Annecy, 11 March 2013 LHC Machine Protection Workshop

OP view on handling Machine Protection issues

Giulia Papotti

thanks to M. Albert, D. Jacquet, L. Ponce, D. Wollmann, J. Wenninger, M. Zerlauth, ...

outline

- failure catalogue
 - failures that only experts can detect
 - failures that shift crews can detect
 - after beam dump or with beam still in
 - dumps that could have been avoided
- plenty of examples
 - from 2012 unless otherwise noted
- possible improvements
 - procedures?
 - interlocks?
- some open questions
- some will be addressed later in this workshop

what is an MP issue?

- unpleasant surprise
 - negative connotation!

what is an MP issue?

- unpleasant surprise
 - negative connotation!
- the machine could be in an unsafe state
 - when MP systems do not respond as foreseen
 - often situation that is not covered by interlocks

what is an MP issue?

- unpleasant surprise
 - negative connotation!
- the machine could be in an unsafe state
 - when MP systems do not respond as foreseen
 - often situation that is not covered by interlocks
- next steps might be unclear
 - not thought of, not happened before
 - by definition not covered by procedures
 - exception: "in case dump does not trigger"
 - left to shift crew's experience, feeling, intuition
 - sometimes need to sit and think
 - some other times need to act promptly

- one failure is generally not an issue
 - e.g. late PIC interlock
 - e.g. IT, LHCb dipole, 60A CODs
 - lose redundancy, but at worst detected by losses
 - BLM/QPS are the last lines of defence
 - BLMs are redundant themselves (3 BLMs per quad)

- one failure is generally not an issue
 - e.g. late PIC interlock
 - e.g. IT, LHCb dipole, 60A CODs
 - lose redundancy, but at worst detected by losses
 - BLM/QPS are the last lines of defence
 - BLMs are redundant themselves (3 BLMs per quad)
- combined failures are the worry
 - e.g. collimators in wrong position + asynch dump
 - e.g. SIS orbit interlock masked by mistake + orbit excursion (+ asynch dump)

- one failure is generally not an issue
 - e.g. late PIC interlock
 - e.g. IT, LHCb dipole, 60A CODs
 - lose redundancy, but at worst detected by losses
 - BLM/QPS are the last lines of defence
 - BLMs are redundant themselves (3 BLMs per quad)
- combined failures are the worry
 - e.g. collimators in wrong position + asynch dump
 - e.g. SIS orbit interlock masked by mistake + orbit excursion (+ asynch dump)
- thus: if one system is known to be weak, remove beam and fix it before another one fails
 - minimize the time to try your luck!

- one failure is generally not an issue
 - e.g. late PIC interlock
 - e.g. IT, LHCb dipole, 60A CODs
 - lose redundancy, but at worst detected by losses
 - BLM/QPS are the last lines of defence
 - BLMs are redundant themselves (3 BLMs per quad)
- combined failures are the worry
 - e.g. collimators in wrong position + asynch dump
 - e.g. SIS orbit interlock masked by mistake + orbit excursion (+ asynch dump)
- thus: if one system is known to be weak, remove beam and fix it before another one fails
 - minimize the time to try your luck!
 - but, in few exceptional cases, better not dump?

• failures that only experts can detect (1)

- failures that shift crews can detect
 - after beam dump (2)
 - with beam still in (3)

• dumps that could have been avoided (4)

• failures that only experts can detect (1)

- failures that shift crews can detect
 - after beam dump (2)
 - with beam still in (3)

• dumps that could have been avoided (4)

• failures that only experts can detect (1)

• dumps that could have been avoided (4)

- failures that shift crews can detect
 - after beam dump (2)
 - with beam still in (3)

• failures that only experts can detect (1)

- failures that shift crews can detect
 - after beam dump (2)
 - with beam still in (3)

dumps that could have been avoided (4)

- failures that only experts can detect
 - major events!
 - e.g. no dump scenario (LBDS 12V supply failure)
 - e.g. wrong transfer line collimator settings (Q20 vs Q26, max offset 1.3σ)
 - e.g. incorrect ring collimators settings
 - e.g. interrupted BLM HV cable (2011)

- failures that only experts can detect
 - major events!
 - e.g. no dump scenario (LBDS 12V supply failure)
 - e.g. wrong transfer line collimator settings (Q20 vs Q26, max offset 1.3σ)
 - e.g. incorrect ring collimators settings
 - e.g. interrupted BLM HV cable (2011)
 - experts require to stop
 - experts give the ok to restart

- failures that only experts can detect
 - major events!
 - e.g. no dump scenario (LBDS 12V supply failure)
 - e.g. wrong transfer line collimator settings (Q20 vs Q26, max offset 1.3σ)
 - e.g. incorrect ring collimators settings
 - e.g. interrupted BLM HV cable (2011)
 - experts require to stop
 - experts give the ok to restart
 - not much in the hands of OP
 - would not have been detected by shift crews!
 - hopefully this type does not come too often...

- failures that shift crews can detect, after dump
 - anomalous situation led to beam dump
 - e.g. RQX trip caught by BLMs and not by PIC
 - e.g. MKI flashover
 - e.g. lack of SPS-LHC synchronization
 - e.g. SPS on local or timing issue (beam in TI2 but MKI8 pulse)
 - M. Zerlauth, Evian 2010: "Beam dumps above injection are rigorously analyzed, we can do better at injection (avoiding repetitive tries without identifying the cause)"

- failures that shift crews can detect, after dump
 - anomalous situation led to beam dump
 - e.g. RQX trip caught by BLMs and not by PIC
 - e.g. MKI flashover
 - e.g. lack of SPS-LHC synchronization
 - e.g. SPS on local or timing issue (beam in TI2 but MKI8 pulse)
 - M. Zerlauth, Evian 2010: "Beam dumps above injection are rigorously analyzed, we can do better at injection (avoiding repetitive tries without identifying the cause)"
 - need shift crews or even system experts to think how to carry on

- failures that shift crews can detect, after dump
 - anomalous situation led to beam dump
 - e.g. RQX trip caught by BLMs and not by PIC
 - e.g. MKI flashover
 - e.g. lack of SPS-LHC synchronization
 - e.g. SPS on local or timing issue (beam in TI2 but MKI8 pulse)
 - M. Zerlauth, Evian 2010: "Beam dumps above injection are rigorously analyzed, we can do better at injection (avoiding repetitive tries without identifying the cause)"
 - need shift crews or even system experts to think how to carry on
 - can software tools help catch some?
 - some basic checks in PM expert acknowledge
 - FMCM IPOC, PIC IPOC, BIC IPOC
 - can more checks be added? e.g. to PM analysis?
 - e.g. collimator hierarchy module? redundancy checks? power loss module to recognize losses higher than normal?

- failures that shift crews can detect, beam still in
 - could be a case of missing interlock, if first occurrence
 - shift crew to decide whether to dump or not manually

- failures that shift crews can detect, beam still in
 - could be a case of missing interlock, if first occurrence
 - shift crew to decide whether to dump or not manually
 - e.g. RF feedback crate down
 - similar interlocks exist to avoid excessive load on collector
 - » to be added to RF interlocks?
 - manual dump in agreement with piquet, not time critical

- failures that shift crews can detect, beam still in
 - could be a case of missing interlock, if first occurrence
 - shift crew to decide whether to dump or not manually
 - e.g. RF feedback crate down
 - similar interlocks exist to avoid excessive load on collector
 - » to be added to RF interlocks?
 - manual dump in agreement with piquet, not time critical
 - e.g. ramp with no BPM data (2011)
 - no control on orbit, no OFB corrections
 - prompt dump by shift crew, time critical
 - now covered in SIS

- failures that shift crews can detect, beam still in
 - could be a case of missing interlock, if first occurrence
 - shift crew to decide whether to dump or not manually
 - e.g. RF feedback crate down
 - similar interlocks exist to avoid excessive load on collector
 - » to be added to RF interlocks?
 - manual dump in agreement with piquet, not time critical
 - e.g. ramp with no BPM data (2011)
 - no control on orbit, no OFB corrections
 - prompt dump by shift crew, time critical
 - now covered in SIS
 - e.g. collimators not moving during collision beam process
 - did not respond to timing event; gap ok, but wrong centre
 - state machine change to stable beams is prevented, otherwise not protected
 - could be covered by TCTs with BPMs
 - suggested recipe: "if collimators in wrong position and no weird orbit excursion in IR6, dump asap"

- trade-off: Machine Protection vs efficiency
 - be cautious: better to lose 3 hours than 3 months
 - 2011 yearly target as defined by M. Lamont at LMC: "don't break it"
 - define clearer guidelines, at least for after LS1 start-up
 - e.g. just suggested: "if collimators in wrong position, dump"

- trade-off: Machine Protection vs efficiency
 - be cautious: better to lose 3 hours than 3 months
 - 2011 yearly target as defined by M. Lamont at LMC: "don't break it"
 - define clearer guidelines, at least for after LS1 start-up
 - e.g. just suggested: "if collimators in wrong position, dump"
- for the shift crews
 - do we too easily put off dumping manually in case of issues?
 - are we the LHC cowboys?

- trade-off: Machine Protection vs efficiency
 - be cautious: better to lose 3 hours than 3 months
 - 2011 yearly target as defined by M. Lamont at LMC: "don't break it"
 - define clearer guidelines, at least for after LS1 start-up
 - e.g. just suggested: "if collimators in wrong position, dump"
- for the shift crews
 - do we too easily put off dumping manually in case of issues?
 - are we the LHC cowboys?
 - sometimes human checks + manual dump became the short term procedure
 - e.g. TCDQ not moving for ramp (2010)
 - e.g. abort gap monitoring missing due to BSRT mirror failure

- trade-off: Machine Protection vs efficiency
 - be cautious: better to lose 3 hours than 3 months
 - 2011 yearly target as defined by M. Lamont at LMC: "don't break it"
 - define clearer guidelines, at least for after LS1 start-up
 - e.g. just suggested: "if collimators in wrong position, dump"
- for the shift crews
 - do we too easily put off dumping manually in case of issues?
 - are we the LHC cowboys?
 - sometimes human checks + manual dump became the short term procedure
 - e.g. TCDQ not moving for ramp (2010)
 - e.g. abort gap monitoring missing due to BSRT mirror failure
- for the coordinators (MCs, LPCs, ...)
 - will you be supportive? or will you regret the "lost efficiency"?

no!

if needed!

- many interlocks patched situations that happened before
 - a hole found once, a bug found once, a mistake done once
 - e.g. BLM HV (2011)
 - e.g. zeroed OFB reference during squeeze
 - e.g. incorrect strength settings on mains (2010)

- many interlocks patched situations that happened before
 - a hole found once, a bug found once, a mistake done once
 - e.g. BLM HV (2011)
 - e.g. zeroed OFB reference during squeeze
 - e.g. incorrect strength settings on mains (2010)
 - the Software Interlock provides the flexibility
 - now partly based on experience

- many interlocks patched situations that happened before
 - a hole found once, a bug found once, a mistake done once
 - e.g. BLM HV (2011)
 - e.g. zeroed OFB reference during squeeze
 - e.g. incorrect strength settings on mains (2010)
 - the Software Interlock provides the flexibility
 - now partly based on experience
- but doubtful we have found all so far!
 - to shift crews: be vigilant!
 - A. MacPherson, Evian 2010, "Vigilance + Experience: Shift crews can react when things don't look right"

- many interlocks patched situations that happened before
 - a hole found once, a bug found once, a mistake done once
 - e.g. BLM HV (2011)
 - e.g. zeroed OFB reference during squeeze
 - e.g. incorrect strength settings on mains (2010)
 - the Software Interlock provides the flexibility
 - now partly based on experience
- but doubtful we have found all so far!
 - to shift crews: be vigilant!
 - A. MacPherson, Evian 2010, "Vigilance + Experience: Shift crews can react when things don't look right"
- how to help the crews detect abnormal situations?
 - e.g. BLMs per beam mode, how should they look?
 - e.g. collimators per family and per mode, where should they be?

"abnormal"

"abnormal"

"abnormal"

DO NOT USE THIS BEAM! - A B N O R M A L -

- dumps that could have been avoided
 - machine safety not in danger, but time lost

- dumps that could have been avoided
 - machine safety not in danger, but time lost
 - avoid interlocks that kick in for the "wrong" reason
 - e.g. dumps at Setup Beam Flag crossing during MDs as TCTs not setup for collisions at injection
 - e.g. dumps for 6σ VdM scans during 1.38 TeV run
 - e.g. IR6 BPMs on low intensity bunches

- dumps that could have been avoided
 - machine safety not in danger, but time lost
 - avoid interlocks that kick in for the "wrong" reason
 - e.g. dumps at Setup Beam Flag crossing during MDs as TCTs not setup for collisions at injection
 - e.g. dumps for 6σ VdM scans during 1.38 TeV run
 - e.g. IR6 BPMs on low intensity bunches
 - improve efficiency by improving procedures
 - for special runs and MDs
 - at transition with nominal operation not to forget masks, different settings, ...

settings and masks handling

- BIS masking automatically cleaned up with intensity
 - extra masks impair efficiency more than safety
 - e.g. task that resets all during ramp down?
 - e.g. are AC-dipole keys back in the cupboard?
 - responsibility lies with shift crews (not users), but need to improve procedures for information sharing across shifts

settings and masks handling

- BIS masking automatically cleaned up with intensity
 - extra masks impair efficiency more than safety
 - e.g. task that resets all during ramp down?
 - e.g. are AC-dipole keys back in the cupboard?
 - responsibility lies with shift crews (not users), but need to improve procedures for information sharing across shifts
- SIS masking
 - forgetting to set appropriate masks or interlock settings impaired efficiency for special runs and MDs
 - for nominal operation, mostly cleaned up during commissioning
 - e.g. SIS orbit references for 90 m optics runs
 - forgetting to unmask impacts safety
 - e.g. when going back to nominal operation
 - need to be more thorough, at least with procedures

settings and masks handling

- BIS masking automatically cleaned up with intensity
 - extra masks impair efficiency more than safety
 - e.g. task that resets all during ramp down?
 - e.g. are AC-dipole keys back in the cupboard?
 - responsibility lies with shift crews (not users), but need to improve procedures for information sharing across shifts
- SIS masking
 - forgetting to set appropriate masks or interlock settings impaired efficiency for special runs and MDs
 - for nominal operation, mostly cleaned up during commissioning
 - e.g. SIS orbit references for 90 m optics runs
 - forgetting to unmask impacts safety
 - e.g. when going back to nominal operation
 - need to be more thorough, at least with procedures
- enforce reversion of settings for other systems? how often?
 - e.g. IR6 BPM, BLM MF, collimator settings

procedures procedures procedures

- suggest thorough procedures of special runs and MDs
 - step-by-step plan, settings change list, masks list (if any)
 - helps achieving results, improving efficiency and avoiding misunderstandings
 - minimize surprises and change of plans during machine time
 - helps defining responsibilities and avoids forgetting reversions

procedures procedures procedures

- suggest thorough procedures of special runs and MDs
 - step-by-step plan, settings change list, masks list (if any)
 - helps achieving results, improving efficiency and avoiding misunderstandings
 - minimize surprises and change of plans during machine time
 - helps defining responsibilities and avoids forgetting reversions
 - MP document written for all MD types, A to D
 - need to change our perception: the LHC is not one of our injectors!
 - need procedures, need them well in advance (>2 weeks)
 - e.g. quench tests
 - good: time to discuss as prepared well in advance
 - could still improve: e.g. mask TCSG/TCDQ retraction!

- IQC: too many latches
 - D. Jacquet, Evian 2012:
 - "IQC latches almost every injection: are the thresholds correctly set? Can we still afford this with 288 bunches?"
 - "Most of the time we unlatch IQC with no corrective action."

- IQC: too many latches
 - D. Jacquet, Evian 2012:
 - "IQC latches almost every injection: are the thresholds correctly set? Can we still afford this with 288 bunches?"
 - "Most of the time we unlatch IQC with no corrective action."
 - if interlock latches or is masked too often, it is useless
 - what is really critical? what is not? risk to be ignored when it should not

- IQC: too many latches
 - D. Jacquet, Evian 2012:
 - "IQC latches almost every injection: are the thresholds correctly set? Can we still afford this with 288 bunches?"
 - "Most of the time we unlatch IQC with no corrective action."
 - if interlock latches or is masked too often, it is useless
 - what is really critical? what is not? risk to be ignored when it should not
- LBDS XPOC
 - shift crew can only reset non critical modules
 - e.g. latches from wrong filling pattern, missing fBCT or BLM data ... happen very often
 - experts only can reset critical modules (MKD, TSU)

- IQC: too many latches
 - D. Jacquet, Evian 2012:
 - "IQC latches almost every injection: are the thresholds correctly set? Can we still afford this with 288 bunches?"
 - "Most of the time we unlatch IQC with no corrective action."
 - if interlock latches or is masked too often, it is useless
 - what is really critical? what is not? risk to be ignored when it should not
- LBDS XPOC
 - shift crew can only reset non critical modules
 - e.g. latches from wrong filling pattern, missing fBCT or BLM data ... happen very often
 - experts only can reset critical modules (MKD, TSU)
- MP3 trips
 - "not sure why QPS triggered, but protection worked ok: can carry on, analysis will follow offline"

- IQC: too many latches
 - D. Jacquet, Evian 2012:
 - "IQC latches almost every injection: are the thresholds correctly set? Can we still afford this with 288 bunches?"
 - "Most of the time we unlatch IQC with no corrective action."
 - if interlock latches or is masked too often, it is useless
 - what is really critical? what is not? risk to be ignored when it should not
- LBDS XPOC
 - shift crew can only reset non critical modules
 - e.g. latches from wrong filling pattern, missing fBCT or BLM data ... happen very often
 - experts only can reset critical modules (MKD, TSU)
- MP3 trips
 - "not sure why QPS triggered, but protection worked ok: can carry on, analysis will follow offline"
 - operation indeed stopped when needed
 - e.g. DFB HTS quench + bad cable connection (2011)
 - lost redundancy: 1 protection left out of 3

- which other procedures could we devise?
 - better before they are needed on shift!
 - e.g. are there cases in which it is better not to dump?
 - e.g. what if orbit excursion in IR6 is really bad?
 - e.g. what if abort gap population is well above dump thresholds?
 - wait longer? what if it keeps on increasing?
 - scrape or use ADT blow up... but with which settings?

- which other procedures could we devise?
 - better before they are needed on shift!
 - e.g. are there cases in which it is better not to dump?
 - e.g. what if orbit excursion in IR6 is really bad?
 - e.g. what if abort gap population is well above dump thresholds?
 - wait longer? what if it keeps on increasing?
 - scrape or use ADT blow up... but with which settings?
- are we confident in executing emergency procedures that exist?
 - is it worth training the "in case dump does not trigger" procedure?

- which other procedures could we devise?
 - better before they are needed on shift!
 - e.g. are there cases in which it is better not to dump?
 - e.g. what if orbit excursion in IR6 is really bad?
 - e.g. what if abort gap population is well above dump thresholds?
 - wait longer? what if it keeps on increasing?
 - scrape or use ADT blow up... but with which settings?
- are we confident in executing emergency procedures that exist?
 - is it worth training the "in case dump does not trigger" procedure?
- can we improve/invent tools to help shift crews notice anomalous situations?
 - e.g. online or in PM analysis

- which other procedures could we devise?
 - better before they are needed on shift!
 - e.g. are there cases in which it is better not to dump?
 - e.g. what if orbit excursion in IR6 is really bad?
 - e.g. what if abort gap population is well above dump thresholds?
 - wait longer? what if it keeps on increasing?
 - scrape or use ADT blow up... but with which settings?
- are we confident in executing emergency procedures that exist?
 - is it worth training the "in case dump does not trigger" procedure?
- can we improve/invent tools to help shift crews notice anomalous situations?
 - e.g. online or in PM analysis
- should we periodically check that our settings are correct?
 - e.g. IR6 BPMs, BLM MF, collimator settings

conclusions

- MP works remarkably well and is the base for the success of the LHC
- but: catalogue of "MP issues" from 3 years of operation
 - cases of missing interlocks, design faults, weaknesses
 - experience helped strengthening MP systems
 - have we exhausted the information or can we learn more?
 - better procedures and planning can help improve efficiency
- always rely on shift crews to spot abnormal situations and act
 - but try and help them when possible with software and procedures
 - procedures help aligning decisions in stressful situations