MEASURING

WITH AEgIS

Daniel Krasnický₁ on behalf of the AEgIS collaboration₂

¹ INFN - sezione di Genova, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
 ² http://cern.ch/aegis

ANTIMATTER EXPERIMENT: GRAVITY, INTERFEROMETRY, SPECTROSCOPY

- **x** First goal is to measure \overline{g} ($g_{\overline{H}}$) to 1% accuracy
- × Test of WEP on antimatter in Earth's gravitational field
- × Direct measurement of \overline{g} free of any assumptions
- × Our method:
 - + Produce 100mK antihydrogen via reaction $Ps^* + \overline{p} \rightarrow \overline{H}^* + e^-$
 - + Accelerate antihydrogen into a neutral beam
 - + Measure the gravitational deflection of such cold \overline{H} beam

ANTIHYDROGEN PRODUCTION & BEAM FORMATION

AEgIS proposal, http://cdsweb.cern.ch/record/1037532

Antihydrogen at 100mK \rightarrow v_H \approx 40 m/s

- o-Ps produced by impact of e⁺ on SiO₂ target
- Ps laser excited into Rydberg levels

 Rydberg Ps interacts with a cloud of cold antiprotons trapped in a penning trap and forms H
 through charge exchange reaction

 $\sigma \propto n^4$ $\sigma(n_{Ps}=20) \approx 10^{-9} cm^2$

- × Antihydrogen state defined by Ps state
- × \bar{H} temperature defined by \bar{p} temperature
- Stark acceleration: Rydberg atoms are sensitive to el. field gradients → accelerate the H population along z-axis to few 100m/s

POSITRONIUM PRODUCTION & EXCITATION

- Ps production: implantation of e⁺ into nano-porous (Ø 8-14 nm) silica target
- × ~75K o-Ps needed
 - + requires deep implantation depth \rightarrow high V

up to 50% ortho-Ps conversion efficiency!

- o-Ps will be excited
 - resonant 2-stage transition
 - Laser system ready
- necessary for
 - + high \overline{H} production rate ($\sigma \propto n^4$)
 - Ionger Ps lifetime

(ULTRA)COLD ANTIPROTONS

- × Cold p maximize detected H flux
- × Cooling in 1T H production trap
 - + Currently 7K \rightarrow final configuration @ 0.1K
 - + Advantage: electrons stay with antiprotons
- × Mechanisms to be implemented:
 - + Radiative (sympathetic) e⁻ cooling ideal limit 0.7K
 - + To lower temperatures:
 - × evaporative / adiabatic p̄ cooling
 - × sympathetic resistive cooling of antiprotons
 - ★ e⁻ cooled resistively with a tuned LC circuit in a harmonic trap
 - + Under investigation: sympathetic laser cooling with neg. ions (Os⁻, La⁻)

GRAVITY MEASUREMENT

- × Horizontal antihydrogen beam @ 500m/s, flight path 1 m
 - + Deflection due to gravity $h = 20\mu m$
- × AEgIS beam will have divergence $\geq 5^{\circ}$
 - + Beam spot size after flight of the order of 20 cm
 - + collimation depends on initial $T(\overline{H})$
- × AEgIS will use moiré deflectometer
 - + A set of horizontal gratings (40μm pitch)
 - + Rel. $\delta(g)/g=10^{-4}$ achieved with Argon

M. K. Oberthaler et al., Phys. Rev. A 54 (1996) 3165

GRAVITY MEASUREMENT

moiré deflectometer

- + 2 gratings & detector
- + Classical, NOT atom interferometer
- + Collimated atom beam NOT required
- + Creates a shadow pattern
 - × vertical shift δx depends on beam velocity

- × In AEgIS we count position (δx) and ToF of each antiatom
 - + ToF: acceleration/annihilation t

P. Bräunig's talk 16:00 today!

- + Flight time ~ms range
- × 1% precision $\rightarrow \sim 10^3 \text{ H}$ (detected)

POSITION SENSITIVE DETECTOR NEW DEVELOPMENT

× Use of nuclear emulsion

- + Superb resolution (~ $2\mu m @ \epsilon \approx 40\%$)
- + For $\delta(g)/g=0.01$ we need less \overline{H}
- + Time tagging is necessary

T. Ariga's talk 17:20 today!

- × Si detector provides:
 - + Time tagging
 - + vertical res. $\sigma(x) \approx 8 \mu m$
 - + On-line diagnostics
- **x** TOF tracker provides:
 - + "rough" x-y position, time
 - + increase of efficiency

AEGIS EXPERIMENTAL APPARATUS

AEGIS EXPERIMENTAL APPARATUS

TRAP PICTURES

Left: 5 T catching trap on its support flange

Right: installation of both 1 & 5 T traps in the AEgIS magnets' cryostat

Daniel Krasnický, WAG2013 - Bern 14/11/2013

AEgIS 5T PENNING-MALMBERG CATCHING TRAP

- × Designed for \bar{p} and e⁺ catching, storing and subsequent transfer
- × MRT, long stack of electrodes r=15mm, in 5T mag. field
- Cryogenic environment (~7K)
- × Variable \bar{p} catching length 46cm or 76cm
- Trap has been commissioned with antiprotons in 2012

ANTIPROTON CATCHING

- ~3·10⁷ antiprotons in AD shot (@5MeV) are degraded with a set of aluminum foils.
- p̄ with E < Trap HV are caught by fast HV on entrance electrode
- × ~1.3.10⁵ \bar{p} caught / AD shot
- Antiprotons were stored for 5s before released towards the degrader: "hot dump"
- Detection with scintillators positioned around the cryostat

ELECTRONS & COOLING OF ANTIPROTONS

- e⁻ pre-loaded into a ~120V trap using heated cathode e-gun
 - + N(e⁻) ~10⁸ -10⁹
 - + Electron lifetime >>100s
- p cool by collisions with e⁻
 + e⁻ cool by radiation in 5T field
- Most antiprotons are cooled within 40s from capture

ANTIPROTON STORAGE TIME IN THE 5T CATCHING TRAP

- No significant losses for hot antiprotons (46cm long trap)
 - we see similar storage behavior in the 76cm long HV trap

Dec 2012: ~600 s lifetime of cold antiprotons

- + Oct 2013 vacuum improved by factor 2
- + lower temperature in the cryogenic region
- we expect to increase cold pbar lifetime by a factor 2-4

AEGIS 1T TRAP SYSTEM

- Complex system of traps with various requirements
- × Large radius trap
 - + plasma compression & off-axis e⁺ trap loading
- Off-axis trap (working at high voltage)
 - plasma compression & acceleration of e⁺ on Ps conversion target
- Antihydrogen production trap
 - + final p cooling & charge exchange reaction
 - + cold beam formation
- The system is currently under commissioning with e⁻ and e⁺

MOVING POSITRONS OFF-AXIS DIOCOTRON MODE EXCITATION

- × Loading e⁺ plasma (N≈10⁸) into an off-axis trap @ 1T
 - + auto-resonant excitation (pioneered by Fajans et al.) developed for e⁺ multicell trap:
 J.R. Danielson, T.R. Weber, C.M. Surko, Phys. Plasmas 13, 123502 (2006)
 - + We successfully tested the technique with an electron trap at INFN Genova
 - × low fields (0.5 2 T)
 - × large displacements

C. Canali et al., Eur. Phys. J. D 65 (3) 499-504 (2011)

+ Off-axis loading is currently under test in AEgIS 1T traps

AEGIS ANTIHYDROGEN PRODUCTION TRAP

- × Multi-ring Penning trap
 - + single precise support structure in Al
 - + support hard anodized \rightarrow el insulator
 - + electrodes with a fine honeycomb mesh
- Filter PCB mounted under the trap
 - + by-pass diodes for fast signals included

FAST ANNIHILATION CRYOGENIC TRACKER DETECTOR

- × uses 800 scintillating fibers
 - + two concentric layers of fibers
 - each fiber coupled to its SiPM
- Installed and in commissioning

- × Used to detect
 - + Hbar pulsed production
 - + Hbar temperature
 - + Beam creation
- Fast: 50ns (Si PM response time)
- Works @ 4.2K + no heat dissipated
- × expected z resolution $\sigma \approx 2.1$ mm

DETECTOR TESTS – SILICON DETECTORS

- Direct antiproton annihilation on Si sensors in vacuum
 - + "Symbiotic" measurement
 - + MIMOTERA pixel detector
 - + Two Si strip (80 and 50μm pitch)
 - + 3D Si pixel detector
- Measurements necessary for optimal gravity detector choice

Check of MC GEANT4

- + fair agreement
- A design of 50µm thin Si detector with 8µm resolution is feasible

DETECTOR TESTS – NUCLEAR EMULSIONS

- emulsions were tested in vacuum with low energy antiprotons
- ~2 μm position resolution expected
 - + with $50\mu m$ Si detector in front
- New gel and base plate developed
 - + Tests @ cryogenic temp. in progress
 - + promising results!

× GEANT4 MC comparison

- Multiplicities: indication of better match for CHIPS rather than FTFP model
 - Positive charge is over-estimated by MC models though

SHORT TERM PLANS

- × Testing of all components for H production @ 7K in 1 T field
 - + Positron transport, oPs production, laser Ps excitation
 - + p̄ cooling
 - + H production
 - + H beam formation
- × New Ps test chamber at the exit of the e⁺ accumulator
 - + oPs conversion efficiency @ low temperatures
 - + oPs time-of-flight measurements
 - + Rydberg Ps spectroscopy
- × Gravity module construction (gratings, Si & emulsion detector)
- x first g measurements...

AEgIS COLLABORATION

CERN, Switzerland

INFN Genova, Italy INFN Bologna, Italy

Kirchhoff Institute of Physics, Heidelberg, Germany

Max-Planck-Insitut für Kernphysik Heidelberg, Germany

INFN, Università degli Studi and Politecnico Milano, Italy

- INFN Pavia-Brescia, Italy
- И I Я N И R

UNIVERSITE DE LYON

Université Claude Bernard, Lyon, France

University of Oslo and University of Bergen, Norway

Czech Technical University, Prague, Czech Republic

INFN Padova-Trento, Italy

ETH Zurich, Switzerland

Laboratoire Aimé Cotton, Orsay, France

University College, London, United Kingdom

Stefan Meyer Institut, Vienna, Austria

University of Bern, Switzerland

THANKS FOR YOUR ATTENTION

Moiré deflectometer: 6" (full size) grating prototype

BEAM FORMATION

- **×** Rydberg atoms have large el. dipole moment
 - + Atoms are then highly sensitive to el. fields
 - accelerate/decelerate neutral (anti)matter using electric field gradients:

$$\vec{F} = -\frac{3}{2}ea_0 n(n-1)\nabla \vec{E}$$

- Deceleration of hydrogen demonstrated:
 - H @ v=700m/s stopped in 5µs over 1.8mm
 - Accelerations up to 2.10⁸ m/s²

E. Vliegen & F. Merkt, J. Phys. B 39 (2006) L241

 We will switch voltages from Penning trap configuration to "Stark accelerator"

BEAM DISTRIBUTION

Radial velocity distribution of 400 mK antihydrogen before Stark acceleration

205.04 nm

1720 14

1700 - 16

1680

1660

15 -

17

18

POSITRONIUM EXCITATION WITH LASERS

- x o-Ps needs to be excited:
 - + high \overline{H} production rate $\sigma \sim n^4$
 - $\mathsf{Ps}^* + \overline{p} \to \overline{\mathsf{H}}^* + e^-$
 - + Longer lifetime
- × AEgIS laser system ready:
 - resonant two-stage transition

POSITRON TARGET

Pore diameter around 8 nm

Pore diameter around 10 nm

Pore diameter around 12 nm

Pore diameter around 14 nm