Beam Transfer Lines

- Distinctions between transfer lines and circular machines
- Linking machines together
- Blow-up from steering errors
- Correction of injection oscillations
- Blow-up from optics mismatch
- Optics measurement
- Blow-up from thin screens

Verena Kain CERN (based on lecture by B. Goddard and M. Meddahi)

Injection, extraction and transfer

- An accelerator has limited dynamic range
- Chain of stages needed to reach high energy
- Periodic re-filling of storage rings, like LHC
- External experiments, like CNGS

Transfer lines transport the beam between accelerators, and onto targets, dumps, instruments etc.

LHC:	Large Hadron Collider
SPS:	Super Proton Synchrotron
AD:	Antiproton Decelerator
ISOLDE:	Isotope Separator Online Device
PSB:	Proton Synchrotron Booster
PS:	Proton Synchrotron
LINAC:	LINear Accelerator
LEIR:	Low Energy Ring
CNGS:	CERN Neutrino to Gran Sasso

Normalised phase space

• Transform real transverse coordinates *x*, *x* ' by

$$\begin{bmatrix} \overline{\mathbf{X}} \\ \overline{\mathbf{X}'} \end{bmatrix} = \mathbf{N} \cdot \begin{bmatrix} x \\ x' \end{bmatrix} = \sqrt{\frac{1}{\beta_s}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_s & \beta_s \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \end{bmatrix}$$
$$\overline{\mathbf{X}} = \sqrt{\frac{1}{\beta_s}} \cdot x$$
$$\overline{\mathbf{X}'} = \sqrt{\frac{1}{\beta_s}} \cdot \alpha_s x + \sqrt{\beta_s} x'$$

Normalised phase space

General transport

Circular Machine

One turn
$$\mathsf{M}_{1\to 2} = \mathsf{M}_{0\to L} = \begin{bmatrix} \cos 2\pi Q + \alpha \sin 2\pi Q & \beta \sin 2\pi Q \\ -\frac{1}{\beta} \left(1 + \alpha^2\right) \sin 2\pi Q & \cos 2\pi Q - \alpha \sin 2\pi Q \end{bmatrix}$$

- The solution is *periodic*
- Periodicity condition for one turn (closed ring) imposes $\alpha_1 = \alpha_2$, $\beta_1 = \beta_2$, $D_1 = D_2$
- This condition *uniquely* determines $\alpha(s)$, $\beta(s)$, $\mu(s)$, D(s) around the whole ring

Circular Machine

- Periodicity of the structure leads to regular motion
 - Map single particle coordinates on each turn at any location
 - Describes an ellipse in phase space, defined by one set of α and β values \Rightarrow Matched Ellipse (for this location)

$$a = \gamma \cdot x^2 + 2\alpha \cdot x \cdot x' + \beta \cdot x'^2$$

$$\gamma = \frac{1 + \alpha^2}{\beta}$$

Circular Machine

For a location with matched ellipse (α, β), an injected beam of emittance ε, characterised by a different ellipse (α^{*}, β^{*}) generates (via filamentation) a large ellipse with the original α, β, but larger ε

Transfer line

- No periodic condition exists
- The Twiss parameters are simply propagated from beginning to end of line
- At any point in line, $\alpha(s) \beta(s)$ are functions of $\alpha_1 \beta_1$

Transfer line

- On a single pass...
 - Map single particle coordinates at entrance and exit.
 - <u>Infinite number of equally valid possible starting ellipses for single particle</u>transported to infinite number of final ellipses...

Transfer Line

• Initial α , β defined for transfer line by beam shape at entrance

- Propagation of this beam ellipse depends on line elements
- <u>A transfer line optics is different for different input beams</u>

Transfer Line

• The optics functions in the line depend on the initial values

- Same considerations are true for Dispersion function:
 - Dispersion in ring defined by periodic solution \rightarrow ring elements
 - Dispersion in line defined by initial D and D' and line elements

Transfer Line

 Another difference....unlike a circular ring, <u>a change of an element</u> in a line affects only the downstream Twiss values (including dispersion)

- Beams have to be transported from extraction of one machine to injection of next machine
 - Trajectories must be matched, ideally in all 6 geometric degrees of freedom (x,y,z,\theta,\phi,\psi)
- Other important constraints can include
 - Minimum bend radius, maximum quadrupole gradient, magnet aperture, cost, geology

The Twiss parameters can be propagated when the transfer matrix ${\bf M}$ is known

$$\begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = \mathbf{M}_{1 \to 2} \cdot \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_1 \end{bmatrix}$$

$$\begin{bmatrix} \beta_2 \\ \alpha_2 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} C^2 & -2CS & S^2 \\ -CC' & CS' + SC' & -SS' \\ C'^2 & -2C'S' & S'^2 \end{bmatrix} \cdot \begin{bmatrix} \beta_1 \\ \alpha_1 \\ \gamma_1 \end{bmatrix}$$

- Linking the optics is a complicated process
 - Parameters at start of line have to be propagated to matched parameters at the end of the line
 - Need to "match" 8 variables ($\alpha_x \beta_x D_x D'_x$ and $\alpha_y \beta_y D_y D'_y$)
 - Maximum β and D values are imposed by magnet apertures
 - Other constraints can exist
 - phase conditions for collimators,
 - insertions for special equipment like stripping foils
 - Need to use a number of independently powered ("matching") quadrupoles
 - Matching with computer codes and relying on mixture of theory, experience, intuition, trial and error, …

- For long transfer lines we can simplify the problem by designing the line in separate sections
 - Regular central section e.g. FODO or doublet, with quads at regular spacing, (+ bending dipoles), with magnets powered in series
 - Initial and final matching sections independently powered quadrupoles, with sometimes irregular spacing.

Trajectory correction

- Magnet misalignments, field and powering errors cause the trajectory to deviate from the design
- Use small independently powered dipole magnets (correctors) to steer the beam
- Measure the response using monitors (pick-ups) downstream of the corrector ($\pi/2$, $3\pi/2$, ...)

- Horizontal and vertical elements are separated
- H-correctors and pick-ups located at F-quadrupoles (large β_x)
- V-correctors and pick-ups located at D-quadrupoles (large β_v)

Trajectory correction

- Global correction can be used which attempts to minimise the RMS offsets at the BPMs, using all or some of the available corrector magnets.
- Steering in matching sections, extraction and injection region requires particular care
 - D and β functions can be large \rightarrow bigger beam size
 - Often very limited in aperture
 - Injection offsets can be detrimental for performance

Trajectory correction

Steering (dipole) errors

- Precise delivery of the beam is important.
 - To avoid injection oscillations and emittance growth in rings
 - For stability on secondary particle production targets
- Convenient to express injection error in σ (includes x and x' errors)

Steering (dipole) errors

- Static effects (e.g. from errors in alignment, field, calibration, ...) are dealt with by trajectory correction (steering).
- But there are also dynamic effects, from:
 - Power supply ripples
 - Temperature variations
 - Non-trapezoidal kicker waveforms
- These dynamic effects produce a variable injection offset which can vary from batch to batch, or even within a batch.

 An injection damper system is used to minimize effect on emittance

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with a error in angle and position.
- For an injection error Δa_y (in units of sigma = $\sqrt{\beta \epsilon}$) the mis-injected beam is offset in normalised phase space by L = $\Delta a_y \sqrt{\epsilon}$

• The new particle coordinates in normalised phase space are

$$\overline{\mathbf{X}}_{new} = \overline{\mathbf{X}}_{0} + \mathbf{L}cos\theta$$

$$\overline{\mathbf{X}}'_{new} = \overline{\mathbf{X}}'_{0} + \mathbf{L}sin\theta$$

 For a general particle distribution, where A denotes amplitude in normalised phase space

$$A^{2} = \overline{X}^{2} + \overline{X}^{2}$$
$$\varepsilon = \langle A^{2} \rangle / 2$$

• So if we plug in the new coordinates....

$$\boldsymbol{A}_{new}^{2} = \boldsymbol{\bar{X}}_{new}^{2} + \boldsymbol{\bar{X}}_{new}^{'2} = \left(\boldsymbol{\bar{X}}_{\boldsymbol{\theta}} + \boldsymbol{Lcos}\boldsymbol{\theta}\right)^{2} + \left(\boldsymbol{\bar{X}}_{\boldsymbol{\theta}}^{'} + \boldsymbol{Lsin}\boldsymbol{\theta}\right)^{2}$$

$$= \bar{\boldsymbol{X}}_{\boldsymbol{\theta}}^{2} + \bar{\boldsymbol{X}}_{\boldsymbol{\theta}}^{\prime 2} + 2\boldsymbol{L} (\bar{\boldsymbol{X}}_{\boldsymbol{\theta}} cos\theta + \bar{\boldsymbol{X}}_{\boldsymbol{\theta}}^{\prime} sin\theta) + \boldsymbol{L}^{2}$$

$$\left\langle \boldsymbol{A}_{new}^{2} \right\rangle = \left\langle \boldsymbol{\bar{X}}_{\boldsymbol{\theta}}^{2} \right\rangle + \left\langle \boldsymbol{\bar{X}}_{\boldsymbol{\theta}}^{\prime 2} \right\rangle + \left\langle 2\boldsymbol{L} \left(\boldsymbol{\bar{X}}_{\boldsymbol{\theta}} \boldsymbol{cos\theta} + \boldsymbol{\bar{X}}_{\boldsymbol{\theta}}^{\prime} \boldsymbol{sin\theta} \right) \right\rangle + \left\langle \boldsymbol{L}^{2} \right\rangle$$

$$= 2\varepsilon_{0} + 2\boldsymbol{L} \left(\left\langle \boldsymbol{cos\theta} \boldsymbol{\bar{X}}_{\boldsymbol{\theta}} \right\rangle^{2} + \left\langle \boldsymbol{sin\theta} \boldsymbol{\bar{X}}_{\boldsymbol{\theta}}^{\prime} \right\rangle \right) + \boldsymbol{L}^{2}$$

$$= 2\varepsilon_0 + L^2$$

• Giving for the emittance increase

$$\varepsilon_{new} = \langle \mathbf{A}_{new}^{2} \rangle / 2 = \varepsilon_0 + \mathbf{L}^2 / 2$$

$$=\varepsilon_0 \left(1 + \Delta \mathbf{a^2} / 2\right)$$

A numerical example....

Consider an offset Δa of 0.5 sigma for injected beam

$$\varepsilon_{new} = \varepsilon_0 \left(1 + \Delta a^2 / 2 \right)$$
$$= 1.125\varepsilon_0$$

For nominal LHC beam: $\epsilon_{norm} = 3.5 \ \mu m$ allowed growth through LHC cycle ~ 10 %

Injection oscillation correction

- x, x' and y, y' at injection point need to be corrected.
- Minimum diagnostics: 2 pickups per plane, 90° phase advance apart
- Pickups need to be triggered to measure on the first turn
- Correctors in the transfer lines are used to minimize offset at these pickups.
- Best strategy:
 - Acquire many BPMs in circular machine (e.g. one octant/sextant of machine)
 - Combine acquisition of transfer line and of BPMs in circular machine
 - Transfer line: difference trajectory to reference
 - Circular machine: remove closed orbit from first turn trajectory → pure injection oscillation
 - Correct combined trajectory with correctors in transfer line with typical correction algorithms. Use correctors of the line only.

Example: LHC injection of beam 1

Display from the LHC control room to correct injection oscillations

Injection point in LHC IR2

Example: LHC injection of beam 1

- Oscillation down the line has developed in horizontal plane
- Injection oscillation amplitude > 1.5 mm
- Good working range of LHC transverse damper +/- 2 mm

- Aperture margin for injection oscillation is 2 mm
- \odot \rightarrow correct trajectory in line before continue LHC filling

- Optical errors occur in transfer line and ring, such that the beam can be injected with a mismatch.
- Filamentation will produce an emittance increase.
- In normalised phase space, consider the matched beam as a circle, and the mismatched beam as an ellipse.

General betatron motion

$$x_2 = \sqrt{a_2 b_2} \sin(j + j_o), \quad x'_2 = \sqrt{a_2 / b_2} \left[\cos(j + j_o) - \partial_2 \sin(j + j_o)\right]$$

applying the normalising transformation for the matched beam

$$\begin{bmatrix} \overline{\mathbf{X}}_{2} \\ \overline{\mathbf{X}'}_{2} \end{bmatrix} = \sqrt{\frac{1}{\beta_{1}}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_{1} & \beta_{1} \end{bmatrix} \cdot \begin{bmatrix} x_{2} \\ x'_{2} \end{bmatrix}$$

an ellipse is obtained in normalised phase space

$$A^{2} = \overline{\mathsf{X}}_{2}^{2} \left[\frac{\beta_{1}}{\beta_{2}} + \frac{\beta_{2}}{\beta_{1}} \left(\alpha_{1} - \alpha_{2} \frac{\beta_{1}}{\beta_{2}} \right)^{2} \right] + \overline{\mathsf{X}}_{2}^{2} \frac{\beta_{2}}{\beta_{1}} - 2\overline{\mathsf{X}}_{2} \overline{\mathsf{X}}_{2}^{\prime} \left[\frac{\beta_{2}}{\beta_{1}} \left(\alpha_{1} - \alpha_{2} \frac{\beta_{1}}{\beta_{2}} \right) \right]$$

characterised by γ_{new} , β_{new} and α_{new} , where

$$\alpha_{new} = \frac{-\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right), \qquad \beta_{new} = \frac{\beta_2}{\beta_1}, \quad \gamma_{new} = \frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2$$

From the general ellipse properties

$$a = \frac{A}{\sqrt{2}} \left(\sqrt{H+1} + \sqrt{H-1} \right), \quad b = \frac{A}{\sqrt{2}} \left(\sqrt{H+1} - \sqrt{H-1} \right)$$
where
$$H = \frac{1}{2} \left(\gamma_{new} + \beta_{new} \right)$$

$$= \frac{1}{2} \left(\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2 + \frac{\beta_2}{\beta_1} \right)$$
giving
$$\lambda = \frac{1}{\sqrt{2}} \left(\sqrt{H+1} + \sqrt{H-1} \right), \quad \frac{1}{\lambda} = \frac{1}{\sqrt{2}} \left(\sqrt{H+1} - \sqrt{H-1} \right)$$

$$\overline{X}_{new} = \lambda \cdot A \sin(\phi + \phi_1), \qquad \overline{X}_{new} = \frac{1}{\lambda} A \cos(\phi + \phi_1)$$

$$generally$$

$$a = A/\lambda$$

$$b = A \cdot \lambda$$

We can evaluate the square of the distance of a particle from the origin as

$$\mathsf{A}_{new}^2 = \overline{\mathsf{X}}_{new}^2 + \overline{\mathsf{X}}_{new}^2 = \lambda^2 \cdot \mathsf{A}_0^2 \sin^2(\phi + \phi_1) + \frac{1}{\lambda^2} \mathsf{A}_0^2 \cos^2(\phi + \phi_1)$$

The new emittance is the average over all phases

$$\varepsilon_{new} = \frac{1}{2} \left\langle \mathsf{A}_{new}^2 \right\rangle = \frac{1}{2} \left(\lambda^2 \left\langle \mathsf{A}_0^2 \sin^2(\phi + \phi_1) \right\rangle + \frac{1}{\lambda^2} \left\langle \mathsf{A}_0^2 \cos^2(\phi + \phi_1) \right\rangle \right)$$
$$= \frac{1}{2} \left\langle \mathsf{A}_0^2 \right\rangle \left(\lambda^2 \left\langle \sin^2(\phi + \phi_1) \right\rangle + \frac{1}{\lambda^2} \left\langle \cos^2(\phi + \phi_1) \right\rangle \right)$$
$$= \frac{1}{2} \varepsilon_0 \left(\lambda^2 + \frac{1}{\lambda^2} \right)$$

If we're feeling diligent, we can substitute back for λ to give

$$\varepsilon_{new} = \frac{1}{2}\varepsilon_0 \left(\lambda^2 + \frac{1}{\lambda^2}\right) = H\varepsilon_0 = \frac{1}{2}\varepsilon_0 \left(\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1}\left(\alpha_1 - \alpha_2\frac{\beta_1}{\beta_2}\right)^2 + \frac{\beta_2}{\beta_1}\right)$$

where subscript 1 refers to matched ellipse, 2 to mismatched ellipse.

A numerical example....consider b = 3a for the mismatched ellipse

$$\lambda = \sqrt{b/a} = \sqrt{3}$$

Then

$$\varepsilon_{new} = \frac{1}{2} \varepsilon_0 \left(\lambda^2 + 1/\lambda^2 \right)$$
$$= 1.67 \varepsilon_0$$

OPTICS AND EMITTANCE MEASUREMENT IN TRANSFER LINES

Dispersion measurement

- Introduce ~ few permille momentum offset at extraction into transfer line
- Measure position at different monitors for different momentum offset
 - Linear fit of position versus dp/p at each BPM/screens.
 - \Box \Box Dispersion at the BPMs/screens

Optics measurement with screens

- A profile monitor is needed to measure the beam size
 - e.g. beam screen (luminescent) provides 2D density profile of the beam
- Profile fit gives transverse beam sizes σ .
- In a ring, β is 'known' so ϵ can be calculated from a single screen

Optics Measurement with 3 Screens

- Assume 3 screens in a dispersion free region
- Measurements of $\sigma_1, \sigma_2, \sigma_3$, plus the two transfer matrices M_{12} and M_{13} allows determination of ϵ, α and β

Optics Measurement with 3 Screens

• Remember:

$$\begin{bmatrix} x_{2} \\ x_{2} \end{bmatrix} = \mathbf{M}_{1 \to 2} \cdot \begin{bmatrix} x_{1} \\ x_{1}' \end{bmatrix} = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{1}' \end{bmatrix}$$

$$\stackrel{\acute{e}}{\stackrel{0}{e}} b_{2} \stackrel{\acute{u}}{\stackrel{\acute{e}}{\underline{\theta}}} C_{2}^{2} - 2C_{2}S_{2} \qquad S_{2}^{2} \stackrel{\acute{u}}{\stackrel{\acute{e}}{\underline{\theta}}} b_{1} \stackrel{\acute{u}}{\underline{\theta}}$$

$$\stackrel{\acute{e}}{\stackrel{0}{e}} a_{2} \stackrel{\acute{u}}{\underline{\theta}} \stackrel{\acute{e}}{\underline{\theta}} - C_{2}C_{2} \quad C_{1}S_{1} + S_{1}C_{1} \quad -S_{2}S_{2} \quad \acute{u} \times \hat{e} \quad a_{1} \quad \acute{u}$$

$$\stackrel{\acute{e}}{\stackrel{\acute{e}}{\underline{\theta}}} g_{2} \stackrel{\acute{u}}{\underline{\theta}} \stackrel{\acute{e}}{\underline{\theta}} C_{2}^{2} - 2C_{2} \quad S_{2} \quad S_{2}^{2} \quad \acute{u} \times \hat{e} \quad a_{1} \quad \acute{u}$$

$$D_{2} = C_{2} \times D_{1} - 2C_{2}S_{2} \times \partial_{1} + S_{2} \times \mathcal{G}_{1}$$
$$D_{3} = C_{3}^{2} \times D_{1} - 2C_{3}S_{3} \times \partial_{1} + S_{3}^{2} \times \mathcal{G}_{1}$$
 × **E**

$$S_{2}^{2} = C_{2}^{2} \times b_{1}e - 2C_{2}S_{2} \times a_{1}e + S_{2}^{2} \times g_{1}e$$

$$S_{3}^{2} = C_{3}^{2} \times b_{1}e - 2C_{3}S_{3} \times a_{1}e + S_{3}^{2} \times g_{1}e$$

Square of beam sizes as function of optical functions at first screen

Optics Measurement with 3 Screens

• Define matrix N where $\Sigma = N\Pi$

- Measure beam sizes and want to calculate β_1 , α_1 , ϵ
- Solution to our problem $\Sigma' = \mathbf{N}^{-1}\Sigma$
 - with $\beta_1\gamma_1 \alpha_1^2 = 1$ get 3 equations for β_1 , α_1 and ϵ the optical functions at the first screen

$$b_{1} = A / \sqrt{AC - B^{2}} \qquad A = S_{1}^{c}$$

$$a_{1} = B / \sqrt{AC - B^{2}} \qquad \text{with} \qquad B = S_{2}^{c}$$

$$e = \sqrt{AC - B^{2}} \qquad C = S_{3}^{c}$$

...and if there is dispersion at the screens

- Dispersion and momentum spread need to be measured independently at the different screens
- Trajectory transforms with T_i transport matrix for $\delta \neq 0$
 - \Box ξ_i is the contribution to the dispersion between the first and the ith screen

- Define 6 dimensional Σ and Π and respective N and then same procedure as before

$$S = \begin{pmatrix} \hat{k} & S_{1}^{2} & 0 & \\ \hat{\zeta} & S_{2}^{2} & \hat{\cdot} & \\ \hat{\zeta} & S_{2}^{2} & \hat{\cdot} & \\ \hat{\zeta} & S_{3}^{2} & \hat{\cdot} & \\ \hat{\zeta} & D_{1}d^{2} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \hat{\zeta} & \\ \hat{\zeta} & \hat{\zeta}$$

6 screens with dispersion

 Can measure β, α, ε, D, D' and δ with 6 screens without any other measurements.

$$\Sigma = \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \\ \sigma_3^2 \\ \sigma_4^2 \\ \sigma_5^2 \\ \sigma_6^2 \end{pmatrix}, \Pi = \begin{pmatrix} \beta_1 \varepsilon + D_1^2 \delta^2 \\ \alpha_1 \varepsilon - D_1 D_1' \delta^2 \\ \gamma_1 \varepsilon + D_1'^2 \delta^2 \\ D_1 \delta^2 \\ D_1' \delta^2 \\ \delta^2 \end{pmatrix}, \mathcal{N} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ C_2^2 & -2C_2 S_2 & S_2^2 & 2C_2 \xi_2 & 2S_2 \xi_2 & \xi_2 \\ C_3^2 & -2C_3 S_3 & S_3^2 & 2C_3 \xi_3 & 2S_3 \xi_3 & \xi_3 \\ C_4^2 & -2C_4 S_4 & S_4^2 & 2C_4 \xi_4 & 2S_4 \xi_4 & \xi_4 \\ C_5^2 & -2C_5 S_5 & S_5^2 & 2C_5 \xi_5 & 2S_5 \xi_5 & \xi_5 \\ C_6^2 & -2C_6 S_6 & S_6^2 & 2C_6 \xi_6 & 2S_6 \xi_6 & \xi_6 \end{pmatrix}$$

• Invert N, multiply with Σ to get Σ'

$$\begin{array}{l}
\mathcal{O}^{2} = S\xi \\
D_{1} = S\xi S\xi \\
D_{1}^{C} = S\xi S\xi \\
\mathcal{O}_{1}^{C} = S\xi S\xi \\
\mathcal{O}_{1} = A / \sqrt{AC - B^{2}} \\
\mathcal{O}_{1} = B / \sqrt{AC - B^{2}} \\
\mathcal{O}_{2} = \sqrt{AC - B^{2}}
\end{array}$$

$$\begin{array}{l}
\mathcal{A} = S\xi - S\xi^{2}S\xi \\
\mathcal{B} = S\xi + S\xi S\xi^{C} \\
\mathcal{C} = S\xi - S\xi^{2}S\xi^{C} \\
\mathcal{C} = S\xi - S\xi^{2}S\xi^{C} \\
\mathcal{C} = S\xi^{2}S\xi^{C} \\
\mathcal{C}$$

More than 6 screens...

- Fit procedure...
- Function to be minimized: Δ_i ...measurement error

$$\chi^{2}(\Pi) = \sum_{i=1}^{N_{mon}} \left[\frac{\Sigma_{i} - (\mathcal{M}_{\Pi})_{i}}{\Delta_{i}} \right]^{2} \qquad \qquad \frac{\P C^{2}}{\P P_{i}} = 0 \quad (*)$$

- Equation (*) can be solved analytically see
 - G. Arduini et al., "New methods to derive the optical and beam parameters in transport channels", Nucl. Instrum. Methods Phys. Res., 2001.

In Practice....

ne

Matching screen

Profiles at matching monitor after injection with steering error.

- Only allowed with low intensity beam
- Issue: radiation hard fast cameras

Blow-up from thin scatterer

- Scattering elements are sometimes required in the beam
 - Thin beam screens (Al_2O_3,Ti) used to generate profiles.
 - Metal windows also used to separate vacuum of transfer lines from vacuum in circular machines.
 - Foils are used to strip electrons to change charge state
- The emittance of the beam increases when it passes through, due to multiple Coulomb scattering.

 $\beta_c = v/c$, p = momentum, $Z_{inc} = particle charge /e$, L = target length, $L_{rad} = radiation length$

Blow-up from thin scatterer

Each particles gets a random angle change $\theta_{\rm s}$ but there is no effect on the positions at the scatterer

$$\overline{\mathbf{X}}_{new} = \overline{\mathbf{X}}_{\mathbf{0}}$$

$$\overline{\mathbf{X}}'_{new} = \overline{\mathbf{X}}'_{\mathbf{0}} + \sqrt{\beta}\theta_s$$

After filamentation the particles have different amplitudes and the beam has a larger emittance

$$\varepsilon = \left\langle A_{new}^2 \right\rangle / 2$$

Blow-up from thin scatterer

$$A_{new}^{2} = \overline{\mathbf{X}}_{new}^{2} + \overline{\mathbf{X}}_{new}^{'2}$$

$$= \overline{\mathbf{X}}_{0}^{2} + (\overline{\mathbf{X}}_{0}' + \sqrt{\beta}\theta_{s})^{2}$$

$$= \overline{\mathbf{X}}_{0}^{2} + \overline{\mathbf{X}}_{0}^{'2} + 2\sqrt{\beta}(\overline{\mathbf{X}}_{0}'\theta_{s}) + \beta\theta_{s}^{2} \qquad \text{uncorrelated}$$

$$\langle \mathbf{A}_{new}^{2} \rangle = \langle \overline{\mathbf{X}}_{0}^{2} \rangle + \langle \overline{\mathbf{X}}_{0}^{'2} \rangle + 2\sqrt{\beta} \langle \overline{\mathbf{X}}_{0}'\theta_{s} \rangle + \beta \langle \theta_{s}^{2} \rangle$$

$$= 2\varepsilon_{0} + 2\sqrt{\beta} \langle \overline{\mathbf{X}}_{0}' \rangle \langle \theta_{s} \rangle + \beta \langle \theta_{s}^{2} \rangle$$

$$= 2\varepsilon_{0} + \beta \langle \theta_{s}^{2} \rangle$$

$$\varepsilon_{new} = \varepsilon_0 + \frac{\beta}{2} \left\langle \theta_s^2 \right\rangle$$

<u>Need to keep β small to minimise blow-up</u> (small β means large spread in angles in beam distribution, so additional angle has small effect on distn.)

Blow-up from charge stripping foil

- For LHC heavy ions, Pb⁵³⁺ is stripped to Pb⁸²⁺ at 4.25GeV/u using a 0.8mm thick AI foil, in the PS to SPS line
- $\Delta\epsilon$ is minimised with low- β insertion ($\beta_{xy} \sim 5$ m) in the transfer line
- Emittance increase expected is about 8%

Kick-response measurement

• The observable during kick-response measurement are the elements of the response matrix R

$$R_{ij} = \frac{u_i}{O'_j} \qquad R_{ij}^{\text{mod}el} = \begin{cases} \sqrt{b_i b_j} \sin(m_i - m_j) & \text{for } \mu_i > \mu_j \\ 0 & \text{otherwise} \end{cases}$$

- u_i is the position at the ith monitor

 \Box δ_i is the kick of the jth corrector

- Cannot read off optics parameters directly
- A fit varies certain parameters of a machine model to reproduce the measured data → LOCO principle
- The fit minimizes the quadratic norm of a difference vector V

 $V_{k} = \frac{R_{ij}^{meas} - R_{ij}^{mod \, el}}{S_{i}} \qquad k = i \times (N_{c} - 1) + j \qquad \begin{array}{c} \sigma_{i} \dots \text{ BPM rms noise} \\ \mathsf{N}_{c} \dots \text{ number of correctors} \end{array}$

Reference: K. Fuchsberger, CERN-THESIS-2011-075

Example: LHC transfer line TI 8

• Traced back to error in QD strength in transfer line arc:

Summary

- Transfer lines present interesting challenges and differences from circular machines
 - No periodic condition mean optics is defined by transfer line element strengths <u>and by initial beam ellipse</u>
 - Matching at the extremes is subject to many constraints
 - Emittance blow-up is an important consideration, and arises from several sources
 - The optics of transfer line has to be well understood
 - Several ways of assessing optics parameters in the transfer line have been shown

Keywords for related topics

- Transfer lines
 - Achromat bends
 - Algorithms for optics matching
 - The effect of alignment and gradient errors on the trajectory and optics
 - Trajectory correction algorithms
 - SVD trajectory analysis
 - Phase-plane exchange insertion solutions