56	± 0.6	-0.1 - 0.1	-0.9 - 1.0	₹ -4
$t\bar{t}(M_{tt} \ge 1 \text{ TeV})$	8.18	± 2.5	-1.3 - 1.1	-1.6 - 2.1	δο 94 ⊢ -6
$t\bar{t}(M_{\rm tt} \ge 2 { m TeV})$	24.9	± 6.3	-0.0 - 0.3	-3.0 - 1.1	
$\sigma_{\rm jet}(p_T \ge 1 { m TeV})$	15.1	± 2.1	-0.4 - 0.0	-1.9 - 2.4	-8 100 200 500 1000 2000
$\sigma_{\rm jet}(p_T \ge 2 { m TeV})$	182	\pm 7.7	-0.3 - 0.2	-5.7 - 4.0	Jet p _T (GeV)

Free Fore, cross section ratios should be pursued as a novel approach to constrain PDF

First measurement of cross section ratios by **ATLAS: jet** cross sections between 7 and 2.76 TeV

Reduced experimental and scale uncertainties, potentially can improve the sensitivity to PDFs of 7 TeV ATLAS jet data alone

Improved discrimination power from 14 to 8 TeV ratios

Snowmass QCD workshop, FNAL, 31/01/2013

Summary

- Parton Distributions are an essential ingredient for LHC phenomenology
- Accurate PDFs are required for precision SM measurements, Higgs characterization and many New Physics searches
- Solution Generation of fundamental SM parameters like the W mass or α_s from LHC data also greatly benefit from improved PDFs
- LHC data is already providing direct constraints on the proton PDFs: 7 TeV measurements of jets, electroweak bosons and photons
- Combining data at **different LHC center of mass energies** also provides useful handles on PDF, in particular the poorly-constrained large-x PDFs.