

Machine Protection Panel Workshop, March 2013

LHC BLM SYSTEM: HARDWARE CHANGES DURING LS1

Christos Zamantzas for the BLM team.

11/03/2013

Overview

2012 Performance summary

- Main changes introduced
- Interlocks and Faults analysis
- LS1 foreseen changes
 - Tunnel installation & Acquisition electronics
 - Surface installation & Processing electronics
 - Firmware modifications
 - Application additions
 - Commissioning

Listing main performance changes in 2012 run and fault statistics

LHC BLM SYSTEM: 2012 PERFORMANCE SUMMARY

11/03/2013

Automatic/fast Collimator BBA

- New dedicated buffer for automatic and faster Collimator Beam Based Alignment
 - continuous transmission to collimation client
 - UDP packets at 12.5 Hz
 - deliver from each BLM detector a 82 ms integral
- Excellent diagnostic tool. Has been also used successfully to study :
 - the time evolution of the losses in IR7 and IR3 during the loss maps
 - halo diffusion and population

Plots courtesy of Belen Maria Salvachua Ferrando, Gianluca Valentino and Stefano Redaelli

UFO Buster

Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation.

- New dedicated Capture buffer
 - Dynamic selection of the recording length and type of data
 - 40 μs integral with 512 samples/channel or
 - 80 μs integral with 4396 samples/channel
- New client: UFO buster
 - Allow detection of abnormal losses in real time
 - Triggers collection of high frequency data

Plots courtesy of Tobias Baer

LIC detectors development

- Development of the LIC detectors
 - Cover region between IC and SEM detectors
 - Part of strategy for the mitigation of the injection losses
 - 1. Started with a first set of monitors for both beams
 - Investigate behaviour (and reliability)
 - Check correctness of the LIC's conversion factor
 - Check correctness of the calculated thresholds
 - 2. Additional monitors added during the consecutive Technical Stops
 - Direct comparison with IC detectors
 - I Many issues with first batches
 - Several changes in the production and design parameters
- See Eduardo Nebot Del Busto's presentation in Evian 2012

Preventive system fault analysis

Daily automatic analysis of the systems performance

- Unavailability due to errors from optical link failures increased.
- Prototype detector types were installed
- Many cards, detectors and cabling have been exchanged in the shadow before affecting LHC availability.

Issue and Task Tracking

Extensive use in 2012 register all issues occurred track tasks for the Technical Stops and Shutdowns 320 2012: T5#2 2012: T5#3 2012: TS#4 Injectors 20 ED1 ES#An as Stop Inciden8a@0b8 300 280 260 240 180 160 140 100 80 2012: 15半 2012: T5#3 2012: TS#4 Injectors 20 201 TS# to as Sto 80 Mar-20 May-2013 lun_2012 Iul_2012 Aug-2012 Sep-2012 Oct-2012 Nov-2012 Dec-2012 Jan-2013 Feb-2013

Addition of JIRA project tracker

electronics-surface = 42 thresholds = 18 detectors = 17 sanity checks = 43 fibres = 50 electronics-tunnel = 58

Many thanks to BE/CO for providing the tool and support

Total Issues: 376 Statistic Type: Components

Interlocked system faults

Summary of interlocked system faults (Mar'12 - Mar'13)		
Туре	#	%
SEU (surface)	1	3.23%
Power Supply Fail	1	3.23%
HV Power Supply Drop	4	12.90%
Connection Lost: CMW	5	16.13%
BLECF optical link issues	3	9.68%
BLETC optical link issues	8	25.81%
Other optical link issues	9	29.03%
Total	31	

Summary of interlocked system faults (Mar'12 - Mar'13)

All types of system faults

Summary of all system faults (Mar'12 - Mar'13)		
Туре	#	%
SEU (surface)	3	4.29%
Power Supply Fail	1	1.43%
HV Power Supply Drop	4	5.71%
Connection Lost: CMW	6	8.57%
Sanity Error: CMW	9	12.86%
Sanity Error: IC	3	4.29%
Sanity Error: LIC	6	8.57%
Sanity Error: SEM	10	14.29%
BLECF optical link issues	7	10.00%
BLETC optical link issues	11	15.71%
Other optical link issues	10	14.29%
Total	70	

· ··

. .

Summary of all system faults (Mar'12 - Mar'13)

Listing main actions to be performed or developed in the system

LHC BLM SYSTEM: LS1 FORESEEN CHANGES

11/03/2013

Modifications in the tunnel installation

- Dismantle all detectors in the ARC and DS (~2500) and
- Dismantle 70% of the detectors in LSS (~1000)
 - in order to allow intervention in the interconnections
- Exchange 40 multiwire cables with the NES18 type
 - Reduce noise on 240 detectors
 - Continuation of campaign to exchange all noisy installations

Relocate 816 detectors

- New supports, cable extensions, cable trays needed
- Improve protection
- see Eduardo Nebot Del Busto's presentation for the reasons

New locations of the detectors

ECRs in preparation

Modifications in the tunnel installation

- Exchange 360 acquisition crate backplanes
 - Improve stability, add features
- Modify 309 signal distribution boxes
 - Allow reset of the complete sector
- Installation/Connection to WorldFIP
 - Straight Section needs additional electronics
 - Allow remote access per card
- Add everywhere High Voltage divider boxes
 - Increase accuracy
- Modify 20 High Voltage distribution boxes
 - Add suppressor diodes and resistors
 - Only in areas with high losses

For more info see Ewald Effinger's presentation in 73th MPP

Improved backplane

ECR in preparation

Modifications in the ACQ electronics

Modify all BLECF modules (~700)

- Change limit for the HV level detection flag
 - currently too restrictive for proper use by the SIS.
 - change detection level from 1370V to 950V
- Change laser settings of the GOH
 - ▶ increase transmission power to give more margin of attenuation
 - ▶ add ~ 30% more power

Modifications in the surface installation

- Replacement of all racks
 - Add temperature regulated racks
 - Remove and disconnect complete installation (crates, cables, power etc)
 - Reconnection/replacement of all fibre patchcords (~1600 fibres)
- Modifications for apt interventions
 - Replacement of all rear connection cables
 - Allow direct access to power supplies and rear rack connections
- Add two new crates for possible future Injection Inhibit implementation
 - Install additional racks in P2 and P8
 - Separate problematic monitors for injection
 - see also Wolfgang Bartmann's presentation

Modifications in the TC electronics

- Maintenance of all processing modules (~400)
 - Fix or Replace ~ 20% of mezzanines
 - Clean-up of the optical adaptors and connectors
- Shuffle optical links
 - Expect to improve availability by removing common mode failure
 - 80% of optical link errors and failures were in LK: 1-2

Accumulation of dust on the connectors

E2000-APC

input connections to four optical fibres.

Modification of the BLECS firmware

Combiner and Survey firmware modifications:

- Improve regular automatic system checks
 - block increase of input offset
 - ▶ add timeout for check completion
- Improve connectivity check
 - Increase range of values allowed
- Improve Energy value reception and logging
 - fast changes of energy values are propagated to the BLETC modules but not logged
- Add compatibility with new CPUs
 - new VMEbus core with MBLT mode
 - new memory map optimized for block transfers
- Preparation for the "Injection Inhibit" feature

Modification of the BLETC firmware

Processing Module firmware modifications:

- Improve PM and UFO Buster buffers
 - ▶ increase size to 43,690 samples per channel
- Improve XPOC buffer
 - ▶ split data and triggers per beam (not sure yet if possible)
- Improve data for Collimation Beam Based Alignment
 - increase data rate (not sure yet if possible)
- Add compatibility with new CPUs
 - new VMEbus core with MBLT mode
 - New memory map optimized for block transfers

Application Improvement wishlist

- Internal Parameters application (BE/SW)
 - automatic fill of serials when a card is exchanged
 - step increase of connectivity check limits
- System Status application additions (BE/OP)
 - give global overview
 - provide system error cause
- System Management application (BE/OP and BE/CO)
 - Generate new monitors/parameters, Drive settings to electronics, Initiate/Abort checks
 - provide a clear procedure for actions to be taken
 - avoid errors due to complexity of the generic applications (generation, trim etc)
- Monitor Factor application (BE/OP)
 - show history
 - compare two points in time
 - roll back of changes (very useful for MDs, etc.)

Commissioning after LS1

■ In short, equal to LHC start-up

- Check all optical connections
- Update all serial numbers
- Check behaviour of each card
- Calculate new Connectivity check limits
- Radiation Source measurements
 - ▶ First sector to be available already in Nov'13 !!
- Complete MPS checklist

Summary

- Most of the system will be completely re-installed
- All system modules will be modified and undergo maintenance
- Primarily the changes aim to reduce failures and errors
 - Optical links
 - HV power supply
 - Sanity checks
- Additional changes aim to improve
 - Remote control of cards and crates
 - Data collection and distribution
 - Improve ability to maintain the installation
- Complete re-commission will be necessary
 - Rad-source measurements
 - MPS checklist

MPP workshop, 11/03/2013

THANK YOU

LHC BLM System Overview

Modifications on additional systems

New design of the BLM Direct Dump system

- Follow changes in the LHC Beam Dump system
- Deployment of new acquisition system for the Diamond detectors