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• Brief introduction of 2HDM-III and how this version could 
contain the other versions of 2HDM.

• Flavor constraints from low energy processes

• Phenomenology of charged Higgs could be quiet different.

• Some interesting channels decays: H+ → cb, ts, W+𝛄,WZ

• cb → H+ → 𝛕𝛎 production mode

• t → b H+ and H+→ cb

• cb→ H + →W+ h   could it be testable with SM ?

Outline
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• There are three ways:

• (1) Discrete symmetries. This choice is based on the Glashow–Weinbergʼs theorem 
concerning FCNCʼs in models with several Higgs doublets.                                               
(MSSM: Y=-1 (+1) doublet copules to donw (up)-type fermion, as required by SUSY)

• (2) Radiative suppression. When a given set of Yukawa matrices are present at tree-level, 
but the other ones arise only as a radiative effect:    i.e. the 2HDM-II, it is transformed into 
2HDM-III through loops-effects of sfermions and gauginos. 

• (3) Flavor symmetries. Suppression of FCNC effects can also be achieved when a certain 
form of the Yukawa matrices that reproduce the observed fermion masses and mixing 
angles is implemented in the model, i.e. THDM-III. (Yukawa textures)
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2HDM-III +  Yukawa texture 
contain the following information:

 
It could come from a more fundamental theory  (susy models with 

seesaw mechanism).

+
Yukawa texture is the flavor symmetry of the model and do not 

require of the discrete flavor symmetry.

+

The Higgs potential must be expressed in the most general form. 

T. P. Cheng, M. Sher, Phys. Rev. D33,11 (1987)
J.L. Diaz-Cruz, R Noriega-Papaqui, A. Rosado. Phys. Rev. D69,095002 (2004)
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The first term, proportional to ! i j , corresponds to the modi-
fication of the THDM-II over the SM result, while the term
proportional to Ỹ 2

l denotes the new contribution from the
THDM-III. Thus, the fermion–Higgs-boson couplings re-
spect CP invariance, despite the fact that the Yukawa matri-
ces include complex phases; this follows because of the Her-
miticity conditions imposed on both Y 1

l and Y 2
l .

The corrections to the lepton flavor conserving "LFC# and
flavor violating couplings depend on the rotated matrix

Ỹ 2
l !OTPY 2

l P†O . We shall evaluate Ỹ 2
l by assuming that Y 2

l

has a four-texture form, namely,

Y 2
l !! 0 C2 0

C2* B̃2 B2
0 B2* A2

" , #A2#"#B̃2#,#B2#,#C2#. "5#

The matrix that diagonalizes the real matrix M̃ l with the
four-texture form is given by

O!! ! $2$3"A#$1#

A"$2#$1#"$3#$1#
%! $1$3"$2#A #

A"$2#$1#"$3#$2#
! $1$2"A#$3#

A"$3#$1#"$3#$2#

#%! $1"$1#A #

"$2#$1#"$3#$1#
! $2"A#$2#

"$2#$1#"$3#$2#
! $3"$3#A #

"$3#$1#"$3#$2#

%! $1"A#$2#"A#$3#

A"$2#$1#"$3#$1#
#! $2"A#$1#"$3#A #

A"$2#$1#"$3#$2#
! $3"A#$1#"A#$2#

A"$3#$1#"$3#$2#

" ,
where me!m1!#$1#,m&!m2!#$2#,m'!m3!#$3#,%
!$2 /m2.
Then the rotated form Ỹ 2

l has the general form

Ỹ 2
l !OTPY 2

l P†O

!! Ỹ 211
l Ỹ 212

l Ỹ 213
l

Ỹ 221
l Ỹ 222

l Ỹ 223
l

Ỹ 231
l Ỹ 232

l Ỹ 233
l
" . "6#

However, the full expressions for the resulting elements
have a complicated form, as can be appreciated, for instance,
by looking at the element (Ỹ 2

l )22 , which is displayed here:

" Ỹ 2#22
l !%(C2*ei)C$C2e#i)C*

"A#$2#

m3#$2
!m1m3

Am2

$B̃2
A#$2
m3#$2

$A2
A#$2
m3#$2

#(B2*ei)B$B2e#i)B*!"A#$2#"m3#A #

m3#$2
,

"7#

where we have taken the limits #A#,m' ,m&"me . The free
parameters are B 2̃,B2 ,A2 ,A .
To derive a better suited approximation, we shall consider

the elements of the Yukawa matrix Y 2
l as having the same

hierarchy as the full mass matrix, namely,

C2!c2!m1m2m3

A , "8#

B2!b2!"A#$2#"m3#A #, "9#

B̃2! b̃2"m3#A$$2#, "10#

A2!a2A . "11#

Then, in order to keep the same hierarchy for the elements
of the mass matrix, we find that A must fall within the inter-
val (m3#m2)+A+m3. Thus, we propose the following re-
lation for A:

A!m3"1#,z #, "12#

where z!m2 /m3%1 and 0+,+1.
Then we introduce the matrix -̃ as follows:

" Ỹ 2
l # i j!

!mim j

v
-̃ i j

!
!mim j

v
- i je. i j, "13#

which differs from the usual Cheng-Sher ansatz not only
because of the appearance of the complex phases, but also in
the form of the real parts - i j!#-̃ i j#.
Expanding in powers of z, one finds that the elements of

the matrix -̃ have the following general expressions:

MASS MATRIX ANSATZ AND LEPTON FLAVOR . . . PHYSICAL REVIEW D 69, 095002 "2004#
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l Ỹ 222
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Yukawa textures

The structure of quarks mass matrices (quark flavor mixing) is 
unknown.

A theory more fundamental than SM could determine:
6 quark masses, 3 flavor mixing angles, one CP-violating phase.

Phenomenologically, it has introduced a common approach: 
simple textures of quarks mass matrices (called Yukawa textures).

The Yukawa textures are consistents with the relations between quarks 
masses and flavor mixing parameters.

Yukawa textures could come of a theory more fundamental and it 
could be a flavor symmetry.

H. Fritzsch, Z. Z. Xing, Prog.Part. Nucl. Phys. 45 (2000)1.
H. Fritzsch, Z. Z. Xing, Phys. Lett. 555 (2003)63.
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are to be bounded by current experimental constraints. Thus, in order to derive the interactions of the charged Higgs
boson, the Yukawa Lagrangian is written as follows:

�LY = Y u
1 Q̄L⇥̃1uR + Y u

2 Q̄L⇥̃2uR + Y d
1 Q̄L⇥1dR + Y d

2 Q̄L⇥2dR + Y ⇥
1 L̄L⇥1lR + Y ⇥

2 L̄L⇥2lR; (1)

where ⇥1,2 = (⇤+
1,2,⇤

0
1,2)

T refer to the two Higgs doublets, ⇥̃1,2 = i⇥2⇥⇥
1,2, QL denotes the left-handed fermions

doublet, uR and dR are the right-handed fermions singlets and, finally, Y u,d
1,2 denote the (3 ⇥ 3) Yukawa matrices.

Similarly, one can see the corresponding left-handed fermion doublet LL, the right-handed fermion singlet lR and the
Yukawa matrices Y ⇥

1,2 for leptons.
After SSB (Spontaneous Symmetry Breaking), one can derive the fermion mass matrices from eq. (1), namely

Mf =
1⇧
2
(v1Y

f
1 + v2Y

f
2 ), f = u, d, l, (2)

We will assume that both Yukawa matrices Y f
1 and Y f

2 have the four-texture form and Hermitic [22, 26]. Following
this convention, the fermions masses matrices have the same form, which are written as:

Mf =

�

⇤
0 Cf 0
C⇥

f B̃f Bf

0 B⇥
f Af

⇥

⌅ . (3)

when B̃q ⌅ 0 one recovers the six-texture form. We also consider the hierarchy: | Aq |⇤ | B̃q |, | Bq |, | Cq |, which is
supported by the observed fermion masses in the SM.

The mass matrix is diagonalized through the bi-unitary matrices VL,R, though each Yukawa matrices are not
diagonalized by this transformation. The diagonalization is performed in the following way

M̄f = V †
fLMfVfR. (4)

The fact that Mf is hermitian, under the considerations given above, directly implies that VfL = VfR, and the
mass eigenstates for the fermions are given by

u = V †
uu

⇤ d = V †
d d

⇤ l = V †
l l

⇤. (5)

Then eq. (2) in this basis takes the form

M̄f =
1⇧
2
(v1Ỹ

f
1 + v2Ỹ

f
2 ) (6)

where Ỹ f
i = V †

fLY
f
i VfR. In order to compare the new physics comes from Yukawa texture with some traditional 2HDM

(in particular with 2HDM-II), in previous works [22, 23, 28–30], we have implemented the following redefinition ((a)
like-2HDM-II):

Ỹ d
1 =

⇧
2

v cos�
M̄d � tan�Ỹ d

2

Ỹ u
2 =

⇧
2

v sin�
M̄u � cot�Ỹ u

1

Ỹ ⇥
1 = Ỹ d

1 (d ⌅ ⌅) (7)

This, redefinition is convenient because we can get the coupling Higgs-fermion-fermion as gff�2HDM�III = gff�2HDM�II +

�gff�, where gff�2HDM�II is the coupling in the 2HDM-II and �gff� is the contribution of four-zero texture, which
comes some flavor theory. If �gff� ⌅ 0 we can recover the 2HDM-II. However, this redefinition is not unique, there
are other possibilities since eq. 6, which can reproduce the 2HDM-I, 2HDM-X or 2HDM-Y when the contribution of
new physics �gff� ⌅ 0. The other possible redefinitions are:
(b) like-2HDM-I

Ỹ d
2 =

⇧
2

v sin�
M̄d � cot�Ỹ d

1

Ỹ u
2 =

⇧
2

v sin�
M̄u � cot�Ỹ u

1

Ỹ ⇥
2 = Ỹ d

2 (d ⌅ ⌅) (8)
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Mass matrix ansatz and lepton flavor violation in the two-Higgs doublet model-III
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Predictive Higgs-boson–fermion couplings can be obtained when a specific texture for the fermion mass
matrices is included in the general two-Higgs doublet model. We derive the form of these couplings in the
charged lepton sector using a Hermitian mass matrix ansatz with four-texture zeros. The presence of uncon-
strained phases in the vertices # il il j modifies the pattern of flavor-violating Higgs boson interactions. Bounds
on the model parameters are obtained from present limits on rare lepton flavor-violating processes, which could
be extended further by the search for the decay $→%%% and %-e conversion at future experiments. The signal
from Higgs boson decays # i→$% could be searched for at the CERN Large Hadron Collider, while e-%
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I. INTRODUCTION

After many years of the success of the standard model
!SM", the Higgs mechanism is still the least tested sector,
and the problem of electroweak symmetry breaking !EWSB"
remains almost as open as ever. However, the analysis of
radiative corrections within the SM &1' points toward the
existence of a light Higgs boson, which could be detected in
the early stages of the CERN Large Hadron Collider !LHC"
&2'. On the other hand, the SM is often considered as an
effective theory, valid up to an energy scale of O(TeV), and
eventually it will be replaced by a more fundamental theory,
which will explain, among other things, the physics behind
EWSB and perhaps even the origin of flavor. Several ex-
amples of candidate theories, which range from supersym-
metry &3' to deconstruction &4', include a Higgs sector with
two scalar doublets, which has a rich structure and predicts
interesting phenomenology &5'. The general two-Higgs dou-
blet model !THDM" has a potential problem with flavor
changing neutral currents !FCNC’s" mediated by the Higgs
bosons, which arises when each quark type (u and d) is
allowed to couple to both Higgs doublets, and FCNC’s could
be induced at large rates that may jeopardize the model. The
possible solutions to this problem of the THDM involve an
assumption about the Yukawa structure of the model. To dis-
cuss them it is convenient to refer to the Yukawa Lagrangian,
which is written for the quark fields as follows:

LY#Y 1
uQ̄L(1uR!Y 2

uQ̄L(2uR!Y 1
dQ̄L(1dR!Y 2

dQ̄L(2dR ,
!1"

where (1,2#(#1,2
! ,#1,2

0 )T denote the Higgs doublets. The
specific choices for the Yukawa matrices Y 1,2

q (q#u ,d) de-
fine the versions of the THDM known as I, II, and III, which
involve the following mechanisms, that are aimed either to
eliminate the otherwise unbearable FCNC problem or at least
to keep it under control.

!1" Discrete symmetries. A discrete symmetry can be in-
voked to allow a given fermion type (u or d quarks, for
instance" to couple to a single Higgs doublet, and in such
case FCNC’s are absent at the tree level. In particular, when
a single Higgs field gives masses to both types of quarks
!either Y 1

u#Y 1
d#0 or Y 2

u#Y 2
d#0), the resulting model is

referred as THDM-I. On the other hand, when each type of
quark couples to a different Higgs doublet !either Y 1

u#Y 2
d

#0 or Y 2
u#Y 1

d#0), the model is known as the THDM-II.
This THDM-II pattern is highly motivated because it arises
at the tree level in the minimal supersymmetry !SUSY" ex-
tension for the SM !MSSM" &5'.

!2" Radiative suppression. When each fermion type
couples to both Higgs doublets, FCNC’s could be kept under
control if there exists a hierarchy between Y 1

u ,d and Y 2
u ,d ,

namely, a given set of Yukawa matrices is present at the tree
level, but the other ones arise only as a radiative effect. This
occurs for instance in the MSSM, where the type-II THDM
structure is not protected by any symmetry and is trans-
formed into a type-III THDM !see below", through the loop
effects of sfermions and gauginos. That is, the Yukawa cou-
plings that are already present at the tree level in the MSSM
(Y 1

d ,Y 2
u) receive radiative corrections, while the terms

(Y 2
d ,Y 1

u) are induced at the one-loop level.
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I. INTRODUCTION

After many years of the success of the standard model
!SM", the Higgs mechanism is still the least tested sector,
and the problem of electroweak symmetry breaking !EWSB"
remains almost as open as ever. However, the analysis of
radiative corrections within the SM &1' points toward the
existence of a light Higgs boson, which could be detected in
the early stages of the CERN Large Hadron Collider !LHC"
&2'. On the other hand, the SM is often considered as an
effective theory, valid up to an energy scale of O(TeV), and
eventually it will be replaced by a more fundamental theory,
which will explain, among other things, the physics behind
EWSB and perhaps even the origin of flavor. Several ex-
amples of candidate theories, which range from supersym-
metry &3' to deconstruction &4', include a Higgs sector with
two scalar doublets, which has a rich structure and predicts
interesting phenomenology &5'. The general two-Higgs dou-
blet model !THDM" has a potential problem with flavor
changing neutral currents !FCNC’s" mediated by the Higgs
bosons, which arises when each quark type (u and d) is
allowed to couple to both Higgs doublets, and FCNC’s could
be induced at large rates that may jeopardize the model. The
possible solutions to this problem of the THDM involve an
assumption about the Yukawa structure of the model. To dis-
cuss them it is convenient to refer to the Yukawa Lagrangian,
which is written for the quark fields as follows:

LY#Y 1
uQ̄L(1uR!Y 2

uQ̄L(2uR!Y 1
dQ̄L(1dR!Y 2

dQ̄L(2dR ,
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where (1,2#(#1,2
! ,#1,2

0 )T denote the Higgs doublets. The
specific choices for the Yukawa matrices Y 1,2

q (q#u ,d) de-
fine the versions of the THDM known as I, II, and III, which
involve the following mechanisms, that are aimed either to
eliminate the otherwise unbearable FCNC problem or at least
to keep it under control.

!1" Discrete symmetries. A discrete symmetry can be in-
voked to allow a given fermion type (u or d quarks, for
instance" to couple to a single Higgs doublet, and in such
case FCNC’s are absent at the tree level. In particular, when
a single Higgs field gives masses to both types of quarks
!either Y 1

u#Y 1
d#0 or Y 2

u#Y 2
d#0), the resulting model is

referred as THDM-I. On the other hand, when each type of
quark couples to a different Higgs doublet !either Y 1

u#Y 2
d

#0 or Y 2
u#Y 1

d#0), the model is known as the THDM-II.
This THDM-II pattern is highly motivated because it arises
at the tree level in the minimal supersymmetry !SUSY" ex-
tension for the SM !MSSM" &5'.

!2" Radiative suppression. When each fermion type
couples to both Higgs doublets, FCNC’s could be kept under
control if there exists a hierarchy between Y 1

u ,d and Y 2
u ,d ,

namely, a given set of Yukawa matrices is present at the tree
level, but the other ones arise only as a radiative effect. This
occurs for instance in the MSSM, where the type-II THDM
structure is not protected by any symmetry and is trans-
formed into a type-III THDM !see below", through the loop
effects of sfermions and gauginos. That is, the Yukawa cou-
plings that are already present at the tree level in the MSSM
(Y 1

d ,Y 2
u) receive radiative corrections, while the terms

(Y 2
d ,Y 1

u) are induced at the one-loop level.
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I. INTRODUCTION

After many years of the success of the standard model
!SM", the Higgs mechanism is still the least tested sector,
and the problem of electroweak symmetry breaking !EWSB"
remains almost as open as ever. However, the analysis of
radiative corrections within the SM &1' points toward the
existence of a light Higgs boson, which could be detected in
the early stages of the CERN Large Hadron Collider !LHC"
&2'. On the other hand, the SM is often considered as an
effective theory, valid up to an energy scale of O(TeV), and
eventually it will be replaced by a more fundamental theory,
which will explain, among other things, the physics behind
EWSB and perhaps even the origin of flavor. Several ex-
amples of candidate theories, which range from supersym-
metry &3' to deconstruction &4', include a Higgs sector with
two scalar doublets, which has a rich structure and predicts
interesting phenomenology &5'. The general two-Higgs dou-
blet model !THDM" has a potential problem with flavor
changing neutral currents !FCNC’s" mediated by the Higgs
bosons, which arises when each quark type (u and d) is
allowed to couple to both Higgs doublets, and FCNC’s could
be induced at large rates that may jeopardize the model. The
possible solutions to this problem of the THDM involve an
assumption about the Yukawa structure of the model. To dis-
cuss them it is convenient to refer to the Yukawa Lagrangian,
which is written for the quark fields as follows:

LY#Y 1
uQ̄L(1uR!Y 2

uQ̄L(2uR!Y 1
dQ̄L(1dR!Y 2

dQ̄L(2dR ,
!1"

where (1,2#(#1,2
! ,#1,2

0 )T denote the Higgs doublets. The
specific choices for the Yukawa matrices Y 1,2

q (q#u ,d) de-
fine the versions of the THDM known as I, II, and III, which
involve the following mechanisms, that are aimed either to
eliminate the otherwise unbearable FCNC problem or at least
to keep it under control.

!1" Discrete symmetries. A discrete symmetry can be in-
voked to allow a given fermion type (u or d quarks, for
instance" to couple to a single Higgs doublet, and in such
case FCNC’s are absent at the tree level. In particular, when
a single Higgs field gives masses to both types of quarks
!either Y 1

u#Y 1
d#0 or Y 2

u#Y 2
d#0), the resulting model is

referred as THDM-I. On the other hand, when each type of
quark couples to a different Higgs doublet !either Y 1

u#Y 2
d

#0 or Y 2
u#Y 1

d#0), the model is known as the THDM-II.
This THDM-II pattern is highly motivated because it arises
at the tree level in the minimal supersymmetry !SUSY" ex-
tension for the SM !MSSM" &5'.

!2" Radiative suppression. When each fermion type
couples to both Higgs doublets, FCNC’s could be kept under
control if there exists a hierarchy between Y 1

u ,d and Y 2
u ,d ,

namely, a given set of Yukawa matrices is present at the tree
level, but the other ones arise only as a radiative effect. This
occurs for instance in the MSSM, where the type-II THDM
structure is not protected by any symmetry and is trans-
formed into a type-III THDM !see below", through the loop
effects of sfermions and gauginos. That is, the Yukawa cou-
plings that are already present at the tree level in the MSSM
(Y 1

d ,Y 2
u) receive radiative corrections, while the terms

(Y 2
d ,Y 1

u) are induced at the one-loop level.
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I. INTRODUCTION

After many years of the success of the standard model
!SM", the Higgs mechanism is still the least tested sector,
and the problem of electroweak symmetry breaking !EWSB"
remains almost as open as ever. However, the analysis of
radiative corrections within the SM &1' points toward the
existence of a light Higgs boson, which could be detected in
the early stages of the CERN Large Hadron Collider !LHC"
&2'. On the other hand, the SM is often considered as an
effective theory, valid up to an energy scale of O(TeV), and
eventually it will be replaced by a more fundamental theory,
which will explain, among other things, the physics behind
EWSB and perhaps even the origin of flavor. Several ex-
amples of candidate theories, which range from supersym-
metry &3' to deconstruction &4', include a Higgs sector with
two scalar doublets, which has a rich structure and predicts
interesting phenomenology &5'. The general two-Higgs dou-
blet model !THDM" has a potential problem with flavor
changing neutral currents !FCNC’s" mediated by the Higgs
bosons, which arises when each quark type (u and d) is
allowed to couple to both Higgs doublets, and FCNC’s could
be induced at large rates that may jeopardize the model. The
possible solutions to this problem of the THDM involve an
assumption about the Yukawa structure of the model. To dis-
cuss them it is convenient to refer to the Yukawa Lagrangian,
which is written for the quark fields as follows:

LY#Y 1
uQ̄L(1uR!Y 2

uQ̄L(2uR!Y 1
dQ̄L(1dR!Y 2

dQ̄L(2dR ,
!1"

where (1,2#(#1,2
! ,#1,2

0 )T denote the Higgs doublets. The
specific choices for the Yukawa matrices Y 1,2

q (q#u ,d) de-
fine the versions of the THDM known as I, II, and III, which
involve the following mechanisms, that are aimed either to
eliminate the otherwise unbearable FCNC problem or at least
to keep it under control.

!1" Discrete symmetries. A discrete symmetry can be in-
voked to allow a given fermion type (u or d quarks, for
instance" to couple to a single Higgs doublet, and in such
case FCNC’s are absent at the tree level. In particular, when
a single Higgs field gives masses to both types of quarks
!either Y 1

u#Y 1
d#0 or Y 2

u#Y 2
d#0), the resulting model is

referred as THDM-I. On the other hand, when each type of
quark couples to a different Higgs doublet !either Y 1

u#Y 2
d

#0 or Y 2
u#Y 1

d#0), the model is known as the THDM-II.
This THDM-II pattern is highly motivated because it arises
at the tree level in the minimal supersymmetry !SUSY" ex-
tension for the SM !MSSM" &5'.

!2" Radiative suppression. When each fermion type
couples to both Higgs doublets, FCNC’s could be kept under
control if there exists a hierarchy between Y 1

u ,d and Y 2
u ,d ,

namely, a given set of Yukawa matrices is present at the tree
level, but the other ones arise only as a radiative effect. This
occurs for instance in the MSSM, where the type-II THDM
structure is not protected by any symmetry and is trans-
formed into a type-III THDM !see below", through the loop
effects of sfermions and gauginos. That is, the Yukawa cou-
plings that are already present at the tree level in the MSSM
(Y 1

d ,Y 2
u) receive radiative corrections, while the terms

(Y 2
d ,Y 1

u) are induced at the one-loop level.
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m!̃ mass limit. Rather, these modes decouple in the limit that the pseudoscalar Higgs
boson becomes heavy, mA → ∞, thus providing complementary information on the
supersymmetric (SUSY) spectrum.

Flavor Violation among the Sleptons. In the leptonic sector, we begin with a
Lagrangian:

− L = ERYELLHd + νRYνLL + 1
2ν

!
RMR νR (1)

where ER, LL and νR represent 3 × 1 matrices in flavor space of right-handed charged
leptons, left-handed lepton doublets and right-handed neutrinos, and YE, Yν and MR are
3 × 3 matrices in flavor space; for example, ER = (eR, µR, τR)!. This Lagrangian clearly
violates both family and total lepton number due to the presence of the νR Majorana
mass term. We can choose to work in a basis in which both YE and MR have been
diagonalized, but Yν remains an arbitrary, complex matrix.

Within the SM, O(1) flavor violation in the neutrinos does not translate into appre-
ciable flavor violation in the charged lepton sector due to 1/MR suppressions. But this
is not true in the slepton sector. The SUSY-breaking slepton masses are unprotected
by chiral symmetries and are therefore sensitive to physics at all mass scales between
mL̃ and the scale, M , at which SUSY-breaking is communicated to the visible sector,
assuming M > MR. This can be seen by examining the renormalization group equation
for m2

L̃
at scales above MR:

d

d log Q
(m2

L̃)ij =

(

d

d logQ
(m2

L̃)ij

)

MSSM

(2)

+
1

16π2

[

m2
L̃Y †

ν Yν + Y †
ν Yνm

2
L̃ + 2(Y †

ν m2
ν̃R

Yν + m2
Hu

Y †
ν Yν + A†

νAν)
]

ij

where the first term represents the (L-conserving) terms present in the usual MSSM at
scales below MR. Because Yν is off-diagonal, it will generate flavor-mixing in the slepton
mass matrix. We can solve this equation approximately for the flavor-mixing piece:

(

∆m2
L̃

)

ij
% −

log(M/MR)

16π2

(

6m2
0(Y

†
ν Yν)ij + 2

(

A†
νAν

)

ij

)

(3)

where m0 is a common scalar mass evaluated at the scale Q = M , and i &= j. If we
further assume that the A-terms are proportional to Yukawa matrices, then:

(

∆m2
L̃

)

ij
% ξ

(

Y †
ν Yν

)

ij
(4)

where

ξ = −
log(M/MR)

16π2
(6 + 2a2)m2

0. (5)

and a is O(1). In the simplest SUSY-breaking scenarios, gravity plays the role of mes-
senger and M = MP l, so that the logarithm in Eq. (5) is roughly 10.
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where the first term represents the (L-conserving) terms present in the usual MSSM at
scales below MR. Because Yν is off-diagonal, it will generate flavor-mixing in the slepton
mass matrix. We can solve this equation approximately for the flavor-mixing piece:
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where m0 is a common scalar mass evaluated at the scale Q = M , and i &= j. If we
further assume that the A-terms are proportional to Yukawa matrices, then:
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)

ij
% ξ

(

Y †
ν Yν
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(4)

where
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log(M/MR)

16π2
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0. (5)

and a is O(1). In the simplest SUSY-breaking scenarios, gravity plays the role of mes-
senger and M = MP l, so that the logarithm in Eq. (5) is roughly 10.
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2HDM-III +  Yukawa texture 
contain the following information:

 
It could come from a more fundamental theory  (susy models with 

seesaw mechanism).

+
Yukawa texture is the flavor symmetry of the model and do not 

require of the discrete flavor symmetry.

+

The Higgs potential must be expressed in the most general form. 

T. P. Cheng, M. Sher, Phys. Rev. D33,11 (1987)
J.L. Diaz-Cruz, R Noriega-Papaqui, A. Rosado. Phys. Rev. D69,095002 (2004)
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ξu
h ξd

h ξ!
h ξu

H ξd
H ξ!

H ξu
A ξd

A ξ!
A

Type-I cα/sβ cα/sβ cα/sβ sα/sβ sα/sβ sα/sβ cot β − cot β − cot β

Type-II cα/sβ −sα/cβ −sα/cβ sα/sβ cα/cβ cα/cβ cot β tan β tan β

Type-X cα/sβ cα/sβ −sα/cβ sα/sβ sα/sβ cα/cβ cot β − cot β tan β

Type-Y cα/sβ −sα/cβ cα/sβ sα/sβ cα/cβ sα/sβ cot β tan β − cot β

TABLE II: The mixing factors in Yukawa interactions in Eq. (6)

where the rotation matrix is given by

R(θ) =



cos θ − sin θ

sin θ cos θ



 . (5)

There are five physical Higgs bosons, i.e., two CP-even states h and H , one CP-odd state

A, and a pair of charged states H±, and z and ω± are Nambu-Goldstone bosons that are

eaten as the longitudinal components of the massive gauge bosons. The eight parameters
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1–m

2
3 and λ1–λ5 in the Higgs sector are replaced by eight physical parameters: i.e., the

VEV v =
√

v2
1 + v2

2 " 246 GeV, the mixing angles α and β (tanβ = v2/v1), the Higgs boson

masses mh, mH , mA, mH±, and the soft breaking mass parameter M = m3/
√

sin β cos β. The

mixing angle α is defined such that h is the SM-like Higgs boson when sin(β − α) = 1.

The Yukawa interactions are expressed in terms of mass eigenstates of the Higgs bosons
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−
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νL)RH+ + H.c.

}

, (6)

where PL/R are projection operators for left-/right-handed fermions, and the factors ξf
ϕ are

listed in TABLE II.

For the successful electroweak symmetry breaking, a combination of quartic coupling

constants should satisfy the condition of vacuum stability [27, 28]. We also take into account

bounds from perturbative unitarity [29] to restrict parameters in the Higgs potential [30, 31].

The top and bottom Yukawa coupling constants cannot be taken too large. The requirement

|Yt,b|2 < π at the tree level can provide a milder constraint 0.4 ! tanβ ! 91, where

|Yt| = (
√

2/v)mt cotβ and |Yb| = (
√

2/v)mb tanβ.
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ūi

 
(VCKM)il

⇧
Xmdl ⇥lj �

f(X)⇥
2

⇥
mdlmdj ⌅̃

d
lj

⌃
(1 + �5)

+

⇧
Y mui ⇥il �

f(Y )⇥
2

⇥
muimul ⌅̃

u
il

⌃
(VCKM)lj(1� �5)

⌦
dj H

+ (14)

+⇤̄i

⇧
Z m�i ⇥ij �

f(Z)⇥
2

⇥
m�imdj ⌅̃

�
ij

⌃
(1 + �5)⇧jH

+ + h.c.

⌦
,

where we have redefined [⌅̃u
1 ]ij = ⌅̃u

ij and
⇤
⌅̃d
2
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ij

= ⌅̃d
ij . Following this notation we can define the parameters for

framework like-2HDM-(I,II,X,Y) through the table I.

2HDM-III X Y Z

like-2HDM-I � cot� cot� � cot�

like-2HDM-II tan� cot� tan�

like-2HDM-X � cot� cot� tan�

like-2HDM-Y tan� cot� � cot�

TABLE I: Parameters X,Y and Z defined in the Yukawa interactions of eq. 11 for four versions of the 2HDM-III with a four
zero texture, which come from eqs. 7-10.

Then, from Eq. (14), the couplings ūidjH+ and uid̄jH� are given by:
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Sij = mdj Xij +mui Yij ,

Pij = mdj Xij �mui Yij . (16)

with

Xij =
3�

l=1

(VCKM)il

⌥
X

mdl

mdj

⇥lj �
f(X)⇥

2

�
mdl

mdj

⌅̃d
lj

�
,

Yij =
3�

l=1

⌥
Y ⇥il �

f(Y )⇥
2

�
mul

mui

⌅̃u
il

�
(VCKM)lj . (17)

For the case of leptons S�
ij = P �

ij and given by

S�
ij = m�j Z

�
ij ,

Z�
ij =

⌥
Z

m�i

m�j

⇥ij �
f(Z)⇥

2

�
m�i

m�j

⌅̃�
ij

�
, (18)
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� are given by:
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Following the definitions 17-18 we obtain the interaction of charged Higgs boson with the fermions, which is described
by:
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are to be bounded by current experimental constraints. Thus, in order to derive the interactions of the charged Higgs
boson, the Yukawa Lagrangian is written as follows:

�LY = Y u
1 Q̄L⇥̃1uR + Y u

2 Q̄L⇥̃2uR + Y d
1 Q̄L⇥1dR + Y d

2 Q̄L⇥2dR + Y ⇥
1 L̄L⇥1lR + Y ⇥

2 L̄L⇥2lR; (1)

where ⇥1,2 = (⇤+
1,2,⇤

0
1,2)

T refer to the two Higgs doublets, ⇥̃1,2 = i⇥2⇥⇥
1,2, QL denotes the left-handed fermions

doublet, uR and dR are the right-handed fermions singlets and, finally, Y u,d
1,2 denote the (3 ⇥ 3) Yukawa matrices.

Similarly, one can see the corresponding left-handed fermion doublet LL, the right-handed fermion singlet lR and the
Yukawa matrices Y ⇥

1,2 for leptons.
After SSB (Spontaneous Symmetry Breaking), one can derive the fermion mass matrices from eq. (1), namely

Mf =
1⇧
2
(v1Y

f
1 + v2Y

f
2 ), f = u, d, l, (2)

We will assume that both Yukawa matrices Y f
1 and Y f

2 have the four-texture form and Hermitic [22, 26]. Following
this convention, the fermions masses matrices have the same form, which are written as:

Mf =

�

⇤
0 Cf 0
C⇥

f B̃f Bf

0 B⇥
f Af

⇥

⌅ . (3)

when B̃q ⌅ 0 one recovers the six-texture form. We also consider the hierarchy: | Aq |⇤ | B̃q |, | Bq |, | Cq |, which is
supported by the observed fermion masses in the SM.

The mass matrix is diagonalized through the bi-unitary matrices VL,R, though each Yukawa matrices are not
diagonalized by this transformation. The diagonalization is performed in the following way

M̄f = V †
fLMfVfR. (4)

The fact that Mf is hermitian, under the considerations given above, directly implies that VfL = VfR, and the
mass eigenstates for the fermions are given by

u = V †
uu

⇤ d = V †
d d

⇤ l = V †
l l

⇤. (5)

Then eq. (2) in this basis takes the form

M̄f =
1⇧
2
(v1Ỹ

f
1 + v2Ỹ

f
2 ) (6)

where Ỹ f
i = V †

fLY
f
i VfR. In order to compare the new physics comes from Yukawa texture with some traditional 2HDM

(in particular with 2HDM-II), in previous works [22, 23, 28–30], we have implemented the following redefinition ((a)
like-2HDM-II):

Ỹ d
1 =

⇧
2

v cos�
M̄d � tan�Ỹ d

2

Ỹ u
2 =

⇧
2

v sin�
M̄u � cot�Ỹ u

1

Ỹ ⇥
1 = Ỹ d

1 (d ⌅ ⌅) (7)

This, redefinition is convenient because we can get the coupling Higgs-fermion-fermion as gff�2HDM�III = gff�2HDM�II +

�gff�, where gff�2HDM�II is the coupling in the 2HDM-II and �gff� is the contribution of four-zero texture, which
comes some flavor theory. If �gff� ⌅ 0 we can recover the 2HDM-II. However, this redefinition is not unique, there
are other possibilities since eq. 6, which can reproduce the 2HDM-I, 2HDM-X or 2HDM-Y when the contribution of
new physics �gff� ⌅ 0. The other possible redefinitions are:
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+

2HDM�III = gfuifdjH
+

2HDM�any +�gfuifdjH
+

)
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⇧
2

v sin�
M̄d � cot�Ỹ d

1

Ỹ u
2 =

⇧
2

v sin�
M̄u � cot�Ỹ u

1

Ỹ ⇥
2 = Ỹ d

2 (d ⌅ ⌅) (8)
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�(H± ⇤ uidj) =
3GFmH±(m2

dj
|Xij |2 +m2

ui
|Yij |2)

4⇤
⇧
2

(27)

On can see that is very interesting the case Y >>, X,Z (this imply that Yij >>, Xij ,Zij : see eqs. 17-18 ), because
the channel decay H+ ⇤ cb̄ is dominant. In order to show this situation, we calculate the dominants terms mcY23,
mcY22 of width H+ ⇤ cb̄, cs̄ respectivily, which are given by:

mcYcb = mcY23 = Vcbmc

�
Y � f(Y )⇧

2
⇧u
22

⇥
� Vtb

f(Y )⇧
2

⇧
mtmc⇧

u
23

= Vcbmc�
u
22 + Vtb

⇧
mtmc�

u
23 (28)

mcYcs = mcY22 = Vcsmc

�
Y � f(Y )⇧

2
⇧u
22

⇥
� Vts

f(Y )⇧
2

⇧
mtmc⇧

u
23

= Vcsmc�
u
22 + Vts

⇧
mtmc�

u
23 (29)

As Y is large and f(Y ) =
⇧
1 + Y 2 ⇥ Y , then the term

�
Y � f(Y )�

2
⇧u
22

⇥
could be absent or small, when ⇧ij = O(1).

On the other hand, the last term is very huge because to
⇧
mtmc and this is the dominant term (also for �ij = O(1)).

So, we can approach the ratio of two dominant decays, namely, BR(H± ⇤ cb) and BR(H± ⇤ cs), which is given as
follows:

BR(H± ⇤ cb)

BR(H± ⇤ cs)
= Rsb ⇥

|Vtb|2

|Vts|2
(30)

In Reference [24], the authors only take the diagonal terms �ii and the non-diagonal terms are ab-
sent.Therefore, the scenarios where channel decay H± ⇤ cb could be dominant do not appear under
this assumption. However, we can see that the non-diagonal term ⇧u

23 (or �u
23) has a factor large given

by
⇧
mcmt, which cannot be omitted and is an important result of new physics beyond 2HDM. Simi-

larly, we have been studied interesting channels decay and processes production at tree level and one
loop-level [22, 23, 28–30].

Other case is when X >>, Y ,Z, we get the dominants terms mbX23, msX22:

mbXcb = mbX23 = Vcbmb

�
X � f(X)⇧

2
⇧d
33

⇥
� Vcs

f(X)⇧
2

⇧
mbms⇧

d
23

= Vcbmb�
d
33 + Vcs

⇧
msmb�

d
23 (31)

msXcs = msX22 = Vcsms

�
X � f(X)⇧

2
⇧d
22

⇥
� Vts

f(X)⇧
2

⇧
mbms⇧

d
23

= Vcsms�
d
22 + Vcb

⇧
msmb�

d
32 (32)

In this scenario there are two possibilities. If ⇧ = O(1) and positive then

�
X � f(X)�

2
⇧d
33

⇥
is small and Rsb ⇥ |Vcs|2

|Vcb|2 ,

and the BR(H± ⇤ cb) becomes large. Other situation is when, ⇧ = O(1) and negative, then Rsb ⇥ m2
b |Vcb|2

m2
s|Vcb|2 , which

was studied recently in [40].

A. Tree level decays

1. µ� e universality in � decays

The dacays ⌅ ⇤ µ⇥̄µ⇥� and ⌅ ⇤ e⇥̄e⇥� give an important constraint in charged Higgs physics with leptons [46], the
µ� e universality, this quantity can be expressed as [47, 48]:

�
gµ
ge

⇥2

�

=
BR(⌅ ⇤ µ⇥̄µ⇥� )

BR(⌅ ⇤ e⇥̄e⇥� )

f(m2
e/m

2
� )

f(m2
µ/m

2
� )

= 1.0036± 0.0020

where f(x) = 1� 8x2 + 8x3 � x4 � 12x2 logx. Following [8] in our case µ� e universality is:

BR(⌅ ⇤ µ⇥̄µ⇥� )

BR(⌅ ⇤ e⇥̄e⇥� )

f(m2
e/m

2
� )

f(m2
µ/m

2
�

⌅ 1 +
R2

4
� 0.25R.
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where

R =
m�mµ

M2
H+

Z33 Z22 =
m�mµ

M2
H+

�
Z � f(Z)⌅

2
⇤l
33

⇥ �
Z � f(Z)⌅

2
⇤l
22

⇥
.

Following the analysis of Ref [49], we can obtain the following constraint:

|Z22Z33|
m2

H±
⇥ 0.16 GeV �1 (33)

We show in the figure 1, the constraints for ⇤⇥
22 and ⇤⇥

33 and 0.5 ⇥ Z ⇥ 80. We can see that ⇤⇥
22 and ⇤⇥

33 could be
simultaneously 1 and -1, and the region more favorable is when ⇤⇥

22 = ⇤⇥
33 = 1.5 .

B. E�ective Lagrangian for 4-Fermi interactions

Once we obtain the charged Higgs and fermion couplings, it is straightforward to write down the amplitudes for

B ⇤ D⇥� (B� ⇤ D
0
⇥�� or B

0 ⇤ D+⇥��) and B ⇤ ⇥� processes. First, the e�ective Lagrangian for b ⇤ c⇥�
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FIG. 1. Considering the constraint from µ− e universality in τ decays, we show the allowed region (orange color) for χl
22 and

χl
33 when Z takes values of 10 (left-panel), 40 (center-panel) and 80 (right-panel). Here, 90 GeV ≤ mH± ≤ 130 GeV.

A. µ− e universality in τ decays

The τ decays into µν̄µντ and eν̄eντ produce important constraints onto charged Higgs boson states coupling to
leptons [58], through the requirement of µ − e universality. The consequent limits can be quantified through the
following relation [59, 60]:

(

gµ
ge

)2

τ

=
BR(τ → µν̄µντ )

BR(τ → eν̄eντ )

g(m2
e/m

2
τ )

g(m2
µ/m

2
τ )

= 1.0036± 0.0020

where g(x) = 1− 8x2 +8x3 − x4 − 12x2 log x. Following [8], in our case, the request of µ− e universality imposes the
following relation

BR(τ → µν̄µντ )

BR(τ → eν̄eντ )

f(m2
e/m

2
τ )

f(m2
µ/m

2
τ

# 1 +
R2

4
− 0.25R, (42)

where R is the scalar contribution parametrized through the effective coupling, see eqs. (35) and (36),

R =
mτmµ

m2
H±

Z33 Z22 =
mτmµ

m2
H±

[

Z −
f(Z)√

2
χl
33

] [

Z −
f(Z)√

2
χl
22

]

. (43)

One can see that R is symmetric in the two parameters χ22 and χ33. Following the analysis of Ref. [61], we can
obtain the following explicit constraint:

|Z22Z33|
m2

H±

≤ 0.16 GeV−1 (95% CL). (44)

We show in Fig. 1 the constraints on χl
22 and χl

33 with Z = 10, 40, 80. One can see that, for small Z values, the
allowed region for χl

22 and χl
33 is large whereas, when Z instead grows, the allowed region for theses parameters is

smaller in comparison. The constraints becomes most restrictive when Z is large and we have a very light charged
Higgs boson, between 90 and 130 GeV. The plot also shows that χl

22 and χl
33 could be simultaneously 1 and −1,

respectively, and the more favorable region is the one where χl
22 = χl

33 = 1.5 for 0.5 ≤ Z ≤ 100. When Z is large, if
χl
22 = 1, one can see that 0.5 ≤ χl

33 ≤ 2.5 (the same happens when χl
22 and χl

33 are interchanged). Further, in Fig.
2 we present the plane [mH± , X ] and the allowed region is shown for the cases χl

33 = 0 and χl
22 = 0 (left panel) and

χl
22 = 0.1 and −20 ≤ χl

33 ≤ 20 (right panel). In the left panel we present the red region (without contributions from
the parameters of flavor physics |χij |), which is allowed by µ−e universality in τ decays: e.g., for mH± ≤ 120 GeV we
must have the constraint X ≤ 50. In the right panel we show two regions: here, the blue(blue&gray) one is allowed
for the cases 5 ≤ |χij |(|χij | ≤ 5). The blue region is clearly the more restrictive one of the two and could become even
smaller while the |χij |’s grow. In the case shown, we can get that mH± ≤ 150 GeV for X ≤ 20. Conversely, with
both regions combined, blue&gray, which represent the portion of parameter space allowed for 0.8 ≤ |χij | ≤ 2, we
see that the model is more favored, because it opens up larger regions in the plane [mH± , X ]. One can see this, e.g.,
for X ≤ 80, as the bound for the charged Higgs boson mass is now given by mH± ≥ 100 GeV, that is, not dissimilar
from the previous case (when X ≤ 20).
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the channel decay H+ ⇤ cb̄ is dominant. In order to show this situation, we calculate the dominants terms mcY23,
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As Y is large and f(Y ) =
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could be absent or small, when ⇧ij = O(1).

On the other hand, the last term is very huge because to
⇧
mtmc and this is the dominant term (also for �ij = O(1)).

So, we can approach the ratio of two dominant decays, namely, BR(H± ⇤ cb) and BR(H± ⇤ cs), which is given as
follows:
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In Reference [24], the authors only take the diagonal terms �ii and the non-diagonal terms are ab-
sent.Therefore, the scenarios where channel decay H± ⇤ cb could be dominant do not appear under
this assumption. However, we can see that the non-diagonal term ⇧u

23 (or �u
23) has a factor large given

by
⇧
mcmt, which cannot be omitted and is an important result of new physics beyond 2HDM. Simi-

larly, we have been studied interesting channels decay and processes production at tree level and one
loop-level [22, 23, 28–30].
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In this scenario there are two possibilities. If ⇧ = O(1) and positive then
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and the BR(H± ⇤ cb) becomes large. Other situation is when, ⇧ = O(1) and negative, then Rsb ⇥ m2
b |Vcb|2

m2
s|Vcb|2 , which

was studied recently in [40].

A. Tree level decays

1. µ� e universality in � decays

The dacays ⌅ ⇤ µ⇥̄µ⇥� and ⌅ ⇤ e⇥̄e⇥� give an important constraint in charged Higgs physics with leptons [46], the
µ� e universality, this quantity can be expressed as [47, 48]:
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Following the analysis of Ref [49], we can obtain the following constraint:

|Z22Z33|
m2

H±
⇥ 0.16 GeV �1 (33)

We show in the figure 1, the constraints for ⇤⇥
22 and ⇤⇥

33 and 0.5 ⇥ Z ⇥ 80. We can see that ⇤⇥
22 and ⇤⇥

33 could be
simultaneously 1 and -1, and the region more favorable is when ⇤⇥

22 = ⇤⇥
33 = 1.5 .

B. E�ective Lagrangian for 4-Fermi interactions

Once we obtain the charged Higgs and fermion couplings, it is straightforward to write down the amplitudes for

B ⇤ D⇥� (B� ⇤ D
0
⇥�� or B

0 ⇤ D+⇥��) and B ⇤ ⇥� processes. First, the e�ective Lagrangian for b ⇤ c⇥�
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in [66], from where it is clear that the 2HDM-II is disfavored. Since this model cannot explain R(D) and R(D∗)
simultaneously (and for B → τν a high fine tuning is needed), where R(D∗) are the ratios

R(D∗) = BR(B → D∗τν)/BR(B → D∗lν) (50)

with

R(D) = 0.44± 0.058± 0.042, (51)

R(D∗) = 0.332± 0.024± 0.018.

However, lately, in Ref. [67], it was shown that one can simultaneously explain R(D) and R(D∗) in the 2HDM-III
with a general flavor structure, where the non-diagonal terms from the u-quark sector are relevant.
Following the analysis of Ref. [62], an interesting observable is the normalized BR, RB→Dτν = BR(B →

Dτν)/BR(B → Deν), which corresponds to a b → c transition, with a CKM factor much larger than the purely
leptonic B decay. One can write this term as a second order polynomial in the charged Higgs boson coupling to
fermions, as

RB→Dτν = a0 + a1(m
2
B −m2

D)δ23 + a2(m
2
B −m2

D)2δ223, (52)

where the factor δ23 is determined by the coupling H+uid̄i, where the general expression for δij is given by

δij = −
Z33

m2
H±

(

Yijmui −Xijmdj

mui −mdj

)

. (53)

The polynomial coefficients ai in eq. (52) are given in Ref. [62] as:

a0 = 0.2970 + 0.1286dρ2 + 0.7379d∆,

a1 = 0.1065 + 0.0546dρ2 + 0.4631d∆, (54)

a2 = 0.0178 + 0.0010dρ2 + 0.0077d∆,
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in [66], from where it is clear that the 2HDM-II is disfavored. Since this model cannot explain R(D) and R(D∗)
simultaneously (and for B → τν a high fine tuning is needed), where R(D∗) are the ratios

R(D∗) = BR(B → D∗τν)/BR(B → D∗lν) (50)

with

R(D) = 0.44± 0.058± 0.042, (51)

R(D∗) = 0.332± 0.024± 0.018.

However, lately, in Ref. [67], it was shown that one can simultaneously explain R(D) and R(D∗) in the 2HDM-III
with a general flavor structure, where the non-diagonal terms from the u-quark sector are relevant.
Following the analysis of Ref. [62], an interesting observable is the normalized BR, RB→Dτν = BR(B →

Dτν)/BR(B → Deν), which corresponds to a b → c transition, with a CKM factor much larger than the purely
leptonic B decay. One can write this term as a second order polynomial in the charged Higgs boson coupling to
fermions, as

RB→Dτν = a0 + a1(m
2
B −m2

D)δ23 + a2(m
2
B −m2

D)2δ223, (52)

where the factor δ23 is determined by the coupling H+uid̄i, where the general expression for δij is given by

δij = −
Z33

m2
H±

(

Yijmui −Xijmdj

mui −mdj

)

. (53)

The polynomial coefficients ai in eq. (52) are given in Ref. [62] as:

a0 = 0.2970 + 0.1286dρ2 + 0.7379d∆,

a1 = 0.1065 + 0.0546dρ2 + 0.4631d∆, (54)

a2 = 0.0178 + 0.0010dρ2 + 0.0077d∆,
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the QCD running of the the Wilson coefficients Ci(µW ) down to the lower energy scale µb = O(mb), after including
the new physics contributions, the same happens in the SM. Thence, for a complete NLO analysis of the radiative
decay B → Xsγ only the Wilson coefficient C eff

7 (µb) has to be known, which is:

C eff
7 (µb) = C0, eff

7 (µb) +
αs(µb)

4π
C1, eff

7 (µb) , (65)

where the functions C0, eff
7 (µb) and C1, eff

7 (µb) as functions of C0
i,j(µW ) and their complete expressions are given in

[43, 80].

E. BR(B → Xsγ)

The BR of the inclusive radiative decay B → Xsγ is given by:

BR(B → Xsγ)LO = BSL
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at the LO level and

BR(B → Xsγ)NLO = BSL
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at the NLO level, where BSL = (10.74±0.16)% is the measured semi-leptonic BR of the B meson [68], αem = 1/137.036
is the fine-structure constant, z = mpole

c /mpole
b is the ratio of the quark pole masses, θ(z) and κ(z) denote the phase

space factor and the QCD correction [81] for the semi-leptonic B decay and are given in [43, 80]. The term D in eq.
(67) corresponds to the sub-processes b → sγ [43]

D = Ceff
7 (µb) + V (µb) , (68)

where the NLO Wilson coefficient Ceff
7 (µb) has been given in eq. (65), and the function V (µb) is given by [43, 80]. In

eq. (67), term A is the the correction coming from the bremsstrahlung process b → sγg [82]. Now we are ready to
present numerical results of the BRs in the 2HDM-III. We employ the central value of the input parameters given in
Refs. [43, 80]. For the values of the matching scale and low energy scale, we take µW = MW and mb/2 ≤ µb ≤ 2mb.
Following the recent analysis of Refs. [61, 83] and using standard values [43, 80] for the charged Higgs boson mass

(80 GeV ≤ mH± ≤ 300 GeV), we can establish the following constraints:
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Since
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< 0.25, we show in Fig. 8 the allowed area in the plane χu
33 − χu

23, for the cases Y << 1 (left panel),

Y = 1 (center panel) and Y = 10 (right panel). One can then extract the bounds −0.75 ≤ χu
23 ≤ −0.15 for χu

33 = 1 and

0.4 ≤ χu
23 ≤ 0.9 for χu

33 = −1, both when Y << 1. Otherwise, using the second constraint −1.7 < Re

[

X33Y
∗
32

VtbVts

]

< 0.7,

we can obtain the interval permitted for χu
23, assuming the allowed interval for χd

23 from B → τν and χu
33 = 1 =

χd
33 = 1. In Fig. 9 one can get the allowed area for some scenarios of Tab. II. We can, e.g., obtain χu

23 ∈ (−0.55,−0.48)
for the case X = 20 and Y = 0.1 (left panel). An interesting scenario for the 2HDM-III is the 2HDM-X-like one,
where the allowed region is larger than in other scenarios, with χu

23 ∈ (−2.2, 0.45) and χd
23 ∈ (−7,−2) (using the

constraint coming from B → τν), so that one can avoid the most restrictive constraints hitherto considered.

F. B0 − B̄0 mixing

In generic 2HDMs, the charged Higgs boson contributes to the mass splitting ∆MBd
. Previously, in Ref. [84], the

new physics contribution to ∆MBd
was calculated in the 2HDM-III at the LO and was presented the constraints on

the λtt −mH± plane, by using the measured xd = ∆MBd
/ΓB value. However, in that work did not include the effects

of the large uncertainty affecting the non-perturbative parameter fBd

√

B̂Bd
and the new physics contribution to the

parameter ηB [80], as well as the possibility of non-diagonal terms in the Yukawa texture. Remembering that in
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[43, 70, 71] and in the 2HDM with Minimal Flavor Violation (MFV) [72] while, only very recently, NNLO results have
been presented for both a Type-I and Type-II 2HDM [73]. The current average of the measurements by CLEO [74],
Belle [75, 76], and BaBar [77–79] reads BR(B̄ → Xγ)|Eγ>1.6 GeV = (3.37± 0.23)× 10−4.
In this subsection we show the constraints on the off-diagonal terms of the four-zero Yukawa texture of the 2HDM-

III through a general study of the processes B → Xsγ. We first start with a digression on Wilson coefficients entering
the higher order calculations.

1. NLO Wilson coefficients at the scale µW

To the first order in αs, the effective Wilson coefficients at the scale µW = O(MW ) can be written as [43, 80]

C eff
i (µW ) = C0, eff

i (µW ) +
αs(µW )

4π
C1, eff

i (µW ) . (55)

The LO contribution of 2HDM-III to the relevant Wilson coefficients at the matching energy scale µW take the form
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The NLO Wilson coefficients at the matching scale µW in the 2HDM-III can be written as [43]
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where the functions on the right-hand side of eqs. (60) and (62) are given in Ref. [43, 80]. The contributions of our
version 2HDM-III to the B → Xsγ decay are described by the functions C0,1

i,j (µW ) (i = 7, 8 and j = (Y Y,XY )) and
the couplings Y u

33, Y
u∗
32 and Xu

33.
The contribution from new physics to B → Xsγ also depend on the magnitude and sign of the couplings X and

Y (see Tab. I). For instance, for the conventional Type-II 2HDM, we have |Y |2 = 1
tan2 β , XY ∗ = 1, whereas for the

2HDM-III under study here we have
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where λD
tt and λD

tt , expressed in eq. (40), are parameters defined in a version of the 2HDM-III without off-diagonal
terms in the Yukawa texture [24, 80]5. Again, when the off-diagonal terms of the four-zero texture of Yukawa matrices
are absent, we recover the results mentioned. When the heavy charged Higgs bosons is integrated out at the scale µW ,

5 In the version 2HDM-III of [24, 80, 84], one has λD
tt = λbb, λU

tt = λtt.
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where the functions on the right-hand side of eqs. (60) and (62) are given in Ref. [43, 80]. The contributions of our
version 2HDM-III to the B → Xsγ decay are described by the functions C0,1
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the couplings Y u
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where λD
tt and λD

tt , expressed in eq. (40), are parameters defined in a version of the 2HDM-III without off-diagonal
terms in the Yukawa texture [24, 80]5. Again, when the off-diagonal terms of the four-zero texture of Yukawa matrices
are absent, we recover the results mentioned. When the heavy charged Higgs bosons is integrated out at the scale µW ,
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the QCD running of the the Wilson coefficients Ci(µW ) down to the lower energy scale µb = O(mb), after including
the new physics contributions, the same happens in the SM. Thence, for a complete NLO analysis of the radiative
decay B → Xsγ only the Wilson coefficient C eff

7 (µb) has to be known, which is:

C eff
7 (µb) = C0, eff

7 (µb) +
αs(µb)

4π
C1, eff

7 (µb) , (65)

where the functions C0, eff
7 (µb) and C1, eff

7 (µb) as functions of C0
i,j(µW ) and their complete expressions are given in

[43, 80].

E. BR(B → Xsγ)

The BR of the inclusive radiative decay B → Xsγ is given by:
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at the NLO level, where BSL = (10.74±0.16)% is the measured semi-leptonic BR of the B meson [68], αem = 1/137.036
is the fine-structure constant, z = mpole

c /mpole
b is the ratio of the quark pole masses, θ(z) and κ(z) denote the phase

space factor and the QCD correction [81] for the semi-leptonic B decay and are given in [43, 80]. The term D in eq.
(67) corresponds to the sub-processes b → sγ [43]

D = Ceff
7 (µb) + V (µb) , (68)

where the NLO Wilson coefficient Ceff
7 (µb) has been given in eq. (65), and the function V (µb) is given by [43, 80]. In

eq. (67), term A is the the correction coming from the bremsstrahlung process b → sγg [82]. Now we are ready to
present numerical results of the BRs in the 2HDM-III. We employ the central value of the input parameters given in
Refs. [43, 80]. For the values of the matching scale and low energy scale, we take µW = MW and mb/2 ≤ µb ≤ 2mb.
Following the recent analysis of Refs. [61, 83] and using standard values [43, 80] for the charged Higgs boson mass
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at the NLO level, where BSL = (10.74±0.16)% is the measured semi-leptonic BR of the B meson [68], αem = 1/137.036
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eq. (67), term A is the the correction coming from the bremsstrahlung process b → sγg [82]. Now we are ready to
present numerical results of the BRs in the 2HDM-III. We employ the central value of the input parameters given in
Refs. [43, 80]. For the values of the matching scale and low energy scale, we take µW = MW and mb/2 ≤ µb ≤ 2mb.
Following the recent analysis of Refs. [61, 83] and using standard values [43, 80] for the charged Higgs boson mass
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χu
33 = 1, χd

33 = 1.

Ref. [67] the general flavor structure for the 2HDM-III has been found more consistent with various other B physics
constraints, we are motivated to test this model assumption also against limits coming from B0 − B̄0 mixing.
Being that ∆MBd

has been measured with very high precision [68], we utilize this quantity directly instead of
the parameter xd. We will compute for our version of 2HDM-III, the charged Higgs boson contribution to the mass
difference ∆MBd

at the NLO level, considering the calculations of Refs. [80, 85]. In the 2HDMs, the NLO the mass
splitting ∆MBd

is given by [80, 85]

∆MBd
=

G2
F

6π2
mBM

2
W |Vtd|2|Vtb|2(B̂Bd

f2
Bd

)ηB(xt, yt)S2HDM (xt, yt), (70)

where xt = m2
t (MW )/M2

W , yt = m2
t (MW )/m2

H± and

ηB(xt, yt) = αS(MW )6/23
[

1 +
αS(MW )

4π

(

D2HDM (xt, yt)

S2HDM (xt, yt)
− J5

)]

(71)

with

S2HDM (xt, yt) = [S0(xt) + SWH(xt, yt) + SHH (xt, yt)] , (72)

D2HDM = DSM (xt) +DH(xt, yt), (73)

here the high energy matching scale µ = MW is chosen. The functions DSM (xt) and DH(xt, yt) of the eq. (73)
contain the SM and new physics parts of the NLO QCD corrections to the mass difference ∆MBd

[85],

DSM (xt) = CF

[

L(1,SM)(xt) + 3S0(xt)
]

+ CA

[

L(8,SM)(xt) + 5S0(xt)
]

, (74)

DH(xt, yt) = CF

[

L(1,H)(xt, yt) + 3 (SWH(xt, yt) + SHH(xt, yt))
]

+ CA

[

L(8,H)(xt, yt) + 5 (SWH(xt, yt) + SHH (xt, yt))
]

, (75)
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�(H± ⇤ uidj) =
3GFmH±(m2

dj
|Xij |2 +m2

ui
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On can see that is very interesting the case Y >>, X,Z (this imply that Yij >>, Xij ,Zij : see eqs. 17-18 ), because
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On can see that is very interesting the case Y >>, X,Z (this imply that Yij >>, Xij ,Zij : see eqs. 17-18 ), because
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On can see that is very interesting the case Y >>, X,Z (this imply that Yij >>, Xij ,Zij : see eqs. 17-18 ), because
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mcY22 of width H+ ⇤ cb̄, cs̄ respectivily, which are given by:

mcYcb = mcY23 = Vcbmc

�
Y � f(Y )⇧

2
⇧u
22

⇥
� Vtb

f(Y )⇧
2

⇧
mtmc⇧

u
23

= Vcbmc�
u
22 + Vtb

⇧
mtmc�

u
23 (28)

mcYcs = mcY22 = Vcsmc

�
Y � f(Y )⇧

2
⇧u
22

⇥
� Vts

f(Y )⇧
2

⇧
mtmc⇧

u
23

= Vcsmc�
u
22 + Vts

⇧
mtmc�

u
23 (29)

As Y is large and f(Y ) =
⇧
1 + Y 2 ⇥ Y , then the term

�
Y � f(Y )�

2
⇧u
22

⇥
could be absent or small, when ⇧ij = O(1).

On the other hand, the last term is very huge because to
⇧
mtmc and this is the dominant term (also for �ij = O(1)).

So, we can approach the ratio of two dominant decays, namely, BR(H± ⇤ cb) and BR(H± ⇤ cs), which is given as
follows:

BR(H± ⇤ cb)

BR(H± ⇤ cs)
= Rsb ⇥

|Vtb|2

|Vts|2
(30)

In Reference [24], the authors only take the diagonal terms �ii and the non-diagonal terms are ab-
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23 (or �u
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⇧
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In this scenario there are two possibilities. If ⇧ = O(1) and positive then

�
X � f(X)�

2
⇧d
33

⇥
is small and Rsb ⇥ |Vcs|2

|Vcb|2 ,

and the BR(H± ⇤ cb) becomes large. Other situation is when, ⇧ = O(1) and negative, then Rsb ⇥ m2
b |Vcb|2

m2
s|Vcb|2 , which

was studied recently in [40].

A. Tree level decays

1. µ� e universality in � decays

The dacays ⌅ ⇤ µ⇥̄µ⇥� and ⌅ ⇤ e⇥̄e⇥� give an important constraint in charged Higgs physics with leptons [46], the
µ� e universality, this quantity can be expressed as [47, 48]:
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The latter could be 40% (25%), however, it cannot be maximized for |Y | >> |X |, |Z|, because eq. (95) does not allow
it, whereas BR(H± → τν) is maximized for |Z| >> |X |, |Y |. In Fig. 12 we show contours of BR(H± → cb) and
BR(H± → τν) in the plane [X,Z] for mH± = 120 GeV, mA0 = 100 GeV and |Y | = 0.05. For this value of |Y | the
constraint from b → sγ is always satisfied for the displayed range, |X | < 20. One can see that the largest values of
BR(H± → cb) arise for |Z| < 2.
Prospects for t → H±b with H± → cb at the LHC have been reviewed lately in Ref. [41] for the case of the

MHDM/A2HDM, from which many results can however readily be adapted to our current studies. Things go as
follow. The case of mH± < mt − mb with a large BR(H± → cs) can be tested in the decays of the top quark via
t → H±b and was studied first in [2, 90]. Innumerable studies in this direction followed suit, far too many in fact
for being listed here. Also, we are concerned here primarily with H± → cb decays. The first discussion of t → H±b
followed by H± → cb was given in [39]. Recently, t → H±b with H± → cb has been studied in the context of the
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Prospects for t → H±b with H± → cb at the LHC have been reviewed lately in Ref. [41] for the case of the

MHDM/A2HDM, from which many results can however readily be adapted to our current studies. Things go as
follow. The case of mH± < mt − mb with a large BR(H± → cs) can be tested in the decays of the top quark via
t → H±b and was studied first in [2, 90]. Innumerable studies in this direction followed suit, far too many in fact
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it, whereas BR(H± → τν) is maximized for |Z| >> |X |, |Y |. In Fig. 12 we show contours of BR(H± → cb) and
BR(H± → τν) in the plane [X,Z] for mH± = 120 GeV, mA0 = 100 GeV and |Y | = 0.05. For this value of |Y | the
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BR(H± → cb) arise for |Z| < 2.
Prospects for t → H±b with H± → cb at the LHC have been reviewed lately in Ref. [41] for the case of the

MHDM/A2HDM, from which many results can however readily be adapted to our current studies. Things go as
follow. The case of mH± < mt − mb with a large BR(H± → cs) can be tested in the decays of the top quark via
t → H±b and was studied first in [2, 90]. Innumerable studies in this direction followed suit, far too many in fact
for being listed here. Also, we are concerned here primarily with H± → cb decays. The first discussion of t → H±b
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ij = 0.1. We take ms(Q = mH±) = 0.055 GeV.

flipped 2HDM [42] and the 2HDM without NFC [23] (other than in [41]).
Light charged Higgs bosons (H±) are being searched for (or simulated) in the decays of top quarks (t → H±b) at

the Tevatron and at the LHC in a variety of modes [34–36, 91, 92]. In particular, separate searches are being carried
out for the decay channels H± → cs and H± → τν, with comparable sensitivity to the mass and fermionic couplings
of H±. The searches for H± → cs in [35] and [36] look for a peak at mH± in the dijet invariant mass distribution,
with the assumption that neither of the quarks is a b-quark.
In the MHDM/A2HDM realisations the BR(H± → cb) can be as large as 80% for an H± that is light enough to be

generated in the t → H±b decay. This should be contrasted to the case of the H± state belonging to more standard
2HDMs for which a large BR(H± → cb) is certainly possible but one expects mH± > mt in order to comply with the
measured value of b → sγ, which is not the case for the 2HDM-III. The latter scenario is therefore on the same footing
as the MHDM/A2HDM cases studied in [41]. Herein, in short, it was suggested that a dedicated search for t → H±b
and H± → cb would probe values of the fermionic couplings of H± which are currently not excluded if one required a
b-tag in one of the jets originating from H±, thus affording in turn sensitivity to smaller values of BR(t → H±b) than
those obtained to date (which use un-flavored jet samples). Therefore, a dedicated search for t → H±b and H± → cb
at the Tevatron and LHC would be a well-motivated and at the same time simple extension of ongoing searches for
t → H±b with decay H± → cs.

B. The decay H± → AW ∗ for mA0 < mH±

The above discussion has assumed that H± cannot decay into other (pseudo)scalars. We now briefly discuss the
impact of the decay channel H± → A0W ∗, which has been studied in the 2HDM-II in [93] and in other 2HDMs
with small |X |, |Y | and |Z| in [40], in the light of direct searches at LEP (assuming A0 → bb) performed in [94].
In a general non-SUSY 2HDM the masses of the scalars can be taken as free parameters. This is in contrast to
the MSSM in which one expects mH± ∼ mA0 in most of the parameter space. The scenarios of mA0 < mH± and
mA0 > mH± are both possible in a 2HDM, but large mass splittings among the scalars lead to sizeable contributions
to EW precision observables [95], which are parametrized by, e.g., the S, T and U parameters [96]. The case of exact
degeneracy (mA0 = mH0 = mH±) leads to values of S, T and U which are almost identical to those of the SM. A
recent analysis in a generic 2HDM [97] sets mH0 = mA0 , sin(β − α) = 1 and studies the maximum value of the mass
splitting ∆m = mA0 −mH± (for earlier studies see [98]). For mA0 = 100 GeV the range −70GeV < ∆m < 20GeV
is allowed, which corresponds to 80GeV < mH± < 170GeV. For mA0 = 150 GeV the allowed range is instead
−70GeV < ∆m < 70GeV, which corresponds to 80GeV < mH± < 220GeV. Consequently, sizeable mass splittings
(of either sign) of the scalars are possible. Analogous studies in a MHDM have been performed in [99], with similar
conclusions.
If mA0 < mH± then the decay channel H± → A0W ∗ can compete with the above decays of H± to fermions,

because the coupling H±A0W is not suppressed by any small parameter. In Fig. 13 (left) we show contours of
BR(H± → A0W ∗) in the plane [X,Y ] with |Z| = 0.1, mA0 = 125 GeV and mH± = 150 GeV whereas in Fig. 13
(right) we present the case mA0 = 80 GeV and mH± = 120 GeV. The contours are presented in the parameter
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b-tag in one of the jets originating from H±, thus affording in turn sensitivity to smaller values of BR(t → H±b) than
those obtained to date (which use un-flavored jet samples). Therefore, a dedicated search for t → H±b and H± → cb
at the Tevatron and LHC would be a well-motivated and at the same time simple extension of ongoing searches for
t → H±b with decay H± → cs.

B. The decay H± → AW ∗ for mA0 < mH±

The above discussion has assumed that H± cannot decay into other (pseudo)scalars. We now briefly discuss the
impact of the decay channel H± → A0W ∗, which has been studied in the 2HDM-II in [93] and in other 2HDMs
with small |X |, |Y | and |Z| in [40], in the light of direct searches at LEP (assuming A0 → bb) performed in [94].
In a general non-SUSY 2HDM the masses of the scalars can be taken as free parameters. This is in contrast to
the MSSM in which one expects mH± ∼ mA0 in most of the parameter space. The scenarios of mA0 < mH± and
mA0 > mH± are both possible in a 2HDM, but large mass splittings among the scalars lead to sizeable contributions
to EW precision observables [95], which are parametrized by, e.g., the S, T and U parameters [96]. The case of exact
degeneracy (mA0 = mH0 = mH±) leads to values of S, T and U which are almost identical to those of the SM. A
recent analysis in a generic 2HDM [97] sets mH0 = mA0 , sin(β − α) = 1 and studies the maximum value of the mass
splitting ∆m = mA0 −mH± (for earlier studies see [98]). For mA0 = 100 GeV the range −70GeV < ∆m < 20GeV
is allowed, which corresponds to 80GeV < mH± < 170GeV. For mA0 = 150 GeV the allowed range is instead
−70GeV < ∆m < 70GeV, which corresponds to 80GeV < mH± < 220GeV. Consequently, sizeable mass splittings
(of either sign) of the scalars are possible. Analogous studies in a MHDM have been performed in [99], with similar
conclusions.
If mA0 < mH± then the decay channel H± → A0W ∗ can compete with the above decays of H± to fermions,
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FIG. 15. Contours of BR(t → H±b) × BR(H± → cb) in the plane [X, Y ] with |Z| = 0.1 for mH± = 80 GeV. The constraint
b → sγ is shown as |fB1(X, Y )| < 1.1 for Re[fB1(X, Y )] < 0 (red-dashed), and |fB1(X, Y )| < 0.7 is when Re[fB1(X,Y )] < 0
(blue-dashed). We take ms(Q = mH±) = 0.055 GeV and show the range 0 < |Y | < 0.8 (left panel) and 0 < |Y | < 0.3 (right
panel).

combinations
√
s = 8, 14 TeV and standard instantaneous luminosity of order 1033 cm−2 s−1 or higher are of relevance

here. Furthermore, in the QCD polluted environment of the LHC, it is clear that one ought to attempt extracting a
leptonic decay of our light charged Higgs boson. In the light of the results presented in the previous (sub)sections,
the best option is afforded by H± decays into τν pairs, eventually yielding an electron/muon (generically denoted
by l) and missing (transverse) energy. In this case, the background is essentially due to the charged Drell-Yan (DY)
channel giving τν pairs (i.e., via W± production and decay), which is in fact irreducible.
Figs. 17–18 display the differential distribution for the signal S (i.e. cb̄ → H+ → τ+ν + c.c.) and the background

B (i.e., cb̄ → W+τ+ν + c.c), the former for three mass choices (mH± = 80, 120 and 160 GeV)6. As the invariant
mass of the final state is not reconstructible, given the missing longitudinal momemtum, we plot the transverse

mass MT ≡
√

(ET
l + ET

miss)
2 − (pxl + pxmiss)

2 − (pyl + pymiss)
2, where ET represents missing energy/momentum (as we

consider the electron and muon massless) in the transverse plane and px,y are the two components therein (assuming
that the proton beams are directed along the z axis). Clearly, the backgound dominance over the signal is evident
whenever mH± ≈ MW± . However, the larger the charged Higgs boson mass with respect to the gauge boson one, the
more important the signal becomes relatively to the background.
In order to establish whether it is possible to extract the direct H± signal, or indeed constrain it, we show in

Figs. 19–Figs. 20 the significance of the signal, defined as S/
√
B, as a function of the collider integrated luminosity L,

6 Notice that interference effects are negligible between the two, owing to the very narrow width of the charged Higgs boson.
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(with |Vtb| = 1) as follows:
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The multiplicative (vertex) QCD corrections to both t → W±b and t → H±b essentially cancel out in the ratio
of partial widths [106]. In the phase-space function of both decays we neglect mb, and in the terms m2

t |Y33|2 and
m2

b |X33|2 we use mt = 175 GeV and mb evaluated at the scale mH± (i.e., mb ∼ 2.95 GeV).
In Fig. 14 we show contours of the sum of

BR(t → H±b)× [BR(H± → cs) + BR(H± → cb)] (102)

in the plane of [X,Y ] for mH± = 120 GeV and mH± = 80 GeV, setting |Z| = 0.1. The cross section in eq. (102)
is the signature to which the current search strategy at the Tevatron and the LHC is sensitive, i.e., one b-tag (LHC
[36]) or two b-tags (Tevatron [35]) are applied to the jets originating from the tt decay, but no b-tag is applied to the
jets originating from H±. For the case of [BR(H± → cs)+BR(H± → cb)]=100% the current experimental limits for
mH± = 120 GeV are BR(t → H±b) < 0.14 from ATLAS with 0.035 fb−1 [36], BR(t → H±b) < 0.12 from CDF with
2.2 fb−1 [35], and BR(t → H±b) < 0.22 from D0 with 1 fb−1 [34]. In Fig. 14 (left) for mH± =120 GeV these upper
limits would exclude the parameter space of |X | > 50 and small |Y | which is not excluded by the constraint from
b → sγ. For the mass region 80GeV < mH± < 90 GeV there is only a limit from the D0 search in [34], which gives
BR(t → H±b) < 0.21. From Fig. 14 (right), for mH± = 80 GeV, one can see that this limit excludes the parameter
space with |X | > 45 and small |Y |.
In Fig. 14 we show contours of 1%, which might be reachable in the 8 TeV run of the LHC. Simulations by ATLAS

(with
√
s = 7 TeV) for H± → cs [92] have shown that the LHC should be able to probe values of BR(t → H±b) > 0.05

with 1 fb−1 for mH± > 110 GeV, with the greatest sensitivity being around mH± = 130 GeV. For the operation
with

√
s = 8 TeV and an anticipated integrated luminosity of 15 fb−1 one expects increased sensitivity (e.g. BR(t →

H±b) > 0.01 for mH± > 110 GeV), although the region 80GeV < mH± < 90 GeV might remain difficult to probe
with the strategy of reconstructing the jets from H±. An alternative way to probe the region 80GeV < mH± < 90
GeV is to use the search strategy by D0 in [34], and presumably the LHC could improve on the Tevatron limit on
BR(t → H±b) < 0.21 for this narrow mass region. From Fig. 14 (left) (for mH± = 120 GeV) one can see that
the region of |Y | > 0.32 and |X | < 14, which is not excluded by b → sγ, would be probed if sensitivities to the
BR(t → H±b) > 0.01 were achieved. However, a large part of the region roughly corresponding to |Y | < 0.32 and
|X | < 20 (which is also not excluded by b → sγ) would require a sensitivity to BR(t → H±b) < 0.01 in order to be
probed with the current search strategy for t → H±b and this is probably unlikely in the 8 TeV run of the LHC.
Increased sensitivity to the plane of [X,Y ] can be achieved by requiring a b-tag on the jets which originate from

the decay of H±. In Figs. 15 and 16, for mH± = 80 GeV and mH± = 120 GeV, respectively, we show contours of

BR(t → H±b)× BR(H± → cb) . (103)

With the extra b-tag, as advocated previously (see eq. (12) in [41]), the sensitivity should reach BR(t → H±b) ×
BR(H± → cb) > 0.5%, and perhaps as low as 0.2%. In the latter case, one can see from Figs. 15 (left) and 16 (right)
that a large part of the regions of |X | < 6 (for mH± = 120 GeV) and |X | < 4 (for mH± = 80 GeV) could be probed,
even for |Y | < 0.2. Therefore, there would be sensitivity to a sizeable region of the parameter space of [X,Y ] which
is not excluded by b → sγ, a result which is in contrast to the above case where no b-tag is applied to the b-jets
originating from H±. We encourage here a dedicated search for t → H±b and H± → cb by the Tevatron and LHC
collaborations. Such a search would be a well-motivated extension and application of the searches which have already
been carried out in [35] and [36] and would offer the possibility of increased sensitivity to the fermionic couplings and
mass of H± in not only the MDHM/A2HDM but also the 2HDM-III.

B. Direct H± production

Another possibility to produce H± states in our scenario is via cb̄ (and bc̄) fusion in hadron-hadron collisions.
Since neither of the antiquarks in the initial state is a valence state, there is no intrinsic advantage in exploiting
proton-antiproton coliisions at the Tevatron, further considering the much reduced energy and luminosity available
at the FNAL accelerator with respect to the LHC. Hence, we focus our attention onto the latter. In fact, we can
anticipate that, amongst all the energy and luminosity stages occurred or foreseen at the CERN machine, only the
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combinations
√
s = 8, 14 TeV and standard instantaneous luminosity of order 1033 cm−2 s−1 or higher are of relevance

here. Furthermore, in the QCD polluted environment of the LHC, it is clear that one ought to attempt extracting a
leptonic decay of our light charged Higgs boson. In the light of the results presented in the previous (sub)sections,
the best option is afforded by H± decays into τν pairs, eventually yielding an electron/muon (generically denoted
by l) and missing (transverse) energy. In this case, the background is essentially due to the charged Drell-Yan (DY)
channel giving τν pairs (i.e., via W± production and decay), which is in fact irreducible.
Figs. 17–18 display the differential distribution for the signal S (i.e. cb̄ → H+ → τ+ν + c.c.) and the background

B (i.e., cb̄ → W+τ+ν + c.c), the former for three mass choices (mH± = 80, 120 and 160 GeV)6. As the invariant
mass of the final state is not reconstructible, given the missing longitudinal momemtum, we plot the transverse

mass MT ≡
√

(ET
l + ET

miss)
2 − (pxl + pxmiss)

2 − (pyl + pymiss)
2, where ET represents missing energy/momentum (as we

consider the electron and muon massless) in the transverse plane and px,y are the two components therein (assuming
that the proton beams are directed along the z axis). Clearly, the backgound dominance over the signal is evident
whenever mH± ≈ MW± . However, the larger the charged Higgs boson mass with respect to the gauge boson one, the
more important the signal becomes relatively to the background.
In order to establish whether it is possible to extract the direct H± signal, or indeed constrain it, we show in

Figs. 19–Figs. 20 the significance of the signal, defined as S/
√
B, as a function of the collider integrated luminosity L,

6 Notice that interference effects are negligible between the two, owing to the very narrow width of the charged Higgs boson.
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combinations
√
s = 8, 14 TeV and standard instantaneous luminosity of order 1033 cm−2 s−1 or higher are of relevance

here. Furthermore, in the QCD polluted environment of the LHC, it is clear that one ought to attempt extracting a
leptonic decay of our light charged Higgs boson. In the light of the results presented in the previous (sub)sections,
the best option is afforded by H± decays into τν pairs, eventually yielding an electron/muon (generically denoted
by l) and missing (transverse) energy. In this case, the background is essentially due to the charged Drell-Yan (DY)
channel giving τν pairs (i.e., via W± production and decay), which is in fact irreducible.
Figs. 17–18 display the differential distribution for the signal S (i.e. cb̄ → H+ → τ+ν + c.c.) and the background

B (i.e., cb̄ → W+τ+ν + c.c), the former for three mass choices (mH± = 80, 120 and 160 GeV)6. As the invariant
mass of the final state is not reconstructible, given the missing longitudinal momemtum, we plot the transverse

mass MT ≡
√

(ET
l + ET

miss)
2 − (pxl + pxmiss)

2 − (pyl + pymiss)
2, where ET represents missing energy/momentum (as we

consider the electron and muon massless) in the transverse plane and px,y are the two components therein (assuming
that the proton beams are directed along the z axis). Clearly, the backgound dominance over the signal is evident
whenever mH± ≈ MW± . However, the larger the charged Higgs boson mass with respect to the gauge boson one, the
more important the signal becomes relatively to the background.
In order to establish whether it is possible to extract the direct H± signal, or indeed constrain it, we show in

Figs. 19–Figs. 20 the significance of the signal, defined as S/
√
B, as a function of the collider integrated luminosity L,

6 Notice that interference effects are negligible between the two, owing to the very narrow width of the charged Higgs boson.
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The multiplicative (vertex) QCD corrections to both t → W±b and t → H±b essentially cancel out in the ratio
of partial widths [106]. In the phase-space function of both decays we neglect mb, and in the terms m2

t |Y33|2 and
m2

b |X33|2 we use mt = 175 GeV and mb evaluated at the scale mH± (i.e., mb ∼ 2.95 GeV).
In Fig. 14 we show contours of the sum of

BR(t → H±b)× [BR(H± → cs) + BR(H± → cb)] (102)

in the plane of [X,Y ] for mH± = 120 GeV and mH± = 80 GeV, setting |Z| = 0.1. The cross section in eq. (102)
is the signature to which the current search strategy at the Tevatron and the LHC is sensitive, i.e., one b-tag (LHC
[36]) or two b-tags (Tevatron [35]) are applied to the jets originating from the tt decay, but no b-tag is applied to the
jets originating from H±. For the case of [BR(H± → cs)+BR(H± → cb)]=100% the current experimental limits for
mH± = 120 GeV are BR(t → H±b) < 0.14 from ATLAS with 0.035 fb−1 [36], BR(t → H±b) < 0.12 from CDF with
2.2 fb−1 [35], and BR(t → H±b) < 0.22 from D0 with 1 fb−1 [34]. In Fig. 14 (left) for mH± =120 GeV these upper
limits would exclude the parameter space of |X | > 50 and small |Y | which is not excluded by the constraint from
b → sγ. For the mass region 80GeV < mH± < 90 GeV there is only a limit from the D0 search in [34], which gives
BR(t → H±b) < 0.21. From Fig. 14 (right), for mH± = 80 GeV, one can see that this limit excludes the parameter
space with |X | > 45 and small |Y |.
In Fig. 14 we show contours of 1%, which might be reachable in the 8 TeV run of the LHC. Simulations by ATLAS

(with
√
s = 7 TeV) for H± → cs [92] have shown that the LHC should be able to probe values of BR(t → H±b) > 0.05

with 1 fb−1 for mH± > 110 GeV, with the greatest sensitivity being around mH± = 130 GeV. For the operation
with

√
s = 8 TeV and an anticipated integrated luminosity of 15 fb−1 one expects increased sensitivity (e.g. BR(t →

H±b) > 0.01 for mH± > 110 GeV), although the region 80GeV < mH± < 90 GeV might remain difficult to probe
with the strategy of reconstructing the jets from H±. An alternative way to probe the region 80GeV < mH± < 90
GeV is to use the search strategy by D0 in [34], and presumably the LHC could improve on the Tevatron limit on
BR(t → H±b) < 0.21 for this narrow mass region. From Fig. 14 (left) (for mH± = 120 GeV) one can see that
the region of |Y | > 0.32 and |X | < 14, which is not excluded by b → sγ, would be probed if sensitivities to the
BR(t → H±b) > 0.01 were achieved. However, a large part of the region roughly corresponding to |Y | < 0.32 and
|X | < 20 (which is also not excluded by b → sγ) would require a sensitivity to BR(t → H±b) < 0.01 in order to be
probed with the current search strategy for t → H±b and this is probably unlikely in the 8 TeV run of the LHC.
Increased sensitivity to the plane of [X,Y ] can be achieved by requiring a b-tag on the jets which originate from

the decay of H±. In Figs. 15 and 16, for mH± = 80 GeV and mH± = 120 GeV, respectively, we show contours of

BR(t → H±b)× BR(H± → cb) . (103)

With the extra b-tag, as advocated previously (see eq. (12) in [41]), the sensitivity should reach BR(t → H±b) ×
BR(H± → cb) > 0.5%, and perhaps as low as 0.2%. In the latter case, one can see from Figs. 15 (left) and 16 (right)
that a large part of the regions of |X | < 6 (for mH± = 120 GeV) and |X | < 4 (for mH± = 80 GeV) could be probed,
even for |Y | < 0.2. Therefore, there would be sensitivity to a sizeable region of the parameter space of [X,Y ] which
is not excluded by b → sγ, a result which is in contrast to the above case where no b-tag is applied to the b-jets
originating from H±. We encourage here a dedicated search for t → H±b and H± → cb by the Tevatron and LHC
collaborations. Such a search would be a well-motivated extension and application of the searches which have already
been carried out in [35] and [36] and would offer the possibility of increased sensitivity to the fermionic couplings and
mass of H± in not only the MDHM/A2HDM but also the 2HDM-III.

B. Direct H± production

Another possibility to produce H± states in our scenario is via cb̄ (and bc̄) fusion in hadron-hadron collisions.
Since neither of the antiquarks in the initial state is a valence state, there is no intrinsic advantage in exploiting
proton-antiproton coliisions at the Tevatron, further considering the much reduced energy and luminosity available
at the FNAL accelerator with respect to the LHC. Hence, we focus our attention onto the latter. In fact, we can
anticipate that, amongst all the energy and luminosity stages occurred or foreseen at the CERN machine, only the
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b → sγ is shown as |fB1(X, Y )| < 1.1 for Re[fB1(X, Y )] < 0 (red-dashed), and |fB1(X, Y )| < 0.7 is when Re[fB1(X,Y )] < 0
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panel).

FIG. 17. Differential distributions in transverse mass MT for signal and background (the former for three H± mass values) in
logaritmic (top) and linear (bottom) scale. Here,

√
s = 8 TeV.

where S = L σ(cb̄ → H+ → τ+ν + c.c.) and B = L σ(cb̄ → W+τ+ν + c.c.). Here, we have restricted both the signal
and background yield to the mass regions |mH± −MT | < 10 GeV, where, again, we have taken mH± = 80, 120 and
160 GeV. The τ decay rates into electron/muons are included and we assumed 90% efficiency in e/µ-identification. It
is clear that exclusion (significance equal to 2), evidence (significance equal to 3) and discovery (significance equal to
5) can all be attained at both the 8 and 14 TeV energy stages, for accessible luminosity samples, so long that the H±

mass is significantly larger than the W± one. In both machine configurations, corresponding event rates are always
substantial.

VI. CONCLUSIONS

Light charged Higgs bosons (H±) are being searched for in the decays of top quarks (t → H±b) at the Tevatron
and LHC. Separate searches are being carried out for the decay channels H± → cs and H± → τν, with comparable
sensitivity to the mass and fermionic couplings of H±. The searches for H± → cs in [35] and [36] look for a peak at
mH± in the dijet invariant mass distribution, with the assumption that neither of the quarks is a b quark.
In some models with two or more Higgs doublets (the 2HDM and a MHDM with three or more scalar doublets) the

BR for H± → cb can be as large as 80%. Here, in our model (2HDM-III), BR(H± → cb) could be as large as 90%.
Moreover, such a H± could be light enough to be produced via t → H±b as well as respect the stringent constraints
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where S = L σ(cb̄ → H+ → τ+ν + c.c.) and B = L σ(cb̄ → W+τ+ν + c.c.). Here, we have restricted both the signal
and background yield to the mass regions |mH± −MT | < 10 GeV, where, again, we have taken mH± = 80, 120 and
160 GeV. The τ decay rates into electron/muons are included and we assumed 90% efficiency in e/µ-identification. It
is clear that exclusion (significance equal to 2), evidence (significance equal to 3) and discovery (significance equal to
5) can all be attained at both the 8 and 14 TeV energy stages, for accessible luminosity samples, so long that the H±

mass is significantly larger than the W± one. In both machine configurations, corresponding event rates are always
substantial.

VI. CONCLUSIONS

Light charged Higgs bosons (H±) are being searched for in the decays of top quarks (t → H±b) at the Tevatron
and LHC. Separate searches are being carried out for the decay channels H± → cs and H± → τν, with comparable
sensitivity to the mass and fermionic couplings of H±. The searches for H± → cs in [35] and [36] look for a peak at
mH± in the dijet invariant mass distribution, with the assumption that neither of the quarks is a b quark.
In some models with two or more Higgs doublets (the 2HDM and a MHDM with three or more scalar doublets) the

BR for H± → cb can be as large as 80%. Here, in our model (2HDM-III), BR(H± → cb) could be as large as 90%.
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panel).

FIG. 17. Differential distributions in transverse mass MT for signal and background (the former for three H± mass values) in
logaritmic (top) and linear (bottom) scale. Here,

√
s = 8 TeV.

where S = L σ(cb̄ → H+ → τ+ν + c.c.) and B = L σ(cb̄ → W+τ+ν + c.c.). Here, we have restricted both the signal
and background yield to the mass regions |mH± −MT | < 10 GeV, where, again, we have taken mH± = 80, 120 and
160 GeV. The τ decay rates into electron/muons are included and we assumed 90% efficiency in e/µ-identification. It
is clear that exclusion (significance equal to 2), evidence (significance equal to 3) and discovery (significance equal to
5) can all be attained at both the 8 and 14 TeV energy stages, for accessible luminosity samples, so long that the H±

mass is significantly larger than the W± one. In both machine configurations, corresponding event rates are always
substantial.

VI. CONCLUSIONS

Light charged Higgs bosons (H±) are being searched for in the decays of top quarks (t → H±b) at the Tevatron
and LHC. Separate searches are being carried out for the decay channels H± → cs and H± → τν, with comparable
sensitivity to the mass and fermionic couplings of H±. The searches for H± → cs in [35] and [36] look for a peak at
mH± in the dijet invariant mass distribution, with the assumption that neither of the quarks is a b quark.
In some models with two or more Higgs doublets (the 2HDM and a MHDM with three or more scalar doublets) the

BR for H± → cb can be as large as 80%. Here, in our model (2HDM-III), BR(H± → cb) could be as large as 90%.
Moreover, such a H± could be light enough to be produced via t → H±b as well as respect the stringent constraints
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FIG. 18. The same as Fig. 17, but for
√
s = 14 TeV.

FIG. 19. Number of events (top) and significance (bottom) of the signal (for three H± mass values) as a function of the
luminosity. Here,

√
s = 8 TeV. The horizontal solid(dashed)[dotted] line corresponds to a significance of 5(3)[2].

from b → sγ on both mH± and the fermionic couplings of H±. This is in contrast to the H± state in other 2HDMs
for which a large BR for H± → cb is possible but for which one expects mH± > mt in order to comply with the
measured value of b → sγ. Along the lines indicated by previous literature, in the context of the 2HDM-III with a
four-zero Yukawa texture, we suggested that a dedicated search for t → H±b and H± → cb would probe values of
the fermionic couplings of H± that are currently not testable. Such a search would require a b-tag of one of the jets
originating from H± and would further allow one to reach a higher sensitivity to a smaller value of the BR(t → H±b)
than that obtained in the ongoing searches, which currently do not make use of this additional b-tag.
Finally, we have shown that a H± state of the 2HDM-III can also be produced directy from cb fusion, followed

by a decay into τν pairs, assuming semi-leptonic decays (to contrast the otherwise overwhelming QCD background),
albeit only at the LHC, which should have sensitivity to it already at 8 TeV and, indeed, full coverage at 14 TeV, so
long that mH± is 120 GeV or above.
We have reached these conclusions over the 2HDM-III parameter space that we have shown to survive a long list

of constraints emerging from B-physics, namely: µ− e universality in τ decays, several leptonic B-decays (B → τν,
D → µν and Ds → lν), the semi-leptonic transition B → Dτν, plus B → Xsγ, including B0 − B̄0 mixing and the
radiative decay Z → bb̄.
The outlook is therefore clear. Depending on the search channel, both the Tevatron and the LHC have the potential

to constrain or else discover the 2HDHM-III supplemented by a four-zero Yukawa texture including non-vanishing
off-diagonal terms in the Yukawa matrices. We are now calling on our experimental colleagues to achieve this, as the
search strategies recommended here are easily implementable and pursuable.
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FIG. 20. The same as Fig. 19, but for
√
s = 14 TeV.
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Others!phenomenological!consequences!

•  If!we!combine:!

•  The!effects!of!texture!in!the!coupling.!
•  !The!general!Higgs!poten>al.!
•  !!
It’s!possible!to!enhacement!processes!at!oneAloopAlevel,!e.g.!
!
•  H,h!!γγ!
•  H^+!!W^+!γ,!W^+!Z!

J.!HernándezASánchez,!C.!G.!Honoratp,!M.A.!Pérez,!J.J.!Toscano,!PRD85:015020!(2012).!
!
J.E.!Barradas,!F.!CazaresABush,!A.!CorderoACid,!O.!FélixABeltrán,!J.!HernándezASanchez,!R.!NoriegaAPapaqui,!
J.Phys.!G37!(2010)!115008!!
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Conclusions!
•  2HDMAIII!with!a!fourAzero!texture!in!the!Yukawa!matrices!

could!contain!the!versions!of!2HDM.!

•  The!terms!offAdiagonal!matrices!Xij!could!be!!O(1)!and!cannot!
omiped,!including!some!important!constraints!of!processes!to!
low!energy.!

•  H+!!!cb!could!be!relevant.!

•  H+!!!W+!gamma!could!enhance.!

•  Produc>on!H+!could!be!quite!different!to!the!results!of!the!
others!versions!of!2HDM.!
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