Session 6 Operation after LS1

Session 6

- Post LS1 operation G. Arduini
- Update on beam failure scenarios J. Uythoven
- Post LS1 Operational Envelope & MPS implications M Solfarolli
- Software tools for MPS K. Fuchsberger
- Interlocking strategy versus Availability L. Ponce

Possible 2015 strategy

- \square Running period at 50 ns after short scrubbing run is desirable (could be at pile-up of up to 40 with β^* of 50 cm and close to nominal bunch intensity but low emittance) to re-discover the machine at 6.5 TeV,
- □ Move then to 25 ns after additional period of scrubbing (~10 days) and ramp-up in intensity

- \square β^* leveling is very likely to be used in some IRs (+ collision during [part of] the squeeze).
- □ The baseline scenario must be defined as we cannot implement all scenarios.
 - Study implications for OP and MP (collimation etc).

Injectors and beam heating

- BCMS schemes are very attractive but:
 - □ Average energy density at 450 GeV for 50 ns and 25 ns beams is ~35% and 70% higher than ultimate at injection
 - □ Average energy density at 6.5 TeV for 50 ns and 25 ns beams is
 ~2% and 25% higher than ultimate at 7 TeV
 - → Possible feed-down on the Setup beam flag!
- We need a 'body' to follow up heating issues not necessarily MPP.
- We should identify issues at an early stage to put in place counter-measures before damaging equipment.

Update on beam failure scenarios

- The Big Three failure scenarios (D1, injection, asynch dump)
 - ☐ They all occurred, with some modifications!
 - □ However, equipment weaknesses detected with equipment related to 2 oo 3 of the Big Three failure modes:
 - TDI
 - LBDS TSU and powering
- Unexpected failure scenarios occurred (as expected)
 - □ Timing system, beam heating, orbit bumps, UFOs, abort gap, QPS
 - □ We need to further improve our protection against these due to improvement of the equipment involved and surveillance
 - Heavily relying on SIS!
- Continue to understand each beam dump (post mortem) before continuing operation

The safe/setup beam at 7 TeV

After LS1 the LHC will be operated at an energy close to 7 TeV. The value of the normal setup beam flag would in this case allow an intensity of ~1x10¹⁰ (pilot beam)

PLUSTHE	4 Tev		7 TeV (maintaining the curves)		7 TeV (maintaining the concept)	
FEFAC	Allowed intensity	Factor (wrt normal)	Allowed intensity	Factor (wrt normal)	Allowed intensity	Factor (wrt normal)
NORMAL	2.5x10 ¹⁰		1x10 ¹⁰ p		1x10 ¹⁰ p	
RELAXED	1.2x10 ¹¹	5	4.8x10 ¹⁰ p	5	1.2x10 ¹¹ p	13
VERY RELAXED	3.26x10 ¹¹	13	1.26x10 ¹¹ p	13	3.26x10 ¹¹ p	34

We must review the concept and limits for relaxed and very relaxed safe beam flag ↔ commissioning and MD needs and risks!

Operation

New ways to operate the LHC:

- Combined ramp&squeeze,
- Beta* leveling,
- Lower beta* at injection,
- **...**

will have to be looked at in terms of MP and collimation.

Software tools from MPS

Ideas and concepts to move the MPS commissioning tracking

from here.... to there!

SW tools summary

Summary

- MPS Commissioning:
 - Tracking in Acctesting Framework.
 - Automate! (Step by Step) Candidates?
- Preview: Two new frameworks:
 - Tracking of system dependencies
 - (Test-) Data Analysis
- Early detection of potential problems could be done in by additional trim checks in LSA.
- Aperture Meter: Useful prototype, but needs improvements.

We have to define projects and priorities!

SIS (versus BIS)

- SIS heavily used at LHC, ~2700 subscriptions.
 - □ Core very reliable, but sensitive to communication errors.
 - Ok for injection interlocking!
 - □ (Fast) 'Solution' to many problems that were discovered during

operation.

- Proposals to improve:
 - □ GUI trees have become quite complex to read,
 - □ Post-mortem information,
 - □ Parameter / values monitoring,
 - Masking,
 - □ Subscription UI.

3/13/2013 LHC 8:30 meeting

Changes to SIS

- From SIS to BIS (when? Not right after LS1?):
 - ☐ Beam position in TCSG (and TCTs).
 - □ TDI gap (very old interlock from early 2010 LHC).
- From SIS to Kajetan:
 - All CODs test removed from SIS. Extension to other PCs to be considered.
 - Maintain orbit interlocks.
- From the workshop discussions, expect new interlocks to arrive after LS1.