Lorentz violation and vacuum structure in string theories

Koji Hashimoto (superstring theorist)

Osaka / RIKEN

String theory = A quantum gravity

Tiny string vibrates,

→ Many kinds of particles

Graviton, scalar fields, tensor fields, ...

- Can determine the spacetime dimensions ... 10 dim!
- Reduces to ordinary quantum field theory at low energy
- Complete definition not found yet

String supports antimatter feeling different gravity?

- Answer 1 : Broken CPT

Matter and antimatter have different mass eigenstates

- Answer 2: "Fifth force"

Highly supersymmetrized hypothetical world has cancellation of gravity by scalar/tensor forces, called "BPS"

Scalar (axion, dilaton,...), tensor (RR-field, NSNS field,...)

These particles can be light, after moduli stabilization

But It is unlikely that these couple to baryon charge.

CPT theorem cannot be applied

Current status

Standard scenario is "made" to be CPT invariant

Directions

Spontaneous compactification scenarios may evaluate possible Lorentz-breaking constants

Cause of difficulty CPT theorem cannot be applied 3 pages Current status -Standard scenario is "made" to be CPT invariant 2 pages Directions 3 Spontaneous compactification scenarios may evaluate possible Lorentz-breaking constants 6 pages

CPT theorem cannot be applied

```
    CPT theorem (for 4d quantum field theory)
```

```
Local interaction + Lorentz invariance → CPT invariance
```

[Luders `54] [Pauli `55]

In string theory?

Locality: subtle

Lorentz: by hand!

CPT theorem cannot be applied

Locality: subtle

String = extended object = non-local?

String interaction is local, but action looks non-local

$$S = \int d^d x \left[(\partial_\mu \phi(x))^2 + (\exp(\partial_\nu \partial^\nu) \phi(x))^3 \right] + \cdots$$

CPT theorem cannot be applied

Lorentz: by hand!

Superstring needs Lorentz violation, because......

Consistently formulated in 10 spacetime dimensions

- \rightarrow Reconciled only by "Space compactification" 10 = 4 + 6
- → Inevitable breaking of 10 dim. Lorentz symmetry! But 4d Lorentz is kept by hand!

Question: Why 4+6? Why not 1+1+1+1+1+...+1?

Cause of difficulty CPT theorem cannot be applied 3 pages Current status -Standard scenario is "made" to be CPT invariant 2 pages Directions 3 Spontaneous compactification scenarios may evaluate possible Lorentz-breaking constants 6 pages

Standard scenario is "made" to be CPT invariant

Normally string phenomenology keeps 4d Lorentz by hand.

- 6d Calabi-Yau compactification in heterotic string theory.
- D-brane wrapping 6d torus in type II superstring theory.
- F-theory compactifications.

Reason: simpler, and

we do not know spontaneous breaking mechanism

Question: Why 4+6? Why not 1+1+1+1+1+...+1?

Standard scenario is "made" to be CPT invariant

Look back: A historical side of String and Lorentz breaking

CPT breaking by a constant vector

Standard Model Extension [Colladay, Kostelecky `97] $\mathcal{L}'_a \equiv a_\mu \overline{\psi} \gamma^\mu \psi \qquad \qquad \text{[Myers,Pospelov `0]}$ [Myers, Pospelov '02]

$$\mathcal{L}_a' \equiv a_\mu \overline{\psi} \gamma^\mu \psi$$

Vector condensation in string theory [Kostelecky, Samuel `89]

$$\mathcal{V}(S, A_{\mu}) = -S^2 + S^3 - SA_{\mu}A^{\mu}$$

This seems not the case in string theory If present, vector would be Planck scale

Cause of difficulty CPT theorem cannot be applied 3 pages Current status -Standard scenario is "made" to be CPT invariant 2 pages Directions 3 Spontaneous compactification scenarios may evaluate possible Lorentz-breaking constants 6 pages

Spontaneous compactification scenarios

	Scenario	4d Lorentz breaking	Evaluation
1.	Vacuum condensation	Spontaneous	?
2.	Winding string	Explicit	Δ
3.	Braneworld	?	?
4.	Matrix universe	Spontaneous	Δ
5.	Emergent spacetime	Explicit	?

1.

Vacuum condensation

Lorentz breaking: Spontaneous, Evaluation: ?

Tachyon condensation [Kostelecky, Samuel, '89] [Sen '98]

Bosonic string has tachyonic instability

→ Spontaneous disappearance of spatial dimensions

Winding string

Lorentz breaking: Explicit, Evaluation: \triangle

Brandenberger-Vafa scenario [Brandenberger, Vafa, '88]

Early hot universe compactified on 10-dim. torus

→ Only 4 dim. are freed

Our universe is a torus = 4d Lorentz breaking

3.

Braneworld

Lorentz breaking: ? Evaluation: ?

Brane gas cosmology [Alexander, '01], [Brandenberger, et.al]

D-branes: hypersurfaces on which strings can end

Braneworld: We live on D3-branes

Dp-Dpbar annihilation in 10 dim. \rightarrow creation of D(p-2) brane "D9 \rightarrow D7 \rightarrow D5 \rightarrow D3." 4. ****

Matrix universe

Lorentz breaking: Spontaneous, Evaluation: Δ

IIB Matrix Model [Ishibashi, Kawai, Kitazawa, Tsuchiya '96]

Small D-branes forming a bound state

→ 4 large dimensions + 6 compact dimensions

Our space is non-commutative, CPT can be broken [Mocioiu, Pospelov, Roiban '01]

Emergent spacetime

Lorentz breaking: Explicit, Evaluation: ?

AdS/CFT correspondence [Maldacena '98] M-theory [Witten '95]

Gauge theory at strong coupling

→ Additional emergent dimension without Lorentz symmetry

Spontaneous compactification scenarios

	Scenario	4d Lorentz breaking	Evaluation
1.	Vacuum condensation	Spontaneous	?
2.	Winding string	Explicit	Δ
3.	Braneworld	?	?
4.	Matrix universe	Spontaneous	Δ
5.	Emergent spacetime	Explicit	?

Ceuse of difficulty

CPT theorem cannot be applied

Current status

Standard scenario is "made" to be CPT invariant

Directions

Spontaneous compactification scenarios may evaluate possible Lorentz-breaking constants