Preparing antihydrogen at

rest for the free fall in

Outline

- $\overline{\mathrm{H}}^+$ motion control requirements
- Capture and cooling challenges
- Experimental progress

GBAR overview

 \overline{H} with $v_0 < 1$ m/s ?

Ground state quantum **harmonic oscillator** $p = \sqrt{m\hbar\omega} \frac{a - a^+}{i\sqrt{2}} \quad \Delta v = \sqrt{\frac{\hbar\omega}{2m}}$ m = 1.67 10⁻²⁷ kg , $\Delta v_0 < 0.8$ m/s $\longrightarrow \omega < 3$ MHz

Cooling challenges

Two Cooling Steps

Sympathetic cooling time First step

 \bullet Numerical simulation 500 Be+ and 20 $\overline{\rm H}{}^{+}$

• Hotter H+ ions and larger ion clouds price numerical challenge

Work plan : Experimental tests with matter ions H_2^+ or H^+

Precision trap – motional couplings

 T. Hasegawa, Phys. Rev. A 83, 053407 (2011)
 1D

 J. B. Wübbena, S. Amairi, O. Mandel, P.O. Schmidt, Phys. Rev. A 85, 043412 (2012)
 3D

Precision trap – motional couplings Second step

Raman side band cooling $\omega_0 - \Delta + \delta_{hfs} - \omega_i$ $\omega_0 - \Delta$ Stimulated Raman transition \overline{H}^+ Be⁺ Spontaneous Raman transitions ω_0 $\Delta \sim \text{tens of GHz}$ ${}^{2}P_{3/2}$ F=0, 1, 2, 3 3 laser freq. F=1, 2 ${}^{2}P_{1/2}$ 2 beams 313.13 nm ${}^{2}S_{1/2}$ n=2 δ_{hfs} = 1.25 GHz n=3 n=2 $\Phi \omega_{vibr}$

Raman side band cooling

Second step

Stimulated Raman transition

no spontaneous emission *coherent process*

Single ion	b ₁ = 1	3 modes	$\tau \sim 100 \ \mu s \ /n/mode$	~ 10 ms
Be^+/\overline{H}^+	$b_{1z} = 0.18$	2 modes	x 5	
	$b_{1x,y} = 0.0872$	4 modes	x 15	∫ < 1S

Experimental progress

Transfer to precision trap

Work plan

Tests with a H_2^+ / H^+ REMPI source

Conclusion

✓ **Capture** of > 10 eV \overline{H}^+ and Doppler cooling in a linear Paul trap

✓ Transfer to precision trap

OK

✓ Doppler and ground state cooling in precision trap OK

PhD positions available ANR BESCOOL

• ITN ComiQ

A MARIE CURIE INITIAL TRAINING NETWORK

Can we improve the motional couplings ?

Single well with
$$m_1 = 9$$
, $m_2 = 1$ $\omega_{z_2} \sim 3 \omega_{z_1}$ poor couplings

