
SOFTWARE TOOLS FOR MPS

Kajetan Fuchsberger (CERN, Geneva, Switzerland)

Abstract

While dedicated Hardware systems protect the LHC
against different types of failures, the role of software sys-
tems in the environment of Machine Protection is more in
the area of configuration, supervision and diagnostics. This
paper will present ideas for improvements on some of those
systems as well as visions for further developments. A
dedicated focus will be given to tools that shall improve
the reliability of Machine Protection Systems (MPS) com-
missioning steps and other software improvements which
could prevent human errors during operation, and thus in-
crease availability.

MOTIVATION

For the commissioning of the LHC magnet circuits (in
view of the large amount of work, i.e. about 7,000 individ-
ual tests), a lot of effort was put in the automation of tests,
starting right from the beginning of hardware commission-
ing in 2005 [1]. Although slightly different (less tests, more
manual tests), the commissioning of machine protection
systems involves similar steps: Planning an appropriate se-
quence of tests, executing functionalities of the hardware
and verifyinge the results (mostly manually). This similar-
ity is the main motivation for the following proposals, as
it seems appropriate to re-use the developed tools for com-
missioning of machine protection systems. This will be
covered in the first part of this paper.

The second part of the paper describes ideas that should
help to detect problems earlier during normal operational
periods. The last part gives a short reminder on the Aper-
turemeter, which turned out to be a very useful tool during
MPS commissioning and whose future is somehow uncer-
tain and thus is worth some dedicated attention.

TESTS AND PROCEDURES

Current status

In the previous years, the progress of the MPS commis-
sioning was tracked by the usage of a simple sharepoint
site. Despite the simplicity of the usage, this solution had
several disadvantages. Amongst them:

• The order of the tests could not be enforced at all. The
scheduling was more or less done ’on the fly’ by peo-
ple on shift, based on their personal best knowledge.

• Nothing enforced that the tests were done at all.
• It was not possible to get a real overview of what was

done already and what still had to be done.

Figure 1 shows an example view of the mentioned share-
point site.

Figure 1: A screenshot of the Sharepoint site used in 2012
to track the MPS commissioning status.

The AccTesting Framework

The AccTesting framework (’AccTesting’ in the follow-
ing) was originally designed with the execution and track-
ing of tests for LHC hardware commissioning in mind.
Nevertheless, since it soon turned out that a more general
approach was appropriate, the goal was soon changed to
create a general framework for the execution and tracking
of tests for any kind of accelerator systems. In the fol-
lowing we will focus only on the explanation of those as-
pects that are necessary to understand the application of
this framework for the use in commissioning of LHC ma-
chine protection systems. A more detailed explanation can
be found at [2].

The framework is able to deal with a high workload and
enables its users to work in parallel. Furthermore, it pre-
vents execution conflicts and provides the current test status
information to all of its users. A general overview over the
architecture of the framework is shown in Fig. 2. The cen-
tral point is the AccTesting server. The test execution and
analysis results are stored in a database that only the server
may access. The server itself is not aware of any specifics
of the tests it handles. The test execution servers and the re-
sult analysis components are connected to the server with
a plug-in like system. Each of them can handle a specific
type of tests. If the main server wants to start the execution
or analysis of a test, it provides each of the plugged-in test
handlers with the test information, which in turn decide if



they are able to handle the test. Once a test handler has ac-
cepted a test and started the execution or analysis, the main
server will regularly poll it to retrieve the test status and
result.

The AccTesting server can be accessed simultaneously
by several users through the use of a specific Graphical
User Interface (GUI). The AccTesting GUI displays all the
information about the currently executing tests and sched-
uled tests. In this sense it replaces the former test tracking
web pages. Furthermore, it allows to enqueue a scheduling
request to the AccTesting server directly from within the
test plan view. A sample screenshot of the GUI is shown in
Fig. 3.

The AccTesting server is designed in a very robust man-
ner. It can deal with unexpected behavior from its plugged-
in test handlers, errors in the control GUI, incomplete test
results and many other issues like a sudden crash of the vir-
tual machine. Furthermore, it provides a robust scheduler
which is responsible for executing the enqueued tests in the
most efficient way, while respecting the correct order to-
gether with all the constraints and preconditions. Another
interesting feature of the framework, which makes it an in-
teresting candidate for the tracking of MPS commissioning,
is the integrated statistics functionality. This makes it very

Acctesting
GUIs

Acctesting Server

Acctesting
Database

Test Execution Servers

HardwareResult analysis
components

Figure 2: Components of the AccTesting framework.

Figure 3: A screenshot of the graphical user interface
(GUI) for the AccTesting framework.

easy to get an overview of the actual progress of a com-
missioning campaign. A screenshot of the statistics view is
shown in Fig. 4

Figure 4: Screenshot of the AccTesting GUI, showing the
statistics panel.

The whole system was successfuly used during recom-
missioning of the LHC circuits after the Christmas stops of
2012 and 2013 and has proved its stability and maturity.

From Sharepoint to AccTesting

In the following, the most importantent concepts of Acc-
Testing, which are required to use AccTesting within the
scope of of MPS commissioning, will be briefly sketched.

Currently, AccTesting uses three different ’granularities’
in test exectution and tracking:

• The basic building block for a test plan is atest. A test
is allowed to be executed on one or more system types
and can be activated and deactivated per test plan.

• Each test has threetest steps: Execution, Analysis and
Signing. During the execution step actions are per-
formed on the system under test. This means that this
is the only time where the system is really blocked.
During the analysis step, signals of the system (which
were recorded during the execution step) are analysed
either automatically or by some external system. The
final step is the signing step, which requires human in-
teraction of different experts (depending on the test),
who have to verify the outcome of the execution/anal-
ysis and sign with their name.

• Each test belongs to exactly onetest phase. A phase
groups tests together and forms the basic building
block in the execution sequence. The phases depend
on each other. While tests within a phase can be ex-
ecuted in arbitrary order and even if the other tests
within the phase are not (yet) successfully analyzed
or signed, tests of a dependant test phase can only be
executed, if all tests of the phases on which the phase
depends were fully successful.



The relation between tests and phases is sketched in Fig. 5.

Figure 5: The relation between test phases, tests and test
steps in the context of MPS commissioning.

To migrate the information from the old sharepoint site
into AccTesting, the following roadmap should be fol-
lowed:

1. Transform every MPS commissioning step into a test
with ’always successful’ execution and analysis steps
(so called ’sign-only tests’). The tests might be
grouped into test phases corresponding to the commis-
sioning plan.

2. Later on, some of these tests can be replaced by auto-
mated versions, if possible.

Nevertheless, there are still some additional features which
need to be implemented in AccTesting, in order to fully
cover the needs of MPS commissioning. These will be
desribed in the following section.

Newly required Features in AccTesting

Test Plan Editing Up to now, it was only possible to 
’edit the test plan’ by direct interacting with the database. 
Since this is problematic (due to e.g. security, consistency, 
required expert knowledge), GUI support for performing 
this task is in preparation. This will be especially needed, as 
soon as AccTesting is used in a broader field. The test plan 
for MPS commissioning might have to be adapted quite 
frequently – at least during the first campaign – with the 
experience gained. The plan is to provide at least basic 
functionality in the beginning of 2014 to be able to start with 
creating test plans (Creating campaigns, enable/disable 
tests). Extended functionality (Editing of Phases, Barriers 
and Composite Tests – see following sections) might have 
to be postponed until later in 2014.

Barriers Currently, AccTesting only takes care about
test order and phase dependencies per system. Neverthe-
less, for MPS commissioning (and possibly for other ap-
plications in the future) a more flexible approach is re-
quired which allows to relate tests between different sys-

tems. The first naive approach would be to extend the con-
cept of phases to a kind of ’global phases’. In the end, this
approach turns out to be too strict for the purpose of MPS
commissioning, as it would enforce that several tests of dif-
ferent systems have to be done exactly in one global phase.
Nevertheless, the appropriate specification would be more
like e.g. ’BLM individual system tests have to be done
at some stage before injecting beam’ but not necessarily
’in an individual system test phase’ (e.g. there might be a
phase ’Powering Tests’ between ’Individual System Tests’
and ’Injecting Beam’). Therefore, a new concept called
barriers is proposed for this purpose:

A barrier can be put between two test phases of a several
systems. It will allow each system which is affected by the
barrier to perform its tests until the barrier point but not
beyond. As soon as all the concerned systems reach the
barrier point, each of them is allowed to continue with the
following tests. This allows to complete the test plan in a
very flexible way, while enforcing the required constraints.
An example with two barriers is shown in Fig. 6.

Figure 6: Test barriers in an example MPS commission-
ing plan. Boxes with brown boarders represent test phases,
names within the boxes represent tests and red lines repre-
sent barriers.

Composite Tests & System Dependencies Currently 
one test in AccTesting is assigned exactly to one system. 
While this approach fits well to the needs of LHC hard-
ware commissioning, the situation for other systems might 
not be that simple: One system might consist of several 
subsystems and tests might be formulated in a way that a 
set of tests on each subsystem have to be completed in order to 
contribute to the outcome of the test of the composite sys-
tem. An example could be a test for a BLM crate consisting of 
one test for each BLM connected to that crate. To model this 
behaviour an additional feature has to be implemented in 
AccTesting to allow the definition and the tracking of such 
so-called composite tests.

Another service, which is required by this feature, was
put in place recently: The so-calledSystem Relations Ser-
vice. This framework, which allows to plug in differ-
ent sources of information (so-called ’System Relation
Providers’), provides a central service for any kind of soft-
ware application to query relations between systems. This
service is currently embedded in the AccTesting server but



can be extracted to a dedicated server if required. Already 
now, the service manages information of roughly 
17000 systems and 28000 relations between systems.

Automated Analysis In previous hardware commis-
sioning campaigns, most of the signals resulting from
test execution were either analyzed manually or by semi-
automated tools written in LabView. To unify the approach,
a new subproject was started earlier this year which will
provide the following components:

• A dedicated assertion language (Java embedded Do-
main Specific Language - eDSL), which will make it
easy for experts to formulate test conditions and nec-
essary related calculations (See Fig. 7).

• A viewer component for the GUI which shows the sig-
nals used in the assertions for a test and the outcome
of the checks (See Fig. 8).

Also this feature will be useful for MPS commissioning in
the future, when automation is applied in the tests. Further
extensions are planned, e.g. the usage of different signal
sources (Logging Db, Post Mortem, Files) as well as the
implementation of more numerical operations on the data.
A main concept for this analysis framework is its flexibility
to replace implementations of operations at a later stage by
more efficient ones (e.g. executed directly in the database),
without changing the higher layers (eDSL). Furthermore,
distribution of the analysis processing steps on clusters
is under investigation, which would allow this framework
to become a very fast, horizontally scaling, multi-purpose
analysis framework.

Figure 7: Example of a script for automated test analysis,
written in the dedicated Java embedded domain specific
language.

EARLY DETECTION OF FAILURES

While the previous sections were focussing on the im-
provements of the environment for commissioning the ma-
chine protection systems, another aspect of potential im-
provement manifestated during the previous run: It turned

Figure 8: Example display of a result of the analysis of a
powering test. The lower part of the window shows the as-
sertions and the upper part shows the signals used in this
assertions as well as markers for successful or failed re-
gions.

out that many failures were detected rather late during oper-
ation, while the problems that led to them could have been
detected much earlier. Consider the following example: If
a trim is sent from the orbit steering application (YASP) to
the LHC software architecture (LSA), then it will be sent
directly to the machine. As soon as the power converters
ramp the electric current, it might be that one or the other
goes out of some interlock limits, for example. This would
be detected by a interlock system, which would trigger a
beam dump. This dump could have definitely been avoided
(if, e.g. the interlock limits would have been taken into
account before a real trim in the machine).

The natural place to perform such additional checks
turns out to be LSA itself, since all trims pass through
it, no matter from which application they are sent. After
some discussion with the LSA team, the following solution
is proposed:

• A first implementation could be put in place using al-
ready available mechanisms which are called ’Trim-
PostProcessor’s. A trim postprocessor is invoked any
time after a trim is saved into the LSA database, but
before the trim is sent to the hardware. By imple-
menting dedicated postprocessors, which would do
the check against the interlock limits and throw ex-
ceptions if the trim should be aborted, LSA would
enforced to perform a rollback on the database, the
values would never be sent to the hardware and the
application who sent the trim would receive an excep-
tion.

• On the longer term, an API which will allow to query
the validity of a trim before really executing it, should
be provided for the applications.

• Since the incorporation procedure is nothing else than
a trim, the described mechanism would also pre-
vent incorporating trims which would trigger a dump
somewhere later in the beam process.

• An additional override mechanism might be required
for machine development periods.

The following additional changes to LSA could further



improve the security of the LHC operation:

• Currently, only selected methods in LSA are protected
from usage without sufficent privileges (RBAC). All
LSA methods should be reviewed, if they can do any
harm or not, and should then be protected accordingly.

• The cycles which contain the settings for the PcInter-
lock and the software interlock system should also be
protected by RBAC. A first solution could also be im-
plemented by TrimPostProcessors, which evaluate the
current RBAC roles.

APERTURE METER

Another tool which was already very useful during pre-
vious comissioning phases and will become even more im-
portant during the coming ones, is the so-called Aperture
Meter. This tool is able to display online the actual aper-
ture limits per beam and per plane over time. A sample
screenshot of its main screen is shown in Fig. 9. Further-
more, it can display detailed information about the beam
trajectory and plot it together with the aperture model as
shown in Fig. 10.

Figure 9: Main Screen of the LHC Aperture Meter. For
eachbeam and plane it shows the distances of the five ele-
ments closest to the beam over time.

The current implementation of the aperture meter offers
already the most important required functionality: It can
follow the operational cycle (optics, beam process, time
within beam process) and listens to a selected set of LSA
trims to reproduce the best known beam orbit of the beams.
Nevertheless, some additional improvements have to be
done, to help this application to become fully accepted as
an operational tool:

• The user interface has to be improved, so that the op-
eration is more intuitive.

• Performance improvements are required, in particular
to improve the startup time (model initialization).

Figure 10: Example live plot of the LHC Aperture Meter.
It shows the beam in an IP, together with an envelope of1σ

and the aperture limits.

• Some operational changes have to be better integrated.
For example, collimator offsets after allignment or
BPM usage information could be read automatically.

In the context of the previous section, the aperture meter 
itself could be used as an additional source for LSA trim 
verification (e.g. for collimator movements, collimator hi-
erarchy). For this to work, the aperture meter would have to 
be implemented in a server, i.e. the functionality would have 
to be available indpendent if a GUI is running or not. This is 
not the case at the moment.

REMARKS

Although in the previous section we were discussing
many different tools and possible improvements to them,
it should be mentioned here that tools do, by no means,
solve everything. On the contrary, more important is the
development culture and communication during the devel-
opment of the tools. Currently, software development in
the accelerator sector is facing the following challenges:

• Large part of the software manpower goes into main-
tenance.

• A lot of ’grown’ projects exists, partly written by une-
experienced programmers (e.g. Students).

To improve the situation, first of all awareness for this
problematics has to be raised. Reliability of software is
closely coupled to maintainability, which is again equiva-
lent to quality. Quality basically boils down to self explain-
ing code and automated testing. To avoid in the future ad-
hoc software projects, which are often created by unexperi-
enced programmers, it is recommendat that any upcoming
student software project is supervised by two distinct per-
sons with different views: One system expert and one soft-
ware expert (Software ’Mentoring’). Another problem is



that most of the time there is no single person who has the
full picture and who can judge what tools are already avail-
able, which tools could be extended, or which framework
would fit best for a newly required feature. Once again
this boils down to communication. Similarly, there is also
no single instance (persion, section or similar) with the au-
thority to re-arrange priorities between different software
projects. As a result, the limited manpower might not be
optimally distributed amongst the projects.

SUMMARY AND OUTLOOK

The main focus of this paper was to elaborated the prin-
cipal steps which should be taken to improve the com-
missioning phase of the LHC machine protection systems.
We showed how the AccTesting framework could be the
workhorse in future commissioning campaigns and we in-
troduced the new features and concepts that will have to be
implemented to achieve these goals.

Beyond this, of course further improvements could be
envisaged: As soon as a testplan for the commissioning
of the machine protection system system is in place, fur-
ther automation should be discussed. The manual tests can
then be easily replaced one by one by automated versions.
Further steps could also be e.g. interlocks based on test
plans, which would ensure that the tests really have to be
performed before operation of the LHC can start again.

Finally, we emphasized that the reliability of a system 
starts with quality, which is not trivial to achieve and ex-
pensive (in time). Nevertheless it must not be reduced by 
any means. This is especially valid for software related to 
machine protection and operation, which has to guarantee 
the safe operation of the LHC and all its subsystems.

ACKNOWLEDGEMENTS

The author wants to thank the whole TE-MPE-MS soft-
ware section for all their fabulous work and their support.
Further thanks to M. Zerlauth, R. Schmidt, J. Wenninger,
G. Kruk, V. Baggiolini, G. Papotti and D. Jacquet for their
input on this topic.

REFERENCES

[1] B. Bellesia et al., “Information Management within the LHC
Hardware Commissioning Project”, proc. of PAC09, Vancou-
ver, BC, Canada.

[2] K. Fuchsberger et al.,“Automated Execution and Tracking of
the LHC Commissioning Tests“, proc. of IPAC12, New Or-
leans, LA, USA.




