Current measurements on 3D silicon sensors Step1. Before and after UBM and dicing

Fernández Pérez, Sonia TALENT ESR13, WP5, CERN

February 18, 2013

Fernández Pérez, Sonia

ATLAB Annual Assembly, CERN

February 18, 2013 1 / 31

- Features
- Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

Contents

1 3D Silicon sensors

Features

Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

Features

Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

It is a new sensor technology. It covers 25% Insertable-B Layer

a)Radiation hardness $5 \times 10^{15} n_{eq}/cm^2$ b)Lower deplection voltage < 15Vc)Faster charge collection d) More expensive and difficult fabrication (by etching)

Features

Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

3D Silicon sensors. Fabrication process

э

3D Silicon sensors. Fabrication process

3

(日) (同) (三) (三)

ATLAB Annual Assembly, CERN

IV curve during the module fabrication process

A dramatic decreasing of the Breakdown Voltage was found in some CNM 3D sensors between the sensor production on wafers and after wire bonding

To find out the critic step of the module fabrication process

Fernández Pérez, Sonia

ATLAB Annual Assembly, CERN

- Features
- Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

Step1: IV curve before and after UBM and dicing

The measurements were performed in CNM laboratory. Probe station

Step1: IV curve before and after UBM and dicing

- The measurements were performed in CNM laboratory. Probe station
- Techniques of measure: Guard ring technique- Pixel technique

Step1: IV curve before and after UBM and dicing

- The measurements were performed in CNM laboratory. Probe station
- Techniques of measure: Guard ring technique- Pixel technique

- Features
- Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

IV curve before and after dicing. Guard ring technique

Figure : Wafer 5936-05.Before dicing

Figure : Wafer 5936-05. After dicing

1 A light increase of the leakage current.

Fernández Pérez, Sonia

ATLAB Annual Assembly, CERN

IV curve BEFORE and AFTER dicing. GUARD RING technique

		Edge	check	IV test	
Wafer	Sensor	front side	Back side	Before dicing	After dicing
5936-05	02	3 corners cracked	cracks	50 V	45V
5936-05	05	ok	saw tooth chipping	37 V	59V
5936-05	07	ok	ok	39V	51V
5936-05	08	ok	ok	48V	48V
5936-06	01	ok	ok	56V	67V
5936-06	02	ok	ok	56 V	0V
5936-06	03	ok	ok	55 V	65V
5936-06	04	single chipping	saw tooth chipping	55 V	62V
5936-06	05	ok	ok	55 V	63V
5936-06	07	ok	ok	5V	5V
5936-06	08	ok	saw tooth chipping	57 V	67V

7 sensors increase the BV after dicing. 2 sensors decrease the BV (1 broken). 2 sensors maintain the BV.
 UBM and Dicing are not the critic fabrication process.

IV curve before and after dicing.GUARD RING technique

Same results were found on FEI4 Planar sensors. Master thesis Jennifer Jentzsch [1]

- Features
- Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

IV curve after dicing. By GUARD RING technique and by PIXEL technique

		Edge	e check	IV test after dicing		
Wafer	Sensor	front side	Back side	Guard (January)	Pixel (January)	
5936-05	02	3 corners cracked	cracks	45V	32V	
5936-05	05	ok	saw tooth chipping	59V	51V	
5936-05	07	ok	ok	51V	51V	
5936-05	08	ok	ok	48V	46	
5936-06	01	ok	ok	67V	52V	
5936-06	02	ok	ok	0V	0V	
5936-06	03	ok	ok	65V	29V	
5936-06	04	single chipping	saw tooth chipping	62V	37V	
5936-06	05	ok	ok	63V	0V	
5936-06	07	ok	ok	5V	5V	
5936-06	08	ok	saw tooth chipping	67V	34V	

In 7sensors BV is smaller by Pixel technique than by Guard ring tehcnique. Noisy pixels in its active area (not possible to see by the Guard technique).

In 2 sensors BV is similar by both techniques. Not noisy pixels

- Features
- Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique

IV curve reproducibility

IV curve at different temperatures

3 Conclusions

IV curve reproducibility

Parameters controled during the measure: Temperature, humidity

Existence of parameters that change the BV and I don't control??

- Features
- Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

IV at different temperatures

- In all sensors were oberved an increasement of the leakage current with temperature.
- **2** Some of them showed a change of the breakdown voltage with temperature as w6-01.

Fernández Pérez, Sonia

Features

Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

- 7sensors increase BV, 2 decrease, 2 maintain during UBM and dicing.
 UBM and Dicing are not the critic fabrication process.
- 2 A light increase of the leakage current during dicing process. Expected
- **3** By comparing the BV after dicing between PIXEL technique and GUARD RING technique.

7 sensors have noisy pixels on the active area.

- 4 Something strange with reproducibility
- Expected behavior at different temperatures, except for this BV variations.

Features

Fabrication process

2 Results Step1: IV curve before and after UBM and dicing

- IV curve before and after dicing. Guard ring technique
- IV curve after dicing. By GUARD RING technique and by PIXEL technique
- IV curve reproducibility
- IV curve at different temperatures

3 Conclusions

- 1 Same measurements with 10 new sensors (to reaffirm conclusions)
- 2 With Voltage fixed. Current-time measurements
- **3** IV curve at different humidities
- 4 TCAD simulation

BACKUP

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Fernández Pérez, Sonia

э

47 ▶

æ

CNM Wafer mask

- CNM Wafer mask
- CNM 3D sensor mask

- CNM Wafer mask
- CNM 3D sensor mask
- Pixel mask

Fernández Pérez, Sonia

ATLAB Annual Assembly, CERN

∃ → February 18, 2013 25 / 31

э

There are differents 3D layout configurations

There are differents 3D layout configurations

IBL Specifications				
Pixel dimensions	50µmx250µm			
Sensor thickness	230µm			
Deplection V.	< 15V			
Breakdown V.	> 25 <i>V</i>			
Fluence irradiation	$5 \times 10^{15} n_{eq} / cm^2$			

- /			<u> </u>
Fernand	67	Perez	Sonia
I CITIALIU			201116

IV curve before and after dicing. Guard ring technique

Wafer 5936-06

Figure : Wafer 5936-06.Before dicing

Figure : Wafer 5936-06. After dicing

Fernández Pérez, Sonia

ATLAB Annual Assembly, CERN

February 18, 2013 27 / 31

Pixels technique vs Guard technique Wafer 5936-05

Figure : Wafer 5936-05. IV on pixels

Figure : Wafer 5936-05. IV on Guard

Pixel technique vs Guard technique Wafer 5936-06

Figure : Wafer 5936-06. IV on pixels

Figure : Wafer 5936-06. IV on Guard

IV curve by Pixel technique and by guard ring technique

	Edge check		IV test after dicing			
Wafer	Sensor	front side	Back side	Pixel (Novemb)	Guard (January)	Pixel (January)
5936-05	02	3 corners cracked	cracks	55V	45V	32V
5936-05	05	ok	saw tooth chipping	72V	59V	51V
5936-05	07	ok	ok	18V	51V	51V
5936-05	08	ok	ok	8V	48V	46
5936-06	01	ok	ok	76V	67V	52V
5936-06	02	ok	ok	0V	0V	0V
5936-06	03	ok	ok	37V	65V	29V
5936-06	04	single chipping	saw tooth chipping	33V	62V	37V
5936-06	05	ok	ok	0V	63V	0V
5936-06	07	ok	ok	5V	5V	5V
5936-06	08	ok	saw tooth chipping	80V	67V	34V

- 1 J. Jentzsch Master, Thesis September 2011. ATLAS FE-I4 Single Chip Assemblies in Laboratory and Testbeam Measurements.
- 2 Sensor inspection after I-V-measurements Fraunhofer IZM