Beam Transfer Lines

- Distinctions between transfer lines and circular machines
- Linking machines together
- Blow-up from steering errors
- Correction of injection oscillations
- Blow-up from optics mismatch
- Optics measurement
- Blow-up from thin screens

Verena Kain
CERN
(based on lecture by B. Goddard and M. Meddahi)

Injection, extraction and transfer

- An accelerator has limited dynamic range
- Chain of stages needed to reach high energy
- Periodic re-filling of storage rings, like LHC
- External experiments, like CNGS

Transfer lines transport the beam between accelerators, and onto targets, dumps, instruments etc.

LHC:	Large Hadron Collider
SPS:	Super Proton Synchrotron
AD:	Antiproton Decelerator
ISOLDE:	Isotope Separator Online Device
PSB:	Proton Synchrotron Booster
PS:	Proton Synchrotron
LINAC:	LINear Accelerator
LEIR:	Low Energy Ring
CNGS:	CERN Neutrino to Gran Sasso

Normalised phase space

- Transform real transverse coordinates x, x^{\prime} by

$$
\begin{aligned}
& {\left[\begin{array}{l}
\overline{\mathbf{X}} \\
\overline{\mathbf{X}^{\prime}}
\end{array}\right]=\mathbf{N} \cdot\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right]=\sqrt{\frac{1}{\beta_{S}}} \cdot\left[\begin{array}{cc}
1 & 0 \\
\alpha_{S} & \beta_{S}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right]} \\
& \overline{\mathbf{X}}=\sqrt{\frac{1}{\beta_{S}}} \cdot x \\
& \overline{\mathbf{X}}^{\prime}=\sqrt{\frac{1}{\beta_{S}}} \cdot \alpha_{S} x+\sqrt{\beta_{S}} x^{\prime}
\end{aligned}
$$

Normalised phase space

General transport

Beam transport: moving from s_{1} to s_{2} through n elements, each with transfer matrix M_{i}

$$
\left[\begin{array}{l}
x_{2} \\
x_{2}^{\prime}
\end{array}\right]=\mathbf{M}_{1 \rightarrow 2} \cdot\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right] \quad \mathbf{M}_{1 \rightarrow 2}=\prod_{i=1}^{n} \mathbf{M}_{n}
$$

Twiss

$$
=\left[\begin{array}{cc}
\sqrt{\beta_{2} / \beta_{1}}\left(\cos \Delta \mu+\alpha_{1} \sin \Delta \mu\right) & \sqrt{\beta_{1} \beta_{2}} \sin \Delta \mu \\
\sqrt{1 / \beta_{1} \beta_{2}}\left[\left(\alpha_{1}-\alpha_{2}\right) \cos \Delta \mu-\left(1+\alpha_{1} \alpha_{2}\right) \sin \Delta \mu\right] & \sqrt{\beta_{1} / \beta_{2}}\left(\cos \Delta \mu-\alpha_{2} \sin \Delta \mu\right)
\end{array}\right]
$$

Circular Machine

Circumference $=\mathrm{L}$

One turn

$$
\mathbf{M}_{\mathbf{1} \rightarrow \mathbf{2}}=\mathbf{M}_{\mathbf{0} \rightarrow L}=\left[\begin{array}{cc}
\cos 2 \pi Q+\alpha \sin 2 \pi Q & \beta \sin 2 \pi Q \\
-1 / \beta\left(1+\alpha^{2}\right) \sin 2 \pi Q & \cos 2 \pi Q-\alpha \sin 2 \pi Q
\end{array}\right]
$$

- The solution is periodic
- Periodicity condition for one turn (closed ring) imposes $\alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}, D_{1}=D_{2}$
- This condition uniquely determines $\alpha(s), \beta(s), \mu(s), D(s)$ around the whole ring

Circular Machine

- Periodicity of the structure leads to regular motion
- Map single particle coordinates on each turn at any location
- Describes an ellipse in phase space, defined by one set of α and β values \Rightarrow Matched Ellipse (for this location)

$$
\begin{aligned}
& a=\gamma \cdot x^{2}+2 \alpha \cdot x \cdot x^{\prime}+\beta \cdot x^{\prime 2} \\
& \gamma=\frac{1+\alpha^{2}}{\beta}
\end{aligned}
$$

Circular Machine

- For a location with matched ellipse (α, β), an injected beam of emittance ε, characterised by a different ellipse (α^{*}, β^{*}) generates (via filamentation) a large ellipse with the original α, β, but larger ε

Transfer line

One pass: $\quad\left[\begin{array}{l}x_{2} \\ x_{2}^{\prime}\end{array}\right]=\mathbf{M}_{1 \rightarrow 2} \cdot\left[\begin{array}{l}x_{1} \\ x_{1}^{\prime}\end{array}\right]$

$$
\mathbf{M}_{1 \rightarrow 2}=\left[\begin{array}{cc}
\sqrt{\beta_{2} / \beta_{1}}\left(\cos \Delta \mu+\alpha_{1} \sin \Delta \mu\right) & \sqrt{\beta_{1} \beta_{2}} \sin \Delta \mu \\
\sqrt{1 / \beta_{1} \beta_{2}}\left[\left(\alpha_{1}-\alpha_{2}\right) \cos \Delta \mu-\left(1+\alpha_{1} \alpha_{2}\right) \sin \Delta \mu\right] & \sqrt{\beta_{1} / \beta_{2}}\left(\cos \Delta \mu-\alpha_{2} \sin \Delta \mu\right)
\end{array}\right]
$$

- No periodic condition exists
- The Twiss parameters are simply propagated from beginning to end of line
- At any point in line, $\alpha(s) \beta(s)$ are functions of $\alpha_{1} \beta_{1}$

Transfer line

- On a single pass...
- Map single particle coordinates at entrance and exit.
- Infinite number of equally valid possible starting ellipses for single particletransported to infinite number of final ellipses...

Transfer Line

Transfer Line

- Initial α, β defined for transfer line by beam shape at entrance

Gaussian beam

Non-Gaussian beam (e.g. slow extracted)

- Propagation of this beam ellipse depends on line elements
- A transfer line optics is different for different input beams

Transfer Line

- The optics functions in the line depend on the initial values

- Same considerations are true for Dispersion function:
- Dispersion in ring defined by periodic solution \rightarrow ring elements
- Dispersion in line defined by initial D and D' and line elements

Transfer Line

- Another difference....unlike a circular ring, a change of an element in a line affects only the downstream Twiss values (including dispersion)

Linking Machines

- Beams have to be transported from extraction of one machine to injection of next machine
- Trajectories must be matched, ideally in all 6 geometric degrees of freedom ($x, y, z, \theta, \phi, \psi$)
- Other important constraints can include
- Minimum bend radius, maximum quadrupole gradient, magnet aperture, cost, geology

Linking Machines

The Twiss parameters can be propagated when the transfer matrix \mathbf{M} is known

$$
\left[\begin{array}{l}
x_{2} \\
x_{2}^{\prime}
\end{array}\right]=\mathbf{M}_{1 \rightarrow 2} \cdot\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\beta_{2} \\
\alpha_{2} \\
\gamma_{2}
\end{array}\right]=\left[\begin{array}{ccc}
C^{2} & -2 C S & S^{2} \\
-C C^{\prime} & C S^{\prime}+S C^{\prime} & -S S^{\prime} \\
C^{\prime 2} & -2 C^{\prime} S^{\prime} & S^{\prime 2}
\end{array}\right] \cdot\left[\begin{array}{l}
\beta_{1} \\
\alpha_{1} \\
\gamma_{1}
\end{array}\right]
$$

Linking Machines

- Linking the optics is a complicated process
- Parameters at start of line have to be propagated to matched parameters at the end of the line
- Need to "match" 8 variables ($\alpha_{x} \beta_{x} D_{x} D^{\prime}{ }_{x}$ and $\alpha_{y} \beta_{y} D_{y} D^{\prime}{ }_{y}$)
- Maximum β and D values are imposed by magnet apertures
- Other constraints can exist
- phase conditions for collimators,
- insertions for special equipment like stripping foils
- Need to use a number of independently powered ("matching") quadrupoles
- Matching with computer codes and relying on mixture of theory, experience, intuition, trial and error, ...

Linking Machines

- For long transfer lines we can simplify the problem by designing the line in separate sections
- Regular central section - e.g. FODO or doublet, with quads at regular spacing, (+ bending dipoles), with magnets powered in series
- Initial and final matching sections - independently powered quadrupoles, with sometimes irregular spacing.

Trajectory correction

- Magnet misalignments, field and powering errors cause the trajectory to deviate from the design
- Use small independently powered dipole magnets (correctors) to steer the beam
- Measure the response using monitors (pick-ups) downstream of the corrector ($\pi / 2,3 \pi / 2, \ldots$)

- Horizontal and vertical elements are separated
- H-correctors and pick-ups located at F-quadrupoles (large β_{x})
- V-correctors and pick-ups located at D-quadrupoles (large β_{y})

Trajectory correction

- Global correction can be used which attempts to minimise the RMS offsets at the BPMs, using all or some of the available corrector magnets.
- Steering in matching sections, extraction and injection region requires particular care
- D and β functions can be large \rightarrow bigger beam size
- Often very limited in aperture
- Injection offsets can be detrimental for performance

Trajectory correction

Steering (dipole) errors

- Precise delivery of the beam is important.
- To avoid injection oscillations and emittance growth in rings
- For stability on secondary particle production targets
- Convenient to express injection error in σ (includes x and x ' errors)

$$
\Delta \mathrm{a}[\sigma]=\sqrt{ }\left(\left(\mathbf{X}^{2}+\mathbf{X}^{\prime} 2\right) / \varepsilon\right)=\sqrt{ }\left(\left(\gamma x^{2}+2 \alpha x x x^{\prime}+\beta x^{\prime 2}\right) / \varepsilon\right)
$$

Steering (dipole) errors

- Static effects (e.g. from errors in alignment, field, calibration, ...) are dealt with by trajectory correction (steering).
- But there are also dynamic effects, from:
- Power supply ripples
- Temperature variations
- Non-trapezoidal kicker waveforms
- These dynamic effects produce a variable injection offset which can vary from batch to batch, or even within a batch.

- An injection damper system is used to minimize effect on emittance

Blow-up from steering error

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with a error in angle and position.
- For an injection error $\Delta \mathrm{a}_{\mathrm{y}}$ (in units of sigma $=\sqrt{ } \beta \varepsilon$) the mis-injected beam is offset in normalised phase space by $L=\Delta a_{y} \sqrt{ } \varepsilon$

Blow-up from steering error

- The new particle coordinates in normalised phase space are

$$
\begin{aligned}
& \overline{\mathbf{X}}_{\text {new }}=\overline{\mathbf{X}}_{0}+\mathrm{L} \cos \theta \\
& \overline{\mathbf{X}}_{\text {new }}^{\prime}=\overline{\mathbf{X}}_{0}^{\prime}+\mathrm{L} \sin \theta
\end{aligned}
$$

- For a general particle distribution, where A denotes amplitude in normalised phase space

$$
\begin{gathered}
\mathrm{A}^{2}=\overline{\mathrm{X}}^{2}+\overline{\mathrm{X}}^{\prime 2} \\
\varepsilon=\left\langle\mathrm{A}^{2}\right\rangle / 2
\end{gathered}
$$

Blow-up from steering error

- So if we plug in the new coordinates....

$$
\begin{aligned}
\boldsymbol{A}_{\text {neew }}^{2} & =\overline{\boldsymbol{X}}_{\text {newo }}^{2}+\overline{\boldsymbol{X}}_{\text {neev }}^{\prime 2}=\left(\overline{\boldsymbol{X}}_{0}+\boldsymbol{L} \cos \theta\right)^{2}+\left(\overline{\boldsymbol{X}}_{0}^{\prime}+\boldsymbol{L} \sin \theta\right)^{2} \\
& =\overline{\boldsymbol{X}}_{0}^{2}+\overline{\boldsymbol{X}}_{0}^{\prime 2}+2 \boldsymbol{L}\left(\overline{\boldsymbol{X}}_{0} \cos \theta+\overline{\boldsymbol{X}}_{0}^{\prime} \sin \theta\right)+\boldsymbol{L}^{2} \\
\left\langle\boldsymbol{A}_{\text {nevo }}^{2}\right\rangle & =\left\langle\overline{\boldsymbol{X}}_{0}^{2}\right\rangle+\left\langle\overline{\boldsymbol{X}}_{0}^{\prime 2}\right\rangle+\left\langle 2 \boldsymbol{L}\left(\overline{\boldsymbol{X}}_{0} \cos \theta+\overline{\boldsymbol{X}}_{0}^{\prime} \sin \theta\right)\right\rangle+\left\langle\mathbf{L}^{2}\right\rangle \\
& =2 \varepsilon_{0}+2 \boldsymbol{L}\left(\left\langle\cos \theta \overline{\boldsymbol{X}}_{0}\right\rangle^{0}+\left\langle\sin \theta \overline{\boldsymbol{X}}_{0}\right\rangle\right)+\boldsymbol{L}^{2} \\
& =2 \varepsilon_{0}+\boldsymbol{L}^{2}
\end{aligned}
$$

- Giving for the emittance increase

$$
\begin{aligned}
\varepsilon_{\text {new }} & =\left\langle\mathbf{A}_{\text {new }}{ }^{2}\right\rangle / 2=\varepsilon_{0}+\mathbf{L}^{2} / 2 \\
& =\varepsilon_{0}\left(1+\Delta \mathbf{a}^{2} / 2\right)
\end{aligned}
$$

Blow-up from steering error

A numerical example....
Consider an offset $\Delta \mathrm{a}$ of 0.5 sigma for injected beam

$$
\begin{aligned}
\varepsilon_{\text {new }} & =\varepsilon_{0}\left(\mathbf{1}+\Delta \mathrm{a}^{2} / \mathbf{2}\right) \\
& =1.125 \varepsilon_{0}
\end{aligned}
$$

For nominal LHC beam:
$\varepsilon_{\text {norm }}=3.5 \mu \mathrm{~m}$
allowed growth through LHC cycle ~ 10 \%

Injection oscillation correction

- $\mathrm{x}, \mathrm{x}^{\prime}$ and $\mathrm{y}, \mathrm{y}^{\prime}$ at injection point need to be corrected.
- Minimum diagnostics: 2 pickups per plane, 90° phase advance apart
- Pickups need to be triggered to measure on the first turn
- Correctors in the transfer lines are used to minimize offset at these pickups.
- Best strategy:
- Acquire many BPMs in circular machine (e.g. one octant/sextant of machine)
- Combine acquisition of transfer line and of BPMs in circular machine
- Transfer line: difference trajectory to reference
- Circular machine: remove closed orbit from first turn trajectory \rightarrow pure injection oscillation
- Correct combined trajectory with correctors in transfer line with typical correction algorithms. Use correctors of the line only.

Example: LHC injection of beam 1

Display from the LHC control room to correct injection oscillations

Injection point in LHC IR2

Example: LHC injection of beam 1

- Oscillation down the line has developed in horizontal plane
- Injection oscillation amplitude > 1.5 mm
- Good working range of LHC transverse damper +/- 2 mm

- Aperture margin for injection oscillation is 2 mm
(1) \rightarrow correct trajectory in line before continue LHC filling

Blow-up from betatron mismatch

- Optical errors occur in transfer line and ring, such that the beam can be injected with a mismatch.
- Filamentation will produce an emittance increase.
- In normalised phase space, consider the matched beam as a circle, and the mismatched beam as an ellipse.

Blow-up from betatron mismatch

General betatron motion

$$
x_{2}=\sqrt{a_{2}{ }_{2}} \sin \left(+{ }_{o}\right), \quad x_{2}^{\prime}=\sqrt{a_{2} /{ }_{2}}\left[\cos \left(+_{o}\right) \quad{ }_{2} \sin \left(+_{o}\right)\right]
$$

applying the normalising transformation for the matched beam

$$
\left[\begin{array}{l}
\bar{X}_{2} \\
\bar{X}_{2}
\end{array}\right]=\sqrt{\frac{1}{\beta_{1}}} \cdot\left[\begin{array}{cc}
1 & 0 \\
\alpha_{1} & \beta_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
x_{2}^{\prime}
\end{array}\right]
$$

an ellipse is obtained in normalised phase space

$$
A^{2}=\overline{\mathrm{X}}_{2}^{2}\left[\frac{\beta_{1}}{\beta_{2}}+\frac{\beta_{2}}{\beta_{1}}\left(\alpha_{1}-\alpha_{2} \frac{\beta_{1}}{\beta_{2}}\right)^{2}\right]+\overline{\mathrm{X}}_{2}^{\prime} \frac{\beta_{2}}{\beta_{1}}-2 \overline{\mathrm{X}}_{2} \overline{\mathrm{X}}_{2}^{\prime}\left[\frac{\beta_{2}}{\beta_{1}}\left(\alpha_{1}-\alpha_{2} \frac{\beta_{1}}{\beta_{2}}\right)\right]
$$

characterised by $\gamma_{\text {new }}, \beta_{\text {new }}$ and $\alpha_{\text {new }}$, where

$$
\alpha_{\text {new }}=\frac{-\beta_{2}}{\beta_{1}}\left(\alpha_{1}-\alpha_{2} \frac{\beta_{1}}{\beta_{2}}\right), \quad \beta_{\text {new }}=\frac{\beta_{2}}{\beta_{1}}, \quad \gamma_{\text {new }}=\frac{\beta_{1}}{\beta_{2}}+\frac{\beta_{2}}{\beta_{1}}\left(\alpha_{1}-\alpha_{2} \frac{\beta_{1}}{\beta_{2}}\right)^{2}
$$

Blow-up from betatron mismatch

From the general ellipse properties
$a=\frac{A}{\sqrt{2}}(\sqrt{H+1}+\sqrt{H-1}), \quad b=\frac{A}{\sqrt{2}}(\sqrt{H+1}-\sqrt{H-1})$
where

$$
\begin{aligned}
H & =\frac{1}{2}\left(\gamma_{\text {new }}+\beta_{\text {new }}\right) \\
& =\frac{1}{2}\left(\frac{\beta_{1}}{\beta_{2}}+\frac{\beta_{2}}{\beta_{1}}\left(\alpha_{1}-\alpha_{2} \frac{\beta_{1}}{\beta_{2}}\right)^{2}+\frac{\beta_{2}}{\beta_{1}}\right)
\end{aligned}
$$

giving

$$
\begin{array}{lc}
\lambda=\frac{1}{\sqrt{2}}(\sqrt{H+1}+\sqrt{H-1}), & \frac{1}{\lambda}=\frac{1}{\sqrt{2}}(\sqrt{H+1}-\sqrt{H-1}) \\
\overline{\mathbf{X}}_{\text {new }}=\lambda \cdot \mathbf{A} \sin \left(\phi+\phi_{1}\right), & \overline{\mathbf{X}}_{\text {new }}=\frac{1}{\lambda} \mathbf{A} \cos \left(\phi+\phi_{1}\right)
\end{array}
$$

Blow-up from betatron mismatch

We can evaluate the square of the distance of a particle from the origin as

$$
\mathbf{A}_{\text {new }}^{2}=\overline{\mathbf{X}}_{\text {new }}^{2}+\overline{\mathrm{X}}_{\text {new }}^{2}=\lambda^{2} \cdot \mathrm{~A}_{0}^{2} \sin ^{2}\left(\phi+\phi_{1}\right)+\frac{\mathbf{1}}{\lambda^{2}} \mathrm{~A}_{0}^{2} \cos ^{2}\left(\phi+\phi_{1}\right)
$$

The new emittance is the average over all phases

$$
\begin{aligned}
\varepsilon_{\text {new }} & =\frac{1}{\mathbf{2}}\left\langle\mathbf{A}_{\text {new }}^{2}\right\rangle=\frac{1}{\mathbf{1}}\left(\lambda^{2}\left\langle\mathbf{A}_{0}^{2} \sin ^{2}\left(\phi+\phi_{\gamma}\right)\right\rangle+\frac{\mathbf{1}}{\lambda^{2}}\left\langle\mathbf{A}_{0}^{2} \cos ^{2}\left(\phi+\phi_{\gamma}\right)\right\rangle\right) \\
& =\frac{1}{2}\left\langle\mathbf{A}_{0}^{2}\right\rangle\left(\lambda^{2}\left\langle\sin ^{2} /\left\langle\phi+\phi_{\gamma}\right)\right\rangle+\frac{\mathbf{1}}{\lambda^{2}}\left\langle\cos ^{2}\left\langle\phi+\phi_{\gamma}\right)\right\rangle\right) \\
& =\frac{\mathbf{1}}{\mathbf{2}} \varepsilon_{0}\left(\lambda^{2}+\frac{\mathbf{1}}{\lambda^{2}}\right)
\end{aligned}
$$

If we' re feeling diligent, we can substitute back for λ to give
$\varepsilon_{\text {new }}=\frac{1}{2} \varepsilon_{0}\left(\lambda^{2}+\frac{1}{\lambda^{2}}\right)=H \varepsilon_{0}=\frac{1}{2} \varepsilon_{0}\left(\frac{\beta_{1}}{\beta_{2}}+\frac{\beta_{2}}{\beta_{1}}\left(\alpha_{1}-\alpha_{2} \frac{\beta_{1}}{\beta_{2}}\right)^{2}+\frac{\beta_{2}}{\beta_{1}}\right)$
where subscript 1 refers to matched ellipse, 2 to mismatched ellipse.

Blow-up from betatron mismatch

A numerical example....consider $b=3 a$ for the mismatched ellipse

$$
\lambda=\sqrt{b / a}=\sqrt{3}
$$

Then

$$
\begin{aligned}
\varepsilon_{\text {new }} & =\frac{1}{2} \varepsilon_{0}\left(\lambda^{2}+1 / \lambda^{2}\right) \\
& =1.67 \varepsilon_{0}
\end{aligned}
$$

OPTICS AND EMITTANCE MEASUREMENT IN TRANSFER LINES

Dispersion measurement

- Introduce ~ few permille momentum offset at extraction into transfer line
- Measure position at different monitors for different momentum offset
- Linear fit of position versus dp / p at each BPM/screens.
cs \rightarrow Dispersion at the BPMs/screens

$$
x(s)=x(s)+D(s) \times \frac{d p}{p}
$$

Optics measurement with screens

- A profile monitor is needed to measure the beam size
- e.g. beam screen (luminescent) provides 2D density profile of the beam
- Profile fit gives transverse beam sizes σ.
- In a ring, β is 'known' so ε can be calculated from a single screen

Optics Measurement with 3 Screens

- Assume 3 screens in a dispersion free region
- Measurements of $\sigma_{1}, \sigma_{2}, \sigma_{3}$, plus the two transfer matrices M_{12} and M_{13} allows determination of ε, α and β

Optics Measurement with 3 Screens

- Remember:

$$
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 3
\end{aligned}=C_{2}^{2} \not_{1} \quad C_{3}^{2} \not_{1} \quad 2 C_{2} S_{2} \times_{1}+S_{2}^{2} C_{3} S_{3} \times_{1}+S_{3}^{2} \times_{1}
$$

Square of beam sizes as function of optical functions at first screen

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{2} \\
x_{2}^{\prime}
\end{array}\right]=\mathbf{M}_{1 \rightarrow 2} \cdot\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]} \\
& 2 \quad C_{2}^{2} \quad 2 C_{2} S_{2} \quad S_{2}^{2} \quad 1 \\
& { }_{2}=C_{2} C_{2}{ }^{\prime} C_{1} S_{1}{ }^{\prime}+S_{1} C_{1}{ }^{\prime} \quad S_{2} S_{2}{ }^{\prime} \times{ }_{1} \\
& 2 \quad C_{2}{ }^{\prime 2} \quad 2 C_{2}{ }^{\prime} S_{2}{ }^{\prime} \quad S_{2}{ }^{\prime 2} \\
& \left.\begin{array}{ll}
{ }_{2}=C_{2}^{2} \times_{1} & 2 C_{2} S_{2} \times{ }_{1}+S_{2}^{2} \times_{1} \\
{ }_{3}=C_{3}^{2} \times_{1} & 2 C_{3} S_{3} \times{ }_{1}+S_{3}^{2} \times_{1}
\end{array} \right\rvert\, \times \varepsilon
\end{aligned}
$$

Optics Measurement with 3 Screens

- Define matrix N where $\Sigma=\mathrm{N} \Pi$
- Measure beam sizes and want to calculate $\beta_{1}, \alpha_{1}, \varepsilon$
- Solution to our problem $\Sigma^{\prime}=\mathrm{N}^{-1} \Sigma$
- with $\beta_{1} \gamma_{1}-\alpha_{1}^{2}=1$ get 3 equations for β_{1}, α_{1} and ε - the optical functions at the first screen

$$
\begin{array}{ll}
1=A / \sqrt{A C B^{2}} \\
=B / \sqrt{A C B^{2}} \quad \text { with } \quad & \begin{array}{l}
A
\end{array}{ }_{1} \\
=\sqrt{A C B^{2}} &
\end{array} \begin{aligned}
& B={ }_{3}
\end{aligned}
$$

...and if there is dispersion at the screens

- Dispersion and momentum spread need to be measured independently at the different screens
- Trajectory transforms with T_{i} transport matrix for $\delta \neq 0$
$\square \xi_{\mathrm{i}}$ is the contribution to the dispersion between the first and the $\mathrm{i}^{\text {th }}$ screen

$$
\begin{aligned}
& x_{i} \div C_{i} S_{i} \div x_{1} \div \\
& x_{i} \dot{\doteqdot}=C_{i} \quad S_{i} \quad i \dot{\div} \times x_{1} \div \quad D_{i}=C_{i} D_{i}+S_{i} D_{i}+{ }_{i}
\end{aligned}
$$

- Define 6 dimensional Σ and Π and respective N and then same procedure as before

$$
\begin{aligned}
& =\begin{array}{cc}
1+D_{1}^{2} & \\
& \\
1 D_{1} D_{1} & \\
& \\
& \vdots \\
1+D_{1}{ }^{2} & \\
& \vdots \\
D_{1}{ }^{2} & \vdots \\
D_{1}{ }^{2} & \vdots \\
& \vdots \\
& \\
& \\
&
\end{array}
\end{aligned}
$$

6 screens with dispersion

- Can measure $\beta, \alpha, \varepsilon, \mathrm{D}, \mathrm{D}$ ' and δ with 6 screens without any other measurements.

$$
\Sigma=\left(\begin{array}{c}
\sigma_{1}^{2} \\
\sigma_{2}^{2} \\
\sigma_{3}^{2} \\
\sigma_{4}^{2} \\
\sigma_{5}^{2} \\
\sigma_{6}^{2}
\end{array}\right), \Pi=\left(\begin{array}{c}
\beta_{1} \varepsilon+D_{1}^{2} \delta^{2} \\
\alpha_{1} \varepsilon-D_{1} D_{1}^{\prime} \delta^{2} \\
\gamma_{1} \varepsilon+D_{1}^{\prime 2} \delta^{2} \\
D_{1} \delta^{2} \\
D_{1}^{\prime} \delta^{2} \\
\delta^{2}
\end{array}\right), \mathcal{N}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
C_{2}^{2} & -2 C_{2} S_{2} & S_{2}^{2} & 2 C_{2} \xi_{2} & 2 S_{2} \xi_{2} & \xi_{2} \\
C_{3}^{2} & -2 C_{3} S_{3} & S_{3}^{2} & 2 C_{3} \xi_{3} & 2 S_{3} \xi_{3} & \xi_{3} \\
C_{4}^{2} & -2 C_{4} S_{4} & S_{4}^{2} & 2 C_{4} \xi_{4} & 2 S_{4} \xi_{4} & \xi_{4} \\
C_{5}^{2} & -2 C_{5} S_{5} & S_{5}^{2} & 2 C_{5} \xi_{5} & 2 S_{5} \xi_{5} & \xi_{5} \\
C_{6}^{2} & -2 C_{6} S_{6} & S_{6}^{2} & 2 C_{6} \xi_{6} & 2 S_{6} \xi_{6} & \xi_{6}
\end{array}\right)
$$

- Invert N, multiply with Σ to get Σ^{\prime}

$$
\begin{aligned}
& { }^{2}={ }_{6} \\
& D_{1}=4{ }^{6} \\
& D_{1}={ }_{5} 6 \\
& A=\begin{array}{c}
\\
1
\end{array}{ }_{4}^{2} 6 \\
& { }_{1}=A / \sqrt{A C B^{2}} \\
& { }_{1}=B / \sqrt{A C B^{2}} \\
& B={ }_{2}+{ }_{4} 56 \\
& =\sqrt{A C B^{2}} \\
& C=\begin{array}{lll}
& & 2 \\
5 & 6
\end{array}
\end{aligned}
$$

More than 6 screens...

- Fit procedure...
- Function to be minimized: Δ_{i}... measurement error

$$
\chi^{2}(\Pi)=\sum_{i=1}^{N_{n+1}}\left[\frac{\Sigma_{i}-\left(\mathcal{N}(\Pi)_{i}\right)}{\Delta_{i}}\right]^{2}
$$

- Equation (*) can be solved analytically see
- G. Arduini et al., "New methods to derive the optical and beam parameters in transport channels", Nucl. Instrum. Methods Phys. Res., 2001.

In Practice....

ne

Matching screen

- 1 screen in the circular machine

Profiles at matching monitor after injection with steering error.

- Only allowed with low intensity beam
- Issue: radiation hard fast cameras

Blow-up from thin scatterer

- Scattering elements are sometimes required in the beam
- Thin beam screens $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Ti}\right)$ used to generate profiles.
- Metal windows also used to separate vacuum of transfer lines from vacuum in circular machines.
- Foils are used to strip electrons to change charge state
- The emittance of the beam increases when it passes through, due to multiple Coulomb scattering.

rms angle increase: $\sqrt{\left\langle\theta_{s}^{2}\right\rangle}[\mathrm{mrad}]=\frac{14.1}{\beta_{c} p[\mathrm{MeV} / \mathrm{c}]} Z_{\text {inc }} \sqrt{\frac{L}{L_{\text {rad }}}}\left(1+0.11 \cdot \log _{10} \frac{L}{L_{\text {rad }}}\right)$
$\beta_{\mathrm{c}}=\mathrm{v} / \mathrm{c}, p=$ momentum, $Z_{\text {inc }}=$ particle charge $/ \mathrm{e}, L=$ target length, $L_{\text {rad }}=$ radiation length

Blow-up from thin scatterer

Each particles gets a random angle change θ_{s} but there is no effect on the positions at the scatterer

$$
\begin{aligned}
& \overline{\mathbf{X}}_{\text {new }}=\overline{\mathbf{X}}_{0} \\
& \overline{\mathbf{X}}_{\text {new }}^{\prime}=\overline{\mathbf{X}}_{0}^{\prime}+\sqrt{\beta} \theta_{s}
\end{aligned}
$$

After filamentation the particles have different amplitudes and the beam has a larger emittance

$$
\varepsilon=\left\langle\mathbf{A}_{\text {new }}^{2}\right\rangle / 2
$$

Blow-up from thin scatterer

$$
\begin{aligned}
\mathbf{A}_{\text {new }}^{2} & =\overline{\mathbf{X}}_{\text {new }}^{2}+\overline{\mathbf{X}}_{\text {new }}^{\prime 2} \\
& =\overline{\mathbf{X}}_{0}^{2}+\left(\overline{\mathbf{X}}_{0}^{\prime}+\sqrt{\beta} \theta_{s}\right)^{2} \\
& =\overline{\mathbf{X}}_{0}^{2}+\overline{\mathbf{X}}_{0}^{\prime 2}+\mathbf{2} \sqrt{\beta}\left(\overline{\mathbf{X}}_{0}^{\prime} \theta_{s}\right)+\beta \theta_{s}^{2} \quad \text { uncorrelated } \\
\left\langle\mathbf{A}_{\text {new }}^{2}\right\rangle & =\left\langle\overline{\mathbf{X}}_{0}^{2}\right\rangle+\left\langle\overline{\mathbf{X}}_{0}^{\prime 2}\right\rangle+\mathbf{2} \sqrt{\beta}\left\langle\overline{\mathbf{X}}_{0}^{\prime} \theta_{s}\right\rangle+\beta\left\langle\theta_{s}^{2}\right\rangle \\
& =\mathbf{2} \varepsilon_{\mathbf{0}}+\mathbf{2} \sqrt{\beta}\left\langle\overline{\mathbf{X}}_{0}^{0}\right\rangle\left\langle\theta_{s}\right\rangle+\beta\left\langle\theta_{s}^{2}\right\rangle \\
& =\mathbf{2} \varepsilon_{\mathbf{0}}+\beta\left\langle\theta_{s}^{2}\right\rangle
\end{aligned}
$$

Blow-up from charge stripping foil

- For LHC heavy ions, Pb^{53+} is stripped to Pb^{82+} at $4.25 \mathrm{GeV} / \mathrm{u}$ using a 0.8 mm thick Al foil, in the PS to SPS line
- $\Delta \varepsilon$ is minimised with low- β insertion $\left(\beta_{x y} \sim 5 \mathrm{~m}\right)$ in the transfer line
- Emittance increase expected is about 8\%

Kick-response measurement

- The observable during kick-response measurement are the elements of the response matrix R

$$
R_{i j}=\frac{u_{i}}{j} \quad R_{i j}^{\bmod e l}=\left\{\begin{array}{cl}
\sqrt{i_{j}} \sin \left({ }_{i} \quad j\right) & \text { for } \mu_{i}>\mu_{j} \\
0 & \\
\text { otherwise }
\end{array}\right.
$$

- u_{i} is the position at the $\mathrm{ith}^{\text {th }}$ monitor
$\square \delta_{\mathrm{j}}$ is the kick of the $\mathrm{j}^{\text {th }}$ corrector
- Cannot read off optics parameters directly
- A fit varies certain parameters of a machine model to reproduce the measured data \rightarrow LOCO principle
- The fit minimizes the quadratic norm of a difference vector V

$$
V_{k}=\frac{R_{i j}^{\text {meas }} R_{i j}^{\text {mod } e l}}{i} \quad k=i \rtimes\left(\begin{array}{lll}
N_{c} & 1)+j & \begin{array}{l}
\sigma_{i} \ldots \text { BPM rms noise } \\
N_{c} \cdots \text { number of correctors }
\end{array}
\end{array}\right.
$$

Reference: K. Fuchsberger, CERN-THESIS-2011-075

Example: LHC transfer line TI 8

- Phase error in the vertical plane

- Traced back to error in QD strength in transfer line arc:

(a) MDMV. 400097

(b) MDSV. 400293

Summary

- Transfer lines present interesting challenges and differences from circular machines
- No periodic condition mean optics is defined by transfer line element strengths and by initial beam ellipse
- Matching at the extremes is subject to many constraints
- Emittance blow-up is an important consideration, and arises from several sources
- The optics of transfer line has to be well understood
- Several ways of assessing optics parameters in the transfer line have been shown

Keywords for related topics

- Transfer lines
- Achromat bends
- Algorithms for optics matching
- The effect of alignment and gradient errors on the trajectory and optics
- Trajectory correction algorithms
- SVD trajectory analysis
- Phase-plane exchange insertion solutions

