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Bunch intensity: N, =1.15—-1.65-10"" ppb
Transverse Beam size: Oy = 16 — 30 um
Number of bunches 1370 — 2808

Revolution frequency 11 kHz




When do we have beam-beam effects?

»They occur when two beams get closer and
collide

»Two types

»High energy collisions between
two particles (wanted)

» Distortions of beam by
electromagnetic forces (unwanted) (X1,Y:

» Unfortunately: usually both go together...
»0.001% (or less) of particles collide
> 99.999% (or more) of particles are distorted

Beam-beam effects: overview

» Circular Colliders: interaction occurs at every turn

* Many effects and problems
* Try to understand some of them

* Overview of effects (single particle and multi-particle effects)
e Qualitative and physical picture of effects
e Observations from the LHC

 Mathematical derivations and more info in References or at
Beam-beam webpage http://Ihc-beam-beam.web.cern.ch/lhc-beam-beam/
And CAS Proceedings
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...much more on the LHC Beam-beam webpage:
http://lhc-beam-beam.web.cern.ch/lhc-beam-beam/

Beams EM potential

»Beam is a collection of charges
»Beam is an electromagnetic
potential for other charges

Force on itself (space charge) and
opposing beam (beam-beam effects)

Single particle motion and whole bunch motion distorted

Focusing quadrupole Opposite Beam
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A beam acts on particles like an electromagnetic lens, but...




Beam-beam Mathematics

General approach in electromagnetic problems Reference[5] already applied to beam-beam
interactions in Reference[1,3, 4]

1 Derive potential from Poisson equation for
AU = ——p(z,y, )
0

charges with distribution p

Solution of Poisson equation

1 dzodyod
U(mayazaaxaaljaaz) - /// \/( p(mo,yO,ZO) ToaYodzo

dreg x — 20)% + (y — 40)% + (2 — 20)?)

E = —VU(IE,y,Z,Ox,Uy,Gz) Then compute the fields

— — — From Lorentz force one calculates the force acting on
_)

F = Q( O BT Tl B) test particle with charge q

Making some assumptions we can simplify the problem and derive
analytical formula for the force...

Round Gaussian distributions:

Gaussian distribution for charges:

Round beams: Or = gy :20 )
Very relativistic, Force has only radial component : B ~ 1 rT=x"+vy
N, 1 2
Foc —2.Z. [1 _ 6_27:7_2] Beam-beam Force
g T
Ar' = 1 /Fr(r,s,t) dt Beam-beam kick obtained
mc3y integrating the force over the
collision (i.e. time of passage
Ar, _ _Npro T 2 ( p g )
" " Only radial component in
®— relativistic case
1
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Beam-beam Force
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Why do we care?

Pushing for luminosity means stronger beam-beam effects
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Two main questions:
What happens to a single particle?
What happens to the whole beam?
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Une nouvelle particule a été ’
découverte




Arbitrary units

Beam-Beam Force: single particle...

Lattice defocusing quadrupole Beam-beam force

Linear force

Arbitrary units
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N, 1 2
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For small amplitudes: linear force
For large amplitude: very non-linear
The beam will act as a strong non-linear electromagnetic lens!

Beam-beam Force [a.u.]

Can we quantify the beam-beam strenght?

Quantifies the strength of the force Beam-beam force
but does NOT reflect the nonlinear I e e e e e I
nature of the force . '
For small amplitudes: linear force -

Fox—€&-r

The slope of the force gives you
the beam-beam parameter f
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Colliders:

For round beams: For non-round beams:
/
* * *
¢ = B* O0(Ar)  NrgB 6 — Nrofs,
- ’ - T,y —
41 or Arryo? 2704,y (00 + 0y)
Examples:
Parameters LHC nominal LHC 2012
Intensity N, ./bunch 1.15 101 1.6 101
Energy GeV 7000 4000
Beam emittance 3.75 umrad 2.2-2.5 umrad
Crossing angle (urad) 285 290
By, * (m) 1.25-0.05 0.60-0.60
Luminosity 1103 7.6 103
= 0.0034 0.006

Linear Tune shift

For small amplitudes beam-beam can be approximated as linear

force as a quadrupole
a P Fo =€ r
/ .
Focal length: l — Az — Nro — § - dm
x ~o? B*
. 1 0
Beam-beam matrix: _gam 4
B*

Perturbed one turn matrix with perturbed tune AQ and beta function

at the IP 3*: ( cos(21(Q + AQ)) B sin(2m(Q + AQ)) )
—B—l*sin(QW(Q +AQ))  cos(2m(Q + AQ))

1 0 cos(2mQ) Bisin(2mQ) 1 0
- ( —% 1 ) ' ( —B—lgsin(QwQ) cos(2mQ) ) ' ( —% 1 )




Linear tune

Solving the one turn matrix one can derive the tune shift AQ and the
perturbed beta function at the IP *:

Tune is changed

_ Bg - 4mé

cos(2m(Q + AQ)) = cos(27mQ) L

sin(27Q)

B-function is changed:

B sin(27Q)
85 sin(21(Q + AQ))

...how do they change?

Tune dependence of tune shift and dynamic beta

Tune shift as a function of tune
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Larger§ ==  Strongest variation with Q




Head-on and Long-range interactions

Beam-beam force

L

* Ny - frev
030,

Beam-beam force [ a.u. ]
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Other beam passing in the center force: HEAD-ON beam-beam interaction

Other beam passing at an offset of the force: LONG-RANGE beam-beam interaction

Multiple bunch Complications

MANY INTERACTIONS
N? |
L o P_. n Num. of bunches : 7Tl} — 2808
OO0y
3.7m
«— >

Head-§0n T
For 25ns case 124 BBIs per turn: 4 HO and 120 LR




LHC, KEKB... colliders

* Crossing angle operation

e High number of bunches in train
structures

gil 000 N0 00D i |||| |||| i 1 |||| i 1
fRRiches

SppS Tevatron RHIC LHC
Number Bunches 6 36 109 2808
LR interactions 9 70 0 120/40
Head-on interactions 3 2 2 4

A beam is a collection of particles

Beam-beam force
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Beam-beam force [ a.u. ]
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Beam 2 passing in the center of force produce by Beam 1
Particles of Beam 2 will experience different ranges of the beam-beam forces

Tune shift as a function of amplitude (detuning with amplitude or
tune spread)




Beam-beam force [a.u. ]
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A beam will experience all the force range

Beam-beam force
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Second beam passing in the center
HEAD-ON beam-beam interaction

Beam-beam force
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Second beam displaced offset
LONG-RANGE beam-beam interaction

Different particles will see different force

Detuning with Amplitude for head-on

Instantaneous tune shift of test particle when it crosses the other beam
is related to the derivative of the force with respect to the amplitude

§F
or

AQ

Arbitrary units

L L I ( i i i i i i L
-8 -6 -4 -2 0 2 4 6 8 -10 -8 -6 -4 0 2 4 6 8

Amplitude in units of beam size o Amplntude in units of beam size o L
AQquad = const AQpp ~ const
*
For small amplitude test particle lim AQ (7.) - NTO/B —
linear tune shift r—0 Ayo?




Arbitrary units
o

Detuning with Amplitude for head-on

Beam with many particles this results in a tune spread

| OF
AQ x —
or
AQquad = const AQpy # const
NroB 1 Ty, 5
A = . . S sy o e =]
Q(CB) 47T")/0'2 (%)2 (exp (2) 0(2) )

Mathematical derivation in Ref [3] using Hamiltonian formalism and in
Ref [4] using Lie Algebra
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Head-on detuning with amplitude and footprints

1-D plot of detuning with amplitude

And in the other plane?
THE SAME DERIVATION
same tune spread

Tune footprint for head-on collision
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And for long-range interactions?

Arbitrary units
o

-10 -8 -6 -4 2 0 2 4 6
Amplitude in units of beam size o

Long range tune shift scaling for
distances d > 60

N
R =

AQl’r‘ T

Second beam centered at d (i.e. 60)
*Small amplitude particles positive tune shifts
°Large amplitude can go to negative tune shifts

Arbitrary units
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now the LARGE amplitude particles
see the second beam and have
larger tune shift

312

311

0.31

0.309 -

0.308

Separation in vertical plane!
And in horizontal plane?

The test particle is centered with
the opposite beam

tune spread more like for head-on
at large amplitudes

footprint from long range interactions
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Beam-beam tune shift and spread

Footprints depend on:

* number of interactions

* Type (Head-on and long-range)
Plane of interaction

032

03s b
When long-range effects become
important footprint wings appear and
os1 | alternating crossing important
Aim to reduce the area as much as
possible!

Passive compensation of tune shift Ref[7]
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Complications
PACMAN and SUPER PACMAN bunches

(0 U0 NED DND OOD DODD DODD MO0 HOOR MOODOMODOMNO
72 bu nches

[T = _ |
— ____,_e:ff,— """"

Pacman: s -

miss long range BBI = o E

Super Pacman:
miss head-onBBI .7 4

IP2 and IP8 depending on filling scheme

Different bunch families: Pacman and Super Pacman




LHC Complications: filling schemes
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Pacman Bunche: different number of long-range interactions
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...operationally it is even more complicated?
...intensities, emittances... ox




Particle Losses

Dynamic Aperture: area in amplitude space with stable motion
Stable area of particles depends on beam intensity and crossing angle

Stable Area (0)
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Stable area depends on beam-beam interactions therefore the choice
of running parameters (crossing angles, 3*, intensity) is the result of

careful study of different effects!

DO we see the effects of LR in the LHC?

Courtesy X. Buffat
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Courtesy G. Papotti

Particle losses follow number of Long range interactions
Nominal LHC will have twice the number of interactions




Long-range BB and Orbit Effects

Long Range Beam-beam interactions lead to orbit effects

. 2Nrg (z + d) r2
/
Long range kick Az (x +d,y,r) = — 7 2 [1 —exp (—2—2)

For well separated beams d>o

The force has an amplitude independent contribution: ORBIT KICK

const 5 x2
Az = p [l-— E +-()(E§)'+...]
- /
s K ) AXx
T Tawe

Orbit can be corrected but we should remember PACMAN effects

LHC orbit effects

Orbit effects different due to Pacman effects and the many long-range
add up giving a non negligible effect
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Long range orbit effect

Long range interactions leads to orbit offsets at the experiment a direct
consequence is deterioration of the luminosity

2011-07-05 file:///afs/cern.chiuser/z/zwe/Desktop/PNG/bcid_vs_posY_pm_posYEmpng #1
E C  ATLABOperamone Measurement of the vertex centroid by ATERS
% 1.088 — LH(); Fil: 1815 Onll_ne Primary Vertex
§ b di J' Mv JW 43 * J#
g =X
g 1.082
- Bunch Crosyng Identifier
. S — Courtesy W. Kozanecki
Calculations for nominal LHC
%;J yJ try ;{) 9?!7"?545_
- ﬂfr’ flf fr‘r} ’f‘ ./f"‘? T fﬁrfl{‘ffffr,fr

o 500 1000 1600 2000 25600 3000 3500
bunch number

Effect is already visible with reduced number of interactions  gef[7]

Long range orbit effect observations:
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Courtesy T. Baer

Vertical oscillation starts when one beam is ejected and dumped




Coherent dipolar beam-beam modes

Coherent beam-beam effects arise from the forces which an exciting bunch
exerts on a whole test bunch during collision

We study the collective behaviour of all particles of a bunch

Coherent motion requires an organized behaviour of all particles of the bunch

Coherent beam-beam force
*Beam distributions ¥, and W, mutually changed by interaction
*Interaction depends on distributions

*Beam 1 ¥, solution depends on beam 2 W,

*Beam 2 W, solution depends on beam 1 W,

*Need a self-consistent solution

Coherent beam-beam effects
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*Whole bunch sees a kick as an entity (coherent kick)
* Coherent kick seen by full bunch different from single particle kick
*Requires integration of individual kick over particle distribution
Nyrg 7 r?
Ar' = 2P0 5 [1—e_m}
r r
*Coherent kick of separated beams can excite coherent dipolar
oscillations
*All bunches couple because each bunch “sees” many opposing
bunches(LR): many coherent modes possible!




Coherent effects

Self-consistent treatment needed

Perturbative methods

static source of distortion:

example magnet

Self-consistent method

source of distortion changes
as a result of the distortion

Beam-beam force [ a.u. ]

0.5

0.4

0.3

S
o

0.1

Self-consistent

Static BB force

-4 0 +4 +8
Distance from beam center [ G ]

For a complete understanding of BB effect a self-consistent
treatment should be used

Simple case:

one bunch per beam
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0-mode
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MOVIE
0-mode at unperturbed tune Q,

n-mode is shifted at Q =1.1-1.3 €,

Incoherent tune spread range [0,-E]

AQ=Y -¢

* Coherent mode: two bunches are “locked” in a coherent oscillation
* 0-mode is stable (mode with NO tune shift)
» t-mode can become unstable (mode with largest tune shift)




Simple case: one bunch per beam and
Landau damping

1.0 :
0-mode

_ 08 mt-mode
5
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S 06"
= Tune spread
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o
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02t
O 0 I J I L

E,, Q, Tune

Incoherent tune spread is the Landau damping region any mode
with frequency laying in this range should not develop
* t1-mode has frequency out of tune spread (Y) so it is not damped!

Coherent modes at RHIC

Blue Horizontal, single p bunch, at injection

1LLE+10

1.E+09

1.E+08

Spectral power

1.LE+07

0.200 0.205 0.210 0.215 0.220 0225
Tune

Courtesy W. Fischer (BNL)

Tune spectra before collision and in collision two modes visible




Head-on beam-beam coherent mode: LHC

BBQ Signals
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Beam-beam coherent modes
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Pacman effect on coherent modes
Single bunch diagnostic so important




Different Tunes
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-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Q-Qy/E
Tune split breaks symmetry and coherent modes disappear

Analytical calculations in Reference [8]

Different tunes or intensities

RHIC running with mirrored tune for years to break coherent
oscillations

Horizontal Tune

Nominal beh
SuperPacman|

‘k' (il WNM.‘ WNJ

0678 068 0682 0684 0.686 0.688 0.69 0.692 0.694 0.696 0.698

Vertical Tune

Nominal bch }

| \“; |
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0678 068 - 0682 0.684 0.686 OGBB Q) 059 0.692 0.694 0.696 0598

LHC has used a tune split to suppress coherent BB modes
2010 Physics Run




Spectrum arbitrary units

Different bunch intensities

—100%
80%
60%
50%
40%
30%
20%

AQ in units of €

A s M
-0.5

For two bunches colliding
head-on in one IP the
coherent mode disappears if
intensity ratio between
bunches is 55% Reference[9]

We assumed:

e equal emittances

e equal tunes

* NO PACMAN effects

(bunches will have different tunes)

For coherent modes the key is to break the simmetry in your coupled
system...(tunes, intensities, collision patters...)

And Long range interactions?

Bunch 1

0.3055

Qs

J [

*Each bunch will have dii‘ferent;ﬁo55

number of modes and tune

spectra

*No Landau damping of long-

range coherent modes

Bunch 3

Single bunch diagnostic can make the difference




Beam-beam compensations:

Head-on
* Linear e-lens, suppress shift
* Non-linear e-lens, suppress tune spread

Beam-Beam Force in 1D 200

—— equal charges

---------- opposite charges

Bch 1 collision

1501 | ; L LA : T

bch 2 collisions
100

04
0.3

Beam-beam force

50 -Bunch intensity in 2012
: polarized proton

Bunch intensity [10"9 protons]
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* Past experience: at Tevatron linear and non-linear e-lenses, also hollow...
* Present: test for half compensation at RHIC with non-linear e-lens

Beam-beam compensations: long-range

Beam-beam wire compensation
‘ ) o ) v R. Calaga
_Nr.B., Round Beam Kick —

.y 2 Wire Kick
2nyo

% Ditt

Transverse Kick [a.u.]

ol A . 3d , A
12 -8 -4 0 a | 8 12
Amplitude [o units] /
v
K x x
< d: Ax'(x,d)=——.(1+=+—=+...
o< (x,d) r ( a* )

* Past experience: at RHIC several tests till 2009...
* Present: simulation studies on-going for possible use in HL-LHC...




...not covered here...

Linear colliders special issues
Asymmetric beams effects
Coasting beams
Beamstrahlung
Synchrobetatron coupling
Beam-beam experiments

Beam-beam and impedance

Thank You!




