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• Quantum re�ection of antihydrogen from the Casimir potential above

matter slabs � Phys. Rev. A 87, 012901 (Jan 2013)

• Quantum re�ection of antihydrogen from nanoporous media �

Phys. Rev. A 87, 022506 (Feb 2013)
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Motivation : quantum re�ection in GBAR

The GBAR experiment

Gravitational Behavior of Antihydrogen at Rest

Test the equivalence principle for
antimatter by timing the free-fall of
antihydrogen (H) dropped from ∼ 30 cm in
the Earth's gravity �eld
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Motivation : quantum re�ection in GBAR

The GBAR experiment

Producing, trapping and cooling H
+
(p̄ e+e+):

P. Perez & Y. Sacquin, Class. Quantum Grav. 29 (2012) 184008
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Motivation : quantum re�ection in GBAR

The GBAR experiment

• initial state: H
+
in the ground

state of a harmonic trap

• start: the extra e+ is
photodetached

• freefall of H

• stop: H annihilates on the
detector

P. Perez & Y. Sacquin,
Class. Quantum Grav. 29 (2012) 184008

The free fall acceleration ḡ of H is deduced from the free fall time

Question: are there other forces than gravity acting on H?
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Motivation : quantum re�ection in GBAR

The Casimir-Polder force

Electromagnetic (EM) modes are modi�ed when the atom comes
close to the detector:
⇒ the EM ground state (vacuum) energy changes
⇒ attractive Casimir-Polder force between atom and detector

Casimir 1948 : long-range interaction
energy between an atom and a perfectly
conducting mirror:

V ∗(z) = − 3~c
8πz4

α(0)

4πε0
= −

C
perfect
4

z4

For H and H, Cperfect
4 ≈ 73.6 Eha

4
0

V (35 nm) ≈ - mg × 10 cm
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Motivation : quantum re�ection in GBAR

Scattering on the Casimir-Polder potential

What happens when the atom scatters on this potential ?

Length scales :

• free fall height : h ≈ 30 cm

• quantum gravitational scale :

lgrav =
(
~2/2m2g

)1/3 ≈ 6 µm

• Casimir-Polder scale :
lCP =

√
2mC4/~ ≈ 30 nm

We can decouple the free-fall and the scattering on the potential
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Motivation : quantum re�ection in GBAR

Quantum re�ection on a step

Schrödinger plane wave incident on a potential step:

ψin(z) ∝ exp(−ikz)

with a wavevector

k =
√
2m(E − V )/~
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Motivation : quantum re�ection in GBAR

Quantum re�ection on a step

The wavefunction is partly re�ected, partly transmitted

Re�ection:

r12 =
k2 − k1

k1 + k2

Transmission:

t12 =
2
√
k1k2

k1 + k2
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Motivation : quantum re�ection in GBAR

Quantum re�ection on a step

Re�ection from an attractive potential: �quantum re�ection�

Re�ection probability
unchanged when 1↔ 2:

|r12|2 = |r21|2
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Motivation : quantum re�ection in GBAR

Quantum re�ection on a step

No quantum re�ection at large energies: classical regime

Re�ection:

k2 − k1

k1 + k2
→

E→∞
0

Transmission:

2
√
k1k2

k1 + k2
→

E→∞
1
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Motivation : quantum re�ection in GBAR

Observation of quantum re�ection

Shimizu 2001: Ne* on Silicon and BK7 glass, grazing incidence
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Motivation : quantum re�ection in GBAR

Observation of quantum re�ection

Pasquini et al. 2004: dilute BEC of Na on silicon, normal incidence
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Motivation : quantum re�ection in GBAR

E�ect of the atom-detector interaction

Attractive Casimir-Polder interaction between atom and detector :

• no noticeable change in time of fall

• BUT part of the atomic wavepacket is re�ected

Quantum re�ection : classically forbiden re�ection of a matter wave
from a rapidly changing attractive potential

Need to estimate and master this bias :

• How much quantum re�ection can we expect?

• How does it depend on the atom's velocity?

• How is this a�ected by the materials used?
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Calculation of the Casimir-Polder potential

Scattering approach to Casimir forces

Scattering formula for Casimir energy (here at T = 0)

V = ~
∫ ∞
0

dξ

2π
Tr log

(
1−R1e

−κLR2e
−κL
)

Objects described by EM re�ection matrices R1,R2

• Ratom function of the dynamic
polarizability of the atom

• Rplane function of Fresnel
re�ection coe�cients on the
surface, which depend on the
permittivity of the material

R. Messina, D.A.R. Dalvit, P.A. Maia Neto, A. Lambrecht, S. Reynaud,
Phys. Rev. A 80 (2009) 022119
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Calculation of the Casimir-Polder potential

Calculation of the Casimir-Polder potential

Casimir-Polder potential above various semi-in�nite media,
numerical results (inset : normalized potential V /V ∗):

• long distance (retarded
regime): V (z) ' −C4/z4

• short distance (van der
Waals regime):
V (z) ' −C3/z3

• weaker potential for
materials weakly coupled
to the EM �eld

Phys. Rev. A 87 (Jan 2013) 012901
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Quantum re�ection from the Casimir-Polder potential

Re�ection equations and boundary conditions

Exact wavefunction written as a sum of up- and downward
semiclassical (WKB) waves with non-constant coe�cients :

ψ(z) = b+(z)
exp(+iφ(z))√

p(z)
+ b−(z)

exp(−iφ(z))√
p(z)

p(z) =
√
2m(E − V (z)), ~φ(z) =

∫ z

p(z ′)dz ′

Schrödinger's equation ⇒ coupled equations for b±(z)

M.V. Berry and K.E. Mount, Rep. Prog. Phys. 35 (1972) 315

Annihilation of H on the surface: no re�ected wave b+(z = 0) = 0
⇒ di�erent from matter atoms & less sensitive to surface physics
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Quantum re�ection from the Casimir-Polder potential

Re�ection and transmission probabilities

The WKB approximation becomes exact

• as z →∞ since the potential goes to 0

• as z → 0 because the momentum
becomes very large

⇒ re�ection only occurs in an intermediate
region, the �badlands�

re�ection probability:
|r |2 = |b+(∞)/b−(∞)|2

transmission/annihilation probability:
|t|2 = |b−(0)/b−(∞)|2
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Quantum re�ection from the Casimir-Polder potential

Re�ection probability versus energy

Atomic re�ection probabilities for a
free fall height h = 30 cm

surface |r |2

perfect EM
mirror

5%

silicon 9%

silica 18%

Phys. Rev. A 87 (Jan 2013) 012901

Atomic re�ection probability:

• signi�cant for GBAR fall heights

• bias : high energy atoms more likely to be detected

• weaker re�ectors of EM �eld are better re�ectors of atoms !
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Quantum re�ection from the Casimir-Polder potential

Explanation of the �paradox�

Badlands function Q for h=10cm

�Badlands� function:

Q(z) = ~2
∣∣∣∣ p′′(z)

2p(z)3
− 3p′(z)2

4p(z)4

∣∣∣∣,
indicates regions where the semiclassical
approximation breaks down

For the Casimir-Polder potential, re�ection
is localized in the region where |V (z)| ' E

⇒ For weaker Casimir potentials, the atom
comes closer to the surface, where V(z)
varies rapidly, so that re�ection is enhanced
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Increasing quantum re�ection

Interest and general idea

Increasing quantum re�ection opens many possibilities:

⇒ storing antimatter: antimatter bottles, pipes, ...

⇒ levitation of anti-atoms above a surface

A.Yu. Voronin, P. Froelich, J. Phys. B 38 (2005) L301
A.Yu. Voronin, P. Froelich, B. Zygelman, Phys. Rev. A 72 (2005) 062903
A.Yu. Voronin, P. Froelich, V.V. Nesvizhevsky, Phys. Rev. A 83 (2011) 032903

We can use our understanding of quantum re�ection to enhance it :
to increase re�ection, weaken the Casimir-Polder interaction

• thin slabs

• graphene

• nanoporous materials
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Increasing quantum re�ection

Thin slabs

Thin slabs invisible to large EM wavelengths : reduction of
Casimir-Polder potential

Naive argument: Vslab(z) ∼
z→∞

−C4
z4

+ C4
(z+d)4

' −4dC4/z5

Exact calculation of the potential above thin
silica slabs

Re�ection on silica slabs and graphene
(Dirac model)

Phys. Rev. A 87 (Jan 2013) 012901
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Increasing quantum re�ection

Nanoporous materials

Materials that incorporate a signi�cant fraction of gas or vacuum

Examples : aerogels (dried silica gels
∼ 98% porosity), powders of
nanodiamonds, porous silicon

NASA

Pore size in the 10-100 nm range
allows use of an e�ective permittivity
model if atoms are slow enough

Phys. Rev. A 87 (Feb 2013) 022506

Lifetime of 1st quantum state

surface Lifetime (s)

perfect
EM mirror

0.11

bulk silicon 0.14

bulk silica 0.22

5 nm silica slab 0.33

graphene 0.55

silica aerogel
(90% porosity)

1.1

silica aerogel
(98% porosity)

4.6
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Applications and outlook

Velocity selector for GBAR

Uncertainty on measured arrival time :

∆t

t
=

√√√√(∆z

2h

)2

+

(
∆p

m
√
2gh

)2

=
1

2

∆ḡ

ḡ

If ∆z∆p = ~/2, uncertainty minimal for ∆z =
(

~2h
2m2g

)1/4
∼ 90 µm

In current GBAR proposal, the ion trap imposes ∆z ∼ 0.1 µm:
precision is limited by ∼ 1 m/s uncertainty on initial velocity

Idea : keep only atoms with a small initial vertical velocity,
the gain in precision outweighs loss in statistics
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Applications and outlook

Velocity selector for GBAR

Atoms bounce on (without touching!) a mirror, above which an
absorber is placed (similar to GRANIT experiment with neutrons)

Output : ∆z ∼ δ and ∆p ∼ m
√
2gδ

Precision of GBAR experiment taken from 1% to 1%�

Quantum e�ects appear for δ . 50 µm
Submitted to EPJC
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Applications and outlook

Quantum re�ection of a free-falling wavepacket

Until now the treatment of atomic motion was classical BUT:

• initial state is a gaussian wavepacket

• close to the surface the energy spectrum is discrete

Need for a fully quantum,
time-dependent treatment with

• proper treatment of wavepacket
falling in gravity �eld

• decoherence from annihilation

⇒ Quantum e�ects in GBAR ? →
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Applications and outlook

Wavepacket falling high above the surface

If V (z) = mgz over the extent of the wavepacket, the Wigner
phase-space function obeys the classical equations of motion:

∂

∂t
W (z , p, t) = − p

m

∂

∂z
W (z , p, t) + mg

∂

∂p
W (z , p, t)

whereas in general the potential term is nonlocal

Can we describe re�ection in this picture ?
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Applications and outlook

Gravitational quantum states near the surface

Eigenstates in a linear potential: ψ(z) ∝ Ai(z̃ − Ẽ )

Full re�ection : ψn(0) = 0:
−Ẽn zero of the Airy function

Interaction with the surface is described
by a complex scattering length ã

Ẽn → Ẽn + ã

Re(ã) : energy level shift
Im(ã) : decay rate
perfect conductor : a = −2.8− i28.7 nm
⇒ quasi-stationary states

Description of re�ection and dissipation
in this framework, beyond the scattering
length approximation?
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Applications and outlook

The end

Thank you for your attention

Any questions?
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