LONGITUDINAL BEAM DYNAMICS

Frank Tecker CERN, BE-OP

Basics of Accelerator Science and Technology at CERN Chavannes de Bogis, 4-8 November 2013

Summary of the 3 lectures:

- Acceleration methods
- Accelerating structures
- Phase Stability + Energy-Phase oscillations (Linac)
- Circular accelerators: Cyclotron / Synchrotron
- Dispersion Effects in Synchrotron
- Longitudinal Phase Space Motion
- Stationary Bucket
- Injection Matching

Two more related lectures:

- Linacs
- Maurizio Vretanar
-RF Systems - Erk Jensen

Main Characteristics of an Accelerator

$\begin{aligned} & \text { Newton-Lorentz Force } \\ & \text { on a charged particle: }\end{aligned} \quad \vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=e(\vec{E}+\vec{v} \times \vec{B})$
$2^{\text {nd }}$ term always perpendicular to motion => no acceleration

ACCELERATION is the main job of an accelerator.

- It provides kinetic energy to charged particles, hence increasing their momentum.
- In order to do so, it is necessary to have an electric field \vec{E} preferably along the direction of the initial momentum (z).

$$
\frac{d p}{d t}=e E_{z}
$$

BENDING is generated by a magnetic field perpendicular to the plane of the particle trajectory. The bending radius ρ obeys to the relation:

$$
\frac{p}{e}=B \rho
$$

$$
\text { in practical units: } \quad B \rho[\mathrm{Tm}] \approx \frac{p[\mathrm{GeV} / \mathrm{c}]}{0.3}
$$

FOCUSING is a second way of using a magnetic field, in which the bending effect is used to bring the particles trajectory closer to the axis, hence to increase the beam density.

Basics of Acceleration

Today's accelerators and future projects work/aim at the TeV energy range.
LHC: 7 TeV -> 14 TeV
CLIC: 3 TeV
HE/VHE-LHC: 33/100 TeV
In fact, this energy unit comes from acceleration:
1 eV (electron Volt) is the energy that 1 elementary charge e (like one electron or proton) gains when it is accelerated in a potential (voltage) difference of 1 Volt .

Basic Unit: eV (electron Volt)

$$
\mathrm{keV}=1000 \mathrm{eV}=10^{3} \mathrm{eV}
$$

$$
\mathrm{MeV}=10^{6} \mathrm{eV}
$$

$$
\mathrm{GeV}=10^{9} \mathrm{eV}
$$

$$
\mathrm{TeV}=10^{12} \mathrm{eV}
$$

LHC $=\sim 450$ Million km of batteries!!! $3 x$ distance Earth-Sun

Electrostatic Acceleration

Electrostatic Field:

Force: $\quad \vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=e \vec{E}$
Energy gain: $W=e \Delta V$
used for first stage of acceleration:
particle sources, electron guns,
x-ray tubes
Limitation: isolation problems maximum high voltage ($\sim 10 \mathrm{MV}$)

750 kV Cockroft-Walton generator at Fermilab (Proton source)

Methods of Acceleration: Time varying fields

The electrostatic field is limited by insulation, the magnetic field does not accelerate.

From Maxwell's Equations: $\quad \vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t}$

$$
\vec{B}=\mu \vec{H}=\vec{\nabla} \times \vec{A} \quad \text { or } \quad \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

The electric field is derived from a scalar potential φ and a vector potential A The time variation of the magnetic field H generates an electric field E

The solution: => time varying electric fields

- Induction
- RF frequency fields

Acceleration by Induction: The Betatron

It is based on the principle of a transformer:

- primary side: large electromagnet - secondary side: electron beam.

The ramping magnetic field is used to guide particles on a circular trajectory as well as for acceleration.

Limited by saturation in iron ($\sim 300 \mathrm{MeV}$ e-)
Used in industry and medicine, as they are compact accelerators for electrons

side view

beam

Radio-Frequency (RF) Acceleration

Electrostatic acceleration limited by isolation possibilities $\Rightarrow>$ use RF fields

Wideröe-type structure

Cylindrical electrodes (drift tubes) separated by gaps and fed by a RF generator, as shown above, lead to an alternating electric field polarity

$$
\begin{aligned}
\text { Synchronism condition } \longrightarrow \quad L=v T / 2 \quad \begin{array}{l}
v \\
\mathrm{~T}
\end{array}=\text { particle velocity } \\
\mathrm{RF} \text { period }
\end{aligned}
$$

Similar for standing wave cavity as shown (with $v \approx c$)

RF acceleration: Alvarez Structure

Resonant RF Cavities

- Considering RF acceleration, it is obvious that when particles get high velocities the drift spaces get longer and one looses on the efficiency. => The solution consists of using a higher operating frequency.
- The power lost by radiation, due to circulating currents on the electrodes, is proportional to the RF frequency.
=> The solution consists of enclosing the system in a cavity which resonant frequency matches the RF generator frequency.

- The electromagnetic power is now constrained in the resonant volume
- Each such cavity can be independently powered from the RF generator
- Note however that joule losses will occur in the cavity walls (unless made of superconducting materials)

The Pill Box Cavity

From Maxwell's equations one can derive the wave equations:

$$
\nabla^{2} A-\varepsilon_{0} \mu_{0} \frac{\partial^{2} A}{\partial t^{2}}=0 \quad(A=E \text { or } H)
$$

Solutions for E and H are oscillating modes, at discrete frequencies, of types $T M_{x y z}$ (transverse magnetic) or $T E_{x y z}$ (transverse electric).
Indices linked to the number of field knots in polar co-ordinates φ, r and z.

For k2a the most simple mode, TM_{010}, has the lowest frequency, and has only two field components:

$$
\begin{aligned}
& E_{z}=J_{0}(k r) e^{i \omega t} \\
& H_{\theta}=-\frac{i}{Z_{0}} J_{1}(k r) e^{i \omega t} \\
& k=\frac{2 \pi}{\lambda}=\frac{\omega}{c} \quad \lambda=2.62 a \quad Z_{0}=377 \Omega
\end{aligned}
$$

The Pill Box Cavity (2)

The design of a pill-box cavity can be sophisticated in order to improve its performances:

- A nose cone can be introduced in order to concentrate the electric field around the axis
- Round shaping of the corners allows a better distribution of the magnetic field on the surface and a reduction of the Joule losses.
It also prevents from multipactoring effects.

A good cavity is a cavity which efficiently transforms the RF power into accelerating voltage.

Some RF Cavity Examples

Multi-Gap

Transit time factor

The accelerating field varies during the passage of the particle => particle does not always see maximum field $=>$ effective acceleration smaller

Transit time factor defined as:

$$
T_{a}=\frac{\text { energy gain of particle with } v=\beta c}{\text { maximum energy gain (particle with } v \rightarrow \infty \text {) }}
$$

In the general case, the transit time factor is:

$$
\text { for } E(s, r, t)=E_{1}(s, r) \cdot E_{2}(t)
$$

$$
T_{a}=\frac{\int_{-\infty}^{+\infty} E_{1}(s, r) \cos \left(\omega_{R F} \frac{s}{v}\right) \mathrm{d} s}{\int_{-\infty}^{+\infty} E_{1}(s, r) \mathrm{d} s}
$$

Simple model uniform field:

$$
E_{1}(s, r)=\frac{V_{R F}}{g}=\text { const. }
$$

follows: $\quad T_{a}=\left|\sin \frac{\omega_{R F} g}{2 v} / \frac{\omega_{R F} g}{2 v}\right|$

- $0<T_{a}<1$
- $T_{a} \rightarrow 1$ for $g \rightarrow 0$, smaller $\omega_{R F}$

Important for low velocities (ions)

Disc loaded traveling wave structures

-When particles gets ultra-relativistic ($v \sim c$) the drift tubes become very long unless the operating frequency is increased. Late 40's the development of radar led to high power transmitters (klystrons) at very high frequencies (3 GHz).
-Next came the idea of suppressing the drift tubes using traveling waves. However to get a continuous acceleration the phase velocity of the wave needs to be adjusted to the particle velocity.

solution: slow wave guide with irises ==> iris loaded structure

$$
E_{z}=E_{0} \cos \left(\omega_{R F} t-k z\right)
$$

$$
k=\frac{\omega_{R F}}{v_{\varphi}} \quad \text { wave number }
$$

$$
z=v\left(t-t_{0}\right)
$$

$v_{\varphi}=$ phase velocity $v=$ particle velocity
The particle travels along with the wave, and

$$
E_{z}=E_{0} \cos \left(\omega_{R F} t-\omega_{R F} \frac{v}{v_{\varphi}} t-\phi_{0}\right)
$$

If synchronism satisfied: $\quad v=v_{\varphi} \quad$ and $\quad E_{z}=E_{0} \cos \phi_{0}$
where Φ_{0} is the RF phase seen by the particle.

Energy Gain

In relativistic dynamics, total energy E and momentum p are linked by

$$
E^{2}=E_{0}^{2}+p^{2} c^{2}
$$

$$
\left(E=E_{0}+W\right) \quad \text { Winetic energy }
$$

Hence: $\quad d E=v d p$
The rate of energy gain per unit length of acceleration (along z) is then:

$$
\frac{d E}{d z}=v \frac{d p}{d z}=\frac{d p}{d t}=e E_{z}
$$

and the kinetic energy gained from the field along the z path is:

$$
d W=d E=e E_{z} d z \quad \rightarrow \quad W=e \int E_{z} d z=e V
$$

where V is just a potential.

Velocity, Energy and Momentum

normalized velocity $\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}}$
=> electrons almost reach the speed of light very quickly (few MeV range)

total energy $\quad E=\gamma m_{0} c^{2}$
rest energy

$$
\gamma=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

Momentum $\quad p=m v=\frac{E}{c^{2}} \beta c=\beta \frac{E}{c}=\beta \gamma m_{0} c$

Particle types and acceleration

Accelerating system will depend upon the evolution of the particle velocity along the system

- electrons reach a constant velocity at relatively low energy
- heavy particles reach a constant velocity only at very high energy
» may need different types of resonators,
optimized for different velocities

Particle rest mass:

electron	0.511 MeV
proton	938 MeV
239 U	$\sim 220000 \mathrm{MeV}$

Summary: Relativity + Energy Gain

Newton-Lorentz Force $\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=e(\vec{E}+\vec{v} \times \vec{B})$
$2^{\text {nd }}$ term always perpendicular to motion $=>$ no acceleration

Relativistics Dynamics

$\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}} \quad \gamma=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{1-\beta^{2}}}$
$p=m v=\frac{E}{c^{2}} \beta c=\beta \frac{E}{c}=\beta \gamma m_{0} c$
$E^{2}=E_{0}^{2}+p^{2} c^{2} \longrightarrow d E=v d p$
$\frac{d E}{d z}=v \frac{d p}{d z}=\frac{d p}{d t}=e E_{z}$
$d E=d W=e E_{z} d z \quad \rightarrow \quad W=e \int E_{z} d z$

RF Acceleration

$$
\begin{aligned}
& E_{z}=\hat{E}_{z} \sin \omega_{R F} t=\hat{E}_{z} \sin \phi(t) \\
& \int \hat{E}_{z} d z=\hat{V} \\
& W=e \hat{V} \sin \phi
\end{aligned}
$$

(neglecting transit time factor)
The field will change during the passage of the particle through the cavity
=> effective energy gain is lower

Common Phase Conventions

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time $t=0$ chosen such that:

3. I will stick to convention 1 in the following to avoid confusion

Principle of Phase Stability (Linac)

Let's consider a succession of accelerating gaps, operating in the 2π mode, for which the synchronism condition is fulfilled for a phase Φ_{s}.
$e V_{S}=e \hat{V} \sin \Phi_{S} \quad$ is the energy gain in one gap for the particle to reach the $V_{S}=e \hat{V} \sin \Phi_{S}$ next gap with the same RF phase: $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots .$. are fixed points.

For a 2π mode, the electric field is the same in all gaps at any given time.

If an energy increase is transferred into a velocity increase =>

$$
\begin{array}{ll}
M_{1} \& N_{1} \text { will move towards } P_{1} & \Rightarrow \text { stable } \\
M_{2} \& N_{2} \text { will go away from } P_{2} & \Rightarrow \text { unstable }
\end{array}
$$

(Highly relativistic particles have no significant velocity change)

A Consequence of Phase Stability

Transverse focusing fields at the entrance and defocusing at the exit of the cavity. Electrostatic case: Energy gain inside the cavity leads to focusing RF case:

Field increases during passage => transverse defocusing!
Longitudinal phase stability means : $\frac{\partial V}{\partial t}>0 \Rightarrow \frac{\partial E_{z}}{\partial z}<0$

The divergence of the field is zero according to Maxwell :

$$
\nabla \cdot \vec{E}=0 \quad \Rightarrow \quad \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{z}}{\partial z}=0 \quad \Rightarrow \quad \frac{\partial E_{x}}{\partial x}>0
$$

External focusing (solenoid, quadrupole) is then necessary

Energy-phase Oscillations (1)

- Rate of energy gain for the synchronous particle:

$$
\frac{d E_{s}}{d z}=\frac{d p_{s}}{d t}=e E_{0} \sin \varphi_{s}
$$

- Rate of energy gain for a non-synchronous particle, expressed in reduced variables, $w=W-W_{s}=E-E_{s}$ and $\varphi=\phi-\phi_{s}$:

$$
\frac{d w}{d z}=e E_{0}\left[\sin \left(\phi_{s}+\varphi\right)-\sin \phi_{s}\right] \approx e E_{0} \cos \phi_{s} \cdot \varphi \quad(\operatorname{small} \varphi)
$$

- Rate of change of the phase with respect to the synchronous one:

$$
\frac{d \varphi}{d z}=\omega_{R F}\left(\frac{d t}{d z}-\left(\frac{d t}{d z}\right)_{s}\right)=\omega_{R F}\left(\frac{1}{v}-\frac{1}{v_{s}}\right) \cong-\frac{\omega_{R F}}{v_{s}^{2}}\left(v-v_{s}\right)
$$

Since: $\quad v-v_{s}=c\left(\beta-\beta_{s}\right) \cong \frac{c}{2 \beta_{s}}\left(\beta^{2}-\beta_{s}^{2}\right) \cong \frac{w}{m_{0} v_{s} \gamma_{s}^{3}}$

Energy-phase Oscillations (2)

one gets:

$$
\frac{d \varphi}{d z}=-\frac{\omega_{R F}}{m_{0} v_{s}^{3} \gamma_{s}^{3}} w
$$

Combining the two $1^{\text {st }}$ order equations into a $2^{\text {nd }}$ order equation gives the equation of a harmonic oscillator:

$$
\frac{d^{2} \varphi}{d z^{2}}+\Omega_{s}^{2} \varphi=0 \quad \text { with } \quad \Omega_{s}^{2}=\frac{e E_{0} \omega_{R F} \cos \phi_{s}}{m_{0} v_{s}^{3} \gamma_{s}^{3}}
$$

Stable harmonic oscillations imply: $\quad \Omega_{s}^{2}>0$ and real hence: $\cos \phi_{s}>0$
And since acceleration also means: $\sin \phi_{s}>0$
You finally get the result for the stable phase range:

$$
0<\phi_{s}<\frac{\pi}{2}
$$

Longitudinal phase space

The energy - phase oscillations can be drawn in phase space:

The particle trajectory in the phase space $(\Delta p / p, \phi)$ describes its longitudinal motion.

Emittance: phase space area including all the particles

NB: if the emittance contour correspond to a possible orbit in phase space, its shape does no \dagger change with time (matched beam)

Summary up to here...

- Acceleration by electric fields, static fields limited => time-varying fields
- Synchronous condition needs to be fulfilled for acceleration
- Particles perform oscillation around synchronous phase
- visualize oscillations in phase space
- Electrons are quickly relativistic, speed does not change use traveling wave structures for acceleration
- Protons and ions need changing structure geometry

Circular accelerators

Cyclotron

Synchrotron

Circular accelerators: Cyclotron

Synchronism condition

$$
\Rightarrow \quad \begin{gathered}
\omega_{s}=\omega_{R F} \\
2 \pi \rho=v_{s} T_{R F}
\end{gathered}
$$

Extraction
electrode
Cyclotron frequency $\quad \omega=\frac{q B}{m_{0} \gamma}$

1. $\quad \gamma$ increases with the energy \Rightarrow no exact synchronism
2. if $v \ll c \Rightarrow \gamma \cong 1$

Ions trajectory

Cyclotron / Synchrocyclotron

Synchrocyclotron: Same as cyclotron, except a modulation of ω_{RF} B = constant
$\gamma \omega_{\text {RF }}=$ constant
$\omega_{\text {RF }}$ decreases with time

The condition:

$$
\omega_{s}(t)=\omega_{R F}(t)=\frac{q B}{m_{0} \gamma(t)}
$$

Allows to go beyond the non-relativistic energies

Circular accelerators: The Synchrotron

Synchronism condition

$$
T_{s}=h T_{R F}
$$

$$
\frac{2 \pi R}{v_{s}}=h T_{R F}
$$

1. Constant orbit during acceleration
2. To keep particles on the closed orbit, B should increase with time
3. ω and $\omega_{\text {RF }}$ increase with energy

RF frequency can be multiple of revolution frequency

$$
\omega_{R F}=h \omega_{r}
$$

h integer, harmonic number: number of RF cycles per revolution

Circular accelerators: The Synchrotron

CAS@CERN, 4-8 November 2013

The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. That implies the following operating conditions:

If $v \approx c, \omega_{r}$ hence $\omega_{\text {RF }}$ remain constant (ultra-relativistic e^{-})

The Synchrotron - Energy ramping

Energy ramping is simply obtained by varying the B field (frequency follows v):

$$
p=e B \rho \Rightarrow \frac{d p}{d t}=e \rho \dot{B} \Rightarrow(\Delta p)_{t u r n}=e \rho \dot{B} T_{r}=\frac{2 \pi e \rho R \dot{B}}{v}
$$

Since:

$$
\begin{aligned}
& E^{2}=E_{0}^{2}+p^{2} c^{2} \Rightarrow \Delta E=v \Delta p \\
& (\Delta E)_{\text {turn }}=(\Delta W)_{s}=2 \pi e \rho R \dot{B}=e \hat{V} \sin \phi_{s}
\end{aligned}
$$

Stable phase φ_{s} changes during energy ramping

$$
\sin \phi_{s}=2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}} \quad \phi_{s}=\arcsin \left(2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}}\right)
$$

- The number of stable synchronous particles is equal to the harmonic number h. They are equally spaced along the circumference.
- Each synchronous particle satisfies the relation $p=e B p$. They have the nominal energy and follow the nominal trajectory.

The Synchrotron - Frequency change

During the energy ramping, the RF frequency increases to follow the increase of the revolution frequency :

$$
\omega_{r}=\frac{\omega_{R F}}{h}=\omega\left(B, R_{s}\right)
$$

Hence: $\frac{f_{R F}(t)}{h}=\frac{v(t)}{2 \pi R_{s}}=\frac{1}{2 \pi} \frac{e c^{2}}{E_{s}(t)} \frac{\rho}{R_{s}} B(t) \quad\left(u s i n g \quad p(t)=e B(t) \rho, \quad E=m c^{2}\right)$
Since $E^{2}=\left(m_{0} c^{2}\right)^{2}+p^{2} c^{2}$ the RF frequency must follow the variation of the B field with the law

$$
\frac{f_{R F}(t)}{h}=\frac{c}{2 \pi R_{s}}\left\{\frac{B(t)^{2}}{\left(m_{0} c^{2} / e c \rho\right)^{2}+B(t)^{2}}\right\}^{1 / 2}
$$

This asymptotically tends towards $\quad f_{r} \rightarrow \frac{c}{2 \pi R_{s}} \quad$ when B becomes large
compared to $m_{0} c^{2} /(e c \rho)$
which corresponds to $v \rightarrow c$

Dispersion Effects in a Synchrotron

If a particle is slightly shifted in momentum it will have a different orbit and the orbit length is different.
The "momentum compaction factor" is defined as:

$$
\alpha=\frac{d L / L}{d p / p} \Rightarrow \alpha=\frac{p}{L} \frac{d L}{d p}
$$

If the particle is shifted in momentum it will have also a different velocity.
As a result of both effects the revolution frequency changes:

$$
\eta=\frac{\mathrm{d} f_{r} / f_{r}}{\mathrm{~d} p / p} \Rightarrow \eta=\frac{p}{f_{r}} \frac{d f_{r}}{d p}
$$

Momentum Compaction Factor

$$
\begin{array}{ll}
\alpha=\frac{p}{L} \frac{d L}{d p} & d s_{0}=\rho d \theta \\
d s=(\rho+x) d \theta
\end{array}
$$

The elementary path difference from the two orbits is: definition of dispersion D_{x}

$$
\frac{d l}{d s_{0}}=\frac{d s-d s_{0}}{d s_{0}}=\frac{x}{\rho} \stackrel{\downarrow}{=} \frac{D_{x}}{\rho} \frac{d p}{p}
$$

leading to the total change in the circumference:

$$
\begin{aligned}
& d L=\int_{C} d l=\int \frac{x}{\rho} d s_{0}=\int \frac{D_{x}}{\rho} \frac{d p}{p} d s_{0} \\
& \alpha=\frac{1}{L} \int_{C} \frac{D_{x}(s)}{\rho(s)} d s_{0} \\
& \text { With } \rho=\infty \text { in } \\
& \text { straight sections } \\
& \text { we get: } \\
& \alpha=\frac{\left\langle D_{x}\right\rangle_{m}}{R}
\end{aligned}
$$

$\left\langle>_{m}\right.$ means that the average is considered over the bending
magnet only

Dispersion Effects - Revolution Frequency

There are two effects changing the revolution frequency: the orbit length and the velocity of the particle

$$
\begin{gathered}
f_{r}=\frac{\beta c}{2 \pi R} \Rightarrow \frac{d f_{r}}{f_{r}}=\frac{d \beta}{\beta}-\frac{d R}{R}=\frac{d \beta}{\beta}-\alpha \frac{d p}{p} \\
p=m v=\beta \gamma \frac{E_{0}}{c} \Rightarrow \frac{d p}{p}=\frac{d \beta}{\beta}+\frac{d\left(1-\beta^{2}\right)^{-1 / 2}}{\left(1-\beta^{2}\right)^{-1 / 2}}=\underbrace{\left(1-\beta^{2}\right)^{-1}}_{\gamma^{2}} \frac{d \beta}{\text { demition of momentum }} \\
\frac{\gamma^{2}}{\left(1 f_{r}\right.} \\
\frac{d f_{r}}{f_{r}}=\left(\frac{1}{\gamma^{2}}-\alpha\right) \frac{d p}{p} \xrightarrow[f_{r}]{\frac{d f_{r}}{f_{r}}=\eta \frac{d p}{p}} \quad \eta=\frac{1}{\gamma^{2}}-\alpha \\
\eta=0 \text { at the transition energy } \quad \gamma_{t r}=\frac{1}{\sqrt{\alpha}}
\end{gathered}
$$

Phase Stability in a Synchrotron

From the definition of η it is clear that an increase in momentum gives

- below transition ($\eta>0$) a higher revolution frequency (increase in velocity dominates) while
- above transition ($\eta<0$) a lower revolution frequency ($v \approx c$ and longer path) where the momentum compaction (generally >0) dominates.

Crossing Transition

At transition, the velocity change and the path length change with momentum compensate each other. So the revolution frequency there is independent from the momentum deviation.
Crossing transition during acceleration makes the previous stable synchronous phase unstable. The RF system needs to make a rapid change of the RF phase, a 'phase jump'.

Dynamics: Synchrotron oscillations

Simple case (no accel.): $B=$ const., below transition $\quad \gamma<\gamma_{t r}$
The phase of the synchronous particle must therefore be $\phi_{0}=0$.
$\phi_{1} \quad$ - The particle B is accelerated

- Below transition, an increase in energy means an increase in revolution frequency
- The particle arrives earlier - tends toward ϕ_{0}

- The particle is decelerated
- decrease in energy - decrease in revolution frequency
- The particle arrives later - tends toward ϕ_{0}

Synchrotron oscillations

Particle B has made one full oscillation around particle A.
The amplitude depends on the initial phase and energy.
Exactly like the pendulum
This oscillation is called:

Synchrotron Oscillation

The Potential Well (1)

Cavity voltage

Potential well

The Potential Well (2)

Cavity voltage

Potential well

The Potential Well (3)

Cavity voltage

Potential well

The Potential Well (4)

Cavity voltage

Potential well

The Potential Well (5)

Cavity voltage

Potential well

The Potential Well (6)

Cavity voltage

Potential well

The Potential Well (7)

Cavity voltage

Potential well

The Potential Well (8)

Cavity voltage

Potential well

The Potential Well (9)

Cavity voltage

Potential well

The Potential Well (10)

Cavity voltage

Potential well

The Potential Well (11)

Cavity voltage

Potential well

The Potential Well (12)

Cavity voltage

Potential well

The Potential Well (13)

Cavity voltage

Potential well

The Potential Well (14)

The Potential Well (15)

Cavity voltage

Potential well

Longitudinal Phase Space Motion (1)

Particle B oscillates around particle A
This is a synchrotron oscillation
Plotting this motion in longitudinal phase space gives:

Longitudinal Phase Space Motion (2)

Particle B oscillates around particle A
This is a synchrotron oscillation
Plotting this motion in longitudinal phase space gives:

Longitudinal Phase Space Motion (3)

Particle B oscillates around particle A
This is a synchrotron oscillation
Plotting this motion in longitudinal phase space gives:

Longitudinal Phase Space Motion (4)

Particle B oscillates around particle A
This is a synchrotron oscillation
Plotting this motion in longitudinal phase space gives:

Synchrotron oscillations

Synchrotron oscillations (with acceleration)

Case with acceleration B increasing $\quad \gamma<\gamma_{t r}$

Synchrotron motion in phase space

$\Delta \mathrm{E}-\phi$ phase space of a stationary bucke \dagger

Bucket area: area enclosed by the separatrix The area covered by particles is the longitudinal emittance

Dynamics of a particle
Non-linear, conservative oscillator \rightarrow e.g. pendulum

Particle inside the separatrix:

Particle at the unstable fix-point

Particle outside the separatrix:

Synchrotron motion in phase space

The restoring force is non-linear.
\Rightarrow speed of motion depends on position in phase-space
(here shown for a stationary bucket)

(Stationary) Bunch \& Bucket

Bucket area = longitudinal Acceptance [eVs]
Bunch area $=$ longitudinal beam emittance $=\pi . \Delta E \cdot \Delta t / 4[\mathrm{eVs}]$

RF Acceptance versus Synchronous Phase

The areas of stable motion (closed trajectories) are called "BUCKET".

As the synchronous phase gets closer to 90° the buckets gets smaller.

The number of circulating buckets is equal to " h ".

The phase extension of the bucket is maximum for ϕ_{s} $=180^{\circ}$ (or 0°) which correspond to no acceleration. The RF acceptance increases with the RF voltage.

Longitudinal Dynamics in Synchrotrons

It is also often called "synchrotron motion".

The RF acceleration process clearly emphasizes two coupled variables, the energy gained by the particle and the RF phase experienced by the same particle. Since there is a well defined synchronous particle which has always the same phase ϕ_{s}, and the nominal energy E_{s}, it is sufficient to follow other particles with respect to that particle.
So let's introduce the following reduced variables:

revolution frequency :	$\Delta f_{r}=f_{r}-f_{r s}$
particle RF phase :	$\Delta \phi=\phi-\phi_{s}$
particle momentum :	$\Delta p=p-p_{s}$
particle energy $:$	$\Delta E=E-E_{s}$
azimuth angle	$:$
	$\Delta \theta=\theta-\theta_{s}$

First Energy-Phase Equation

$$
\begin{aligned}
& f_{R F}=h f_{r} \quad \Rightarrow \quad \Delta \phi=-h \Delta \theta \text { with } \quad \theta=\int \omega_{r} d t \\
& \text { particle ahead arrives earlier }
\end{aligned}
$$ => smaller RF phase

For a given particle with respect to the reference one:

$$
\Delta \omega_{r}=\frac{d}{d t}(\Delta \theta)=-\frac{1}{h} \frac{d}{d t}(\Delta \phi)=-\frac{1}{h} \frac{d \phi}{d t}
$$

Since: $\eta=\frac{p_{s}}{\omega_{r s}}\left(\frac{d \omega_{r}}{d p}\right)_{s} \quad$ and $\quad \begin{gathered}E^{2}=E_{0}^{2}+p^{2} c^{2} \\ \Delta E=v_{s} \Delta p=\omega_{r s} R_{s} \Delta p\end{gathered}$
one gets:

$$
\frac{\Delta E}{\omega_{r s}}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \frac{d(\Delta \phi)}{d t}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \dot{\phi}
$$

Second Energy-Phase Equation

The rate of energy gained by a particle is: $\quad \frac{d E}{d t}=e \hat{V} \sin \phi \frac{\omega_{r}}{2 \pi}$
The rate of relative energy gain with respect to the reference particle is then:

$$
2 \pi \Delta\left(\frac{\dot{E}}{\omega_{r}}\right)=e \hat{V}\left(\sin \phi-\sin \phi_{s}\right)
$$

Expanding the left-hand side to first order:

$$
\Delta\left(\dot{E} T_{r}\right) \cong \dot{E} \Delta T_{r}+T_{r s} \Delta \dot{E}=\Delta E \dot{T}_{r}+T_{r s} \Delta \dot{E}=\frac{d}{d t}\left(T_{r s} \Delta E\right)
$$

leads to the second energy-phase equation:

$$
2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{r s}}\right)=e \hat{V}\left(\sin \phi-\sin \phi_{s}\right)
$$

Equations of Longitudinal Motion

$$
\begin{gathered}
\frac{\Delta E}{\omega_{r s}}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \frac{d(\Delta \phi)}{d t}=-\frac{p_{s} R_{s}}{h \eta \omega_{r s}} \dot{\phi} \quad 2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{r s}}\right)=e \hat{V}\left(\sin \phi-\sin \phi_{s}\right) \\
\text { deriving and combining } \\
\downarrow \\
\frac{d}{d t}\left[\frac{R_{s} p_{s}}{h \eta \omega_{r s}} \frac{d \phi}{d t}\right]+\frac{e \hat{V}}{2 \pi}\left(\sin \phi-\sin \phi_{s}\right)=0
\end{gathered}
$$

This second order equation is non linear. Moreover the parameters within the bracket are in general slowly varying with time.
We will study some cases in the following...

Small Amplitude Oscillations

Let's assume constant parameters R_{s}, p_{s}, ω_{s} and η :

$$
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \quad \text { with }
$$

$$
\Omega_{s}^{2}=\frac{h \eta \omega_{r s} e \hat{V} \cos \phi_{s}}{2 \pi R_{s} p_{s}}
$$

Consider now small phase deviations from the reference particle:

$$
\sin \phi-\sin \phi_{s}=\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s} \cong \cos \phi_{s} \Delta \phi
$$

and the corresponding linearized motion reduces to a harmonic oscillation:

$$
\ddot{\phi}+\Omega_{s}^{2} \Delta \phi=0
$$

where Ω_{s} is the synchrotron angular frequency

Stability condition for ϕ_{s}

Stability is obtained when Ω_{s} is real and so $\Omega_{s}{ }^{2}$ positive:

$$
\Omega_{s}^{2}=\frac{e \hat{V}_{R F} \eta h \omega_{s}}{2 \pi R_{s} p_{s}} \cos \phi_{s} \Rightarrow \Omega_{s}^{2}>0 \Leftrightarrow \eta \cos \phi_{s}>0
$$

Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the second order differential equation is non-linear:

$$
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \quad\left(\Omega_{s} \text { as previously defined }\right)
$$

Multiplying by $\dot{\phi}$ and integrating gives an invariant of the motion:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I
$$

which for small amplitudes reduces to:

$$
\frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \frac{(\Delta \phi)^{2}}{2}=I^{\prime}
$$

(the variable is $\Delta \phi$, and ϕ_{s} is constant)

Similar equations exist for the second variable : $\Delta \mathrm{E} \propto \mathrm{d} \phi / \mathrm{d} \dagger$

Large Amplitude Oscillations (2)

When ϕ reaches $\pi-\phi_{s}$ the force goes to zero and beyond it becomes non restoring.
Hence $\pi-\phi_{s}$ is an extreme amplitude for a stable motion which in the phase space($\left(\frac{\dot{\phi}}{\Omega_{s}}, \Delta \phi\right)$ is shown as closed trajectories.

Equation of the separatrix:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}\right)
$$

Second value ϕ_{m} where the separatrix crosses the horizontal axis:

$$
\cos \phi_{m}+\phi_{m} \sin \phi_{s}=\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}
$$

Area within this separatrix is called "RF bucket".

Energy Acceptance

From the equation of motion it is seen that ϕ reaches an extreme when $\phi=0$, hence corresponding to $\phi=\phi_{s}$.
Introducing this value into the equation of the separatrix gives:

$$
\dot{\phi}_{\max }^{2}=2 \Omega_{s}^{2}\left\{2+\left(2 \phi_{s}-\pi\right) \tan \phi_{s}\right\}
$$

That translates into an acceptance in energy:

$$
\begin{aligned}
& \left(\frac{\Delta E}{E_{s}}\right)_{\max }=\mp \beta \sqrt{-\frac{e \hat{V}}{\pi h \eta E_{s}} G\left(\phi_{s}\right)} \\
& G\left(\phi_{s}\right)=\left[2 \cos \phi_{s}+\left(2 \phi_{s}-\pi\right) \sin \phi_{s}\right]
\end{aligned}
$$

This "RF acceptance" depends strongly on ϕ_{s} and plays an important role for the capture at injection, and the stored beam lifetime.
It's largest for $\phi_{s}=0$ and $\phi_{s}=\pi$ (no acceleration, depending on η).

RF Acceptance versus Synchronous Phase

The areas of stable motion (closed trajectories) are called "BUCKET".

As the synchronous phase gets closer to 90° the buckets gets smaller.

The number of circulating buckets is equal to " h ".

The phase extension of the bucket is maximum for ϕ_{s} $=180^{\circ}$ (or 0°) which correspond to no acceleration. The RF acceptance increases with the RF voltage.

Stationnary Bucket - Separatrix

This is the case $\sin \phi_{s}=0$ (no acceleration) which means $\phi_{s}=0$ or π. The equation of the separatrix for $\phi_{s}=\pi$ (above transition) becomes:

$$
\frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=\Omega_{s}^{2}
$$

$$
\frac{\dot{\phi}^{2}}{2}=2 \Omega_{s}^{2} \sin ^{2} \frac{\phi}{2}
$$

Replacing the phase derivative by the (canonical) variable W:

$$
W=2 \pi \frac{\Delta E}{\omega_{r s}}=-2 \pi \frac{p_{s} R_{s}}{h \eta_{\omega_{r s}}} \dot{\phi}
$$

and introducing the expression for Ω_{s} leads to the following equation for the separatrix:
with $C=2 \pi R_{s}$

$$
W= \pm 2 \frac{C}{c} \sqrt{\frac{-e \hat{V} E_{s}}{2 \pi h \eta}} \sin \frac{\phi}{2}= \pm W_{b k} \sin \frac{\phi}{2}
$$

Stationnary Bucket (2)

Setting $\phi=\pi$ in the previous equation gives the height of the bucket:

$$
W_{b k}=2 \frac{C}{c} \sqrt{\frac{-e \hat{V} E_{s}}{2 \pi h \eta}}
$$

This results in the maximum energy acceptance:

$$
\Delta E_{\max }=\frac{\omega_{r s}}{2 \pi} W_{b k}=\beta_{s} \sqrt{2 \frac{-e \hat{V}_{R F} E_{s}}{\pi \eta h}}
$$

The area of the bucket is: $\quad A_{b k}=2 \int_{0}^{2 \pi} W d \phi$
Since: $\quad \int_{0}^{2 \pi} \sin \frac{\phi}{2} d \phi=4$
one gets: $\quad A_{b k}=8 W_{b k}=16 \frac{C}{c} \sqrt{\frac{-e \hat{V} E_{s}}{2 \pi h \eta}} \quad \longrightarrow \quad W_{b k}=\frac{A_{b k}}{8}$

Effect of a Mismatch

Injected bunch: short length and large energy spread after $1 / 4$ synchrotron period: longer bunch with a smaller energy spread.

For larger amplitudes, the angular phase space motion is slower
($1 / 8$ period shown below) \Rightarrow can lead to filamentation and emittance growth

restoring force is non-linear

stationary bucket

accelerating bucket

Effect of a Mismatch (2)

Evolution of an injected beam for the first 100 turns.
For a matched transfer, the emittance does not grow (left).

matched beam

mismatched beam - bunch length

Effect of a Mismatch (3)

Evolution of an injected beam for the first 100 turns.
For a mismatched transfer, the emittance increases (right).

matched beam

mismatched beam - phase error

Bunch Rotation

Phase space motion can be used to make short bunches.
Start with a long bunch and extract or recapture when it's short.

initial beam

The LHC25 (ns) cycle in the PS

\rightarrow Each bunch from the Booster divided by $12 \rightarrow 6 \times 3 \times 2 \times 2=72$

Bunch Manipulation in the PS

Two times double splitting and bunch rotation:

Capture of a Debunched Beam with Fast Turn-On

Capture of a Debunched Beam with Adiabatic Turn-On

Bunch Matching into a Stationnary Bucket

A particle trajectory inside the separatrix is described by the equation:

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I \quad \xrightarrow{\phi_{s}=\pi} \quad \frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=I
$$

The points where the trajectory crosses the axis are symmetric with respect to $\phi_{s}=\pi$

$$
\begin{array}{r}
\frac{\dot{\phi}^{2}}{2}+\Omega_{s}^{2} \cos \phi=\Omega_{s}^{2} \cos \phi_{m} \\
\dot{\phi}= \pm \Omega_{s} \sqrt{2\left(\cos \phi_{m}-\cos \phi\right)} \\
W= \pm W_{b k} \sqrt{\cos ^{2} \frac{\varphi_{m}}{2}-\cos ^{2} \frac{\varphi}{2}} \\
\cos (\phi)=2 \cos ^{2} \frac{\phi}{2}-1
\end{array}
$$

Bunch Matching into a Stationnary Bucket (2)

Setting $\phi=\pi$ in the previous formula allows to calculate the bunch height:

$$
\begin{gathered}
W_{b}=W_{b k} \cos \frac{\phi_{m}}{2}=W_{b k} \sin \frac{\hat{\phi}}{2} \quad \text { or: } \quad W_{b}=\frac{A_{b k}}{8} \cos \frac{\phi_{m}}{2} \\
\longrightarrow\left(\frac{\Delta E}{E_{s}}\right)_{b}=\left(\frac{\Delta E}{E_{s}}\right)_{R F} \cos \frac{\phi_{m}}{2}=\left(\frac{\Delta E}{E_{s}}\right)_{R F} \sin \frac{\hat{\phi}}{2}
\end{gathered}
$$

This formula shows that for a given bunch energy spread the proper matching of a shorter bunch (ϕ_{m} close to $\pi, \hat{\phi}$ small) will require a bigger RF acceptance, hence a higher voltage

For small oscillation amplitudes the equation of the ellipse reduces to:

$$
W=\frac{A_{b k}}{16} \sqrt{\hat{\phi}^{2}-(\Delta \phi)^{2}} \quad \longrightarrow \quad\left(\frac{16 W}{A_{b k} \hat{\phi}}\right)^{2}+\left(\frac{\Delta \phi}{\hat{\phi}}\right)^{2}=1
$$

Ellipse area is called longitudinal emittance

$$
A_{b}=\frac{\pi}{16} A_{b k} \hat{\phi}^{2}
$$

Summary

- Cyclotrons/Synchrocylotrons for low energy
- Synchrotrons for high energies constant orbit, rising field and frequency
- Particles with higher energy have a longer orbit (normally) but a higher velocity
- at low energies (below transition) velocity increase dominates
- at high energies (above transition) velocity almost constant
- Particles perform oscillations around synchronous phase
- synchronous phase depending on acceleration
- below or above transition
- bucket is the region in phase space for stable oscillations
- matching the shape of the bunch to the bucket is important

Bibliography

M. Conte, W.W. Mac Kay An Introduction to the Physics of particle Accelerators
(World Scientific, 1991)
P. J. Bryant and K. Johnsen The Principles of Circular Accelerators and Storage Rings
(Cambridge University Press, 1993)
D. A. Edwards, M. J. Syphers An Introduction to the Physics of High Energy Accelerators
(J. Wiley \& sons, Inc, 1993)
H. Wiedemann

Particle Accelerator Physics
(Springer-Verlag, Berlin, 1993)
M. Reiser
A. Chao, M. Tigner
K. Wille The Physics of Particle Accelerators: An Introduction
E.J.N. Wilson

Theory and Design of Charged Particles Beams
(J. Wiley \& sons, 1994)

Handbook of Accelerator Physics and Engineering (World Scientific 1998)
(Oxford University Press, 2000)
An introduction to Particle Accelerators
(Oxford University Press, 2001)

Acknowledgements

I would like to thank everyone for the material that I have used.

In particular (hope I don't forget anyone):

- Joël Le Duff
- Rende Steerenberg
- Gerald Dugan
- Heiko Damerau
- Werner Pirkl
- Genevieve Tulloue
- Mike Syphers
- Daniel Schulte
- Roberto Corsini

