Gravity Effects on Antimatter in the Standard-Model Extension

Carleton College

outline

 Lorentz violation/Standard-Model Extension (SME) basics

 Lorentz violation in gravitational experiments (including some with nontraditional matter)

 Isotropic Parachute Model (a special limit of the SME) and antimatter

- basis for most comments
- complete field theory
- most of the usual properties, except *particle Lorentz invariance*
- can calculate answers to any question

1) Kostelecký, PRD '04

What is Lorentz symmetry?

 physical results are independent of the velocity of the experiment and the *direction* it points

- juggling facing the other way still works
- rotation invariance results are independent of the direction the experiment points

What is Lorentz symmetry?

physical results are independent of the velocity of the experiment and the direction it points

- juggling on ship moving at constant velocity without rocking still works
- boost invariance results are independent of the constant velocity of the experiment

What does Lorentz violation look like?

• juggling while lying on your back is different

What does Lorentz violation look like?

- juggling while lying on your back is different
- apparent relativity violation

What does Lorentz violation look like?

- juggling while lying on your back is different
- apparent relativity violation
- resolution: Earth is part of experiment. It should be turned with the juggler.

coefficients provide 'directions' to spacetime

1) Kostelecký, PRD '04

a simple example with Lorentz violation

rotation invariance violation

$$\left(\begin{array}{c}F_x\\F_y\\F_z\end{array}\right) = \left(\begin{array}{cc}m_{xx} & 0 & 0\\0 & m_{yy} & 0\\0 & 0 & m_{zz}\end{array}\right) \left(\begin{array}{c}a_x\\a_y\\a_z\end{array}\right)$$

- magnitude of acceleration is different depending on which way you push
- rotation invariance violation laws of physics depend on direction
- viable theory for sufficiently similar masses
- more general alternative that Newton could have considered
- presented in 'preferred coordinates' (diagonal mass)

arises as newtonian limit with spatial c coefficients

$$\begin{pmatrix} F_{x'} \\ F_{y'} \\ F_{z'} \end{pmatrix} = m \begin{pmatrix} 1 + c_{x'x'} & c_{x'y'} & c_{x'z'} \\ c_{y'x'} & 1 + c_{y'y'} & c_{y'z'} \\ c_{z'x'} & c_{z'y'} & 1 + c_{z'z'} \end{pmatrix} \begin{pmatrix} a_{x'} \\ a_{y'} \\ a_{z'} \end{pmatrix}$$

arises as newtonian limit with spatial c coefficients¹

acceleration down the plane is unchanged

Bertschinger, Flowers, JT arXiv:1308.6572

arises as newtonian limit with spatial c coefficients

acceleration down the plane is unchanged acceleration down the plane is different

Bertschinger, Flowers, JT arXiv:1308.6572

underlying theory at Planck scale

options for probing experimentally

galaxy-sized accelerator

- suppressed effects in sensitive experiments
 CPT and Lorentz violation
- can arise in theories of new physics
- difficult to mimic with conventional effects

Standard-Model Extension (SME)

effective field theory which contains:

- General Relativity (GR)
- Standard Model (SM)
- arbitrary coordinate-independent CPT & Lorentz violation $L_{\rm SME} = L_{\rm GR} + L_{\rm SM} + L_{\rm LV}$
- CPT violation comes with Lorentz violation
- **CPT & Lorentz-violating terms**
 - constructed from GR and SM fields
 - parameterized by coefficients for Lorentz violation
 - samples

 $\psi a_{\mu} \gamma^{\mu} \psi$

Colladay & Kostelecký PRD '97, '98 Kostelecký PRD '04

background vectors and tensors are cute, but where could the come from?

- explicate Lorentz violation
 - the universe just looks that way
 - inconsistent with Riemann geometry¹

- spontaneous Lorentz violation
 - a vector or tensor field gets a vacuum-expectation value
 - nonzero VEV observed for a scalar particle, the Higgs (no Lorentz violation)
 - VEV for vector or tensor would be my red arrows \overline{a}_{μ}
 - consistent with Riemann geometry

tests

- compare experiments pointing in different directions
- compare experiments at different velocities
- compare particles and antiparticles
- SME

avoid averaging over the signal

- quantitative comparisons
- observe:

- predictive

Lorentz and CPT violation

- 'conventional' field associated with larger-scale source eg. spacetime torsion¹, gravitomagnetism²
 - 1) Kostelecký, Russell, JT, PRL '08
 - 2) JT, PRD '12

SME experimental and observational searches

- trapped particle tests (Dehmelt, Gabrielse, ...)
- spin-polarized matter tests (Adelberger, Heckel, Hou, ...)
- clock-comparison tests (Gibble, Hunter, Romalis, Walsworth, ...)
- tests with resonant cavities (Lipa, Mueller, Peters, Schiller, Wolf, ...)
- neutrino oscillations (LSND, Minos, Super K, ...)
- muon tests (Hughes, BNL g-2)
- meson oscillations (BABAR, BELLE, DELPHI, FOCUS, KTeV, OPAL, ...)
- atom-interferometer tests (Mueller, Chiow, Herrmann, Chu, Chung)
- astrophysical photon decay
- pulsar-timing observations
- cosmological birefringence
- CMB analysis
- lunar laser ranging
- short-range gravity tests

antimatter efforts $L_{\text{LV}} = L_{\text{pure gravity}} + L_{\text{photon}} + \frac{L_{\text{fermion}} + \dots}{\mathbf{1}}$ $L_{\text{fermion}} = \frac{1}{2}i\overline{\psi}(\gamma^{\mu} - c^{\mu}_{\ \lambda}\gamma^{\lambda} - e^{\mu})\overleftrightarrow{D_{\mu}\psi} - \overline{\psi}(m + a_{\mu}\gamma^{\mu})\psi + \dots$ • even number of indices – CPT even • odd number of indices – CPT odd

- antihydrogen spectroscopy Bluhm, Kostelecky, Russell '98
- trapped antiparticles Bluhm, Kostelecky, Russell '99

 Isotropic Invisible Models (IIM) – models in which isotropic CPT odd coefficients largely cancel effect of isotropic CPT even coefficients for matter but not antimatter

SME experimental and observational searches

- trapped particle tests (Dehmelt, Gabrielse, ...)
- spin-polarized matter tests (Adelberger, Heckel, Hou, ...)
- clock-comparison tests (Gibble, Hunter, Romalis, Walsworth, ...)
- tests with resonant cavities (Lipa, Mueller, Peters, Schiller, Wolf, ...)
- neutrino oscillations (LSND, Minos, Super K, ...)
- only ~1/2 of lowest order couplings explored

- puisar-timing observations
- cosmological birefringence
- CMB analysis
- lunar laser ranging
- short-range gravity tests

path to experimental analysis

expand to desired order in LV and gravity -fermion field redefinition fermion Euler-Lagrange eq. relativistic quantum experiments Relativistic⁻ Foldy-Wouthuysen expansion non-relativistic quantum experiments NonRel inspection Classical non-relativistic quantum experiments variation classical experiments

Newtonian equation of motion

classical results

$$U = \frac{2Gm}{r} \left(1 + \overline{c}_{00}^{\mathbf{S}} + \frac{2}{m} (\overline{a}_{\text{eff}}^{\mathbf{S}})_{0} \right) + \dots$$

$$\ddot{x}^{j} = -\frac{1}{2}\partial^{j}U + (\overline{c}^{\mathrm{T}})^{j}{}_{k}\partial^{k}U + \frac{1}{m^{\mathrm{T}}}\alpha(\overline{a}_{\mathrm{eff}}^{\mathrm{T}})_{0}\partial^{j}U + \dots$$

 $(a_{\text{eff}})_{\mu} = a_{\mu} - m e_{\mu}$

S and T denote composite coefficients for source and test respectively

experimental hooks

- particle-species dependence
- time dependence

$$\ddot{\vec{x}} \supset -2g \, \alpha \overline{a}_T \hat{z} - 2g V_{\oplus} \, \alpha \overline{a}_X \sin(\Omega T) \hat{z} \\ -\frac{2}{5}g V_L \, \alpha \overline{a}_X \sin(\omega T + \psi) \hat{y}$$

$\begin{array}{l} \begin{array}{l} \text{lab tests} \\ \text{annual variations} \\ \text{acceleration of a test particle T} \\ \ddot{\vec{x}} \supset -2\frac{1}{m}gV_{\oplus} \ \alpha(\overline{a}_{\text{eff}}^{\text{T}})_{X}\sin(\Omega T)\hat{z} + gV_{\oplus}(\overline{c}^{\text{T}})_{TX}\sin 2\chi\sin(\Omega T)\hat{x} \end{array}$

• monitor acceleration of one particle over time ____ gravimeter

monitor relative
 behavior of particles
 EP test

 periodic EP violation qualitatively new proposal?

 frequency and phase distinguish from other effects

experiments

time and species dependent equations of motion imply signals in:

- lab tests
 - gravimeter
 - Weak Equivalence Principle (WEP)
- space-based WEP
- exotic tests
 - charged matter
 - antimatter
 - higher-generation matter

- solar-system tests
 - laser ranging
 - perihelion precession
- light-travel/clock tests
 - time delay
 - Doppler shift
 - red shift

• ...

Kostelecký, JT, PRD '11

experimental limits on a

- to date, 8 limits on the 12 combinations for p, n, e
- time-component limits (assuming $\overline{c}_{TT}=0$)^{1,2}

 $|\alpha(\overline{a}_{\text{eff}}^n)_T| \lesssim 10^{-10} \text{ GeV}, \qquad |\alpha(\overline{a}_{\text{eff}}^e)_T + \alpha(\overline{a}_{\text{eff}}^p)_T| \lesssim 10^{-10} \text{ GeV},$

space components

two constraints¹ at 10⁻⁶ GeV

four constraints^{3,4} at 10⁻¹ GeV

- 1) Kostelecky & JT PRD '11
- 2) Schlamminger etal PRL '94
- 3) JT PRD '12
- 4) Panjwani, Carbone, Speake '11

vast space for improvement

- •improvement possible with up-coming/existing tests
- •Earth-based WEP up to10 orders of magnitude
- •space-based WEP up to 11 orders of magnitude
- •gravimeters up to 9 orders of magnitude
- •lunar laser ranging 5 orders of magnitude
- •gravitational tests with muons could provide the first sensitivities to \overline{a}_{μ} for higher generation matter
- •gravitational tests with antihydrogen and positronium could provide clean separation of a and c coefficients.

exotic tests

- variation on gravitational tests involving experimentally challenging matter
- charged matter
 - separate proton and electron coefficients
 - theoretically interesting -- bumblebee electrodynamics
- higher-generation matter
 - few existing bounds
- antimatter

$$L = \frac{1}{2} \left(\underbrace{m + \frac{5}{3} N^w m^w \overline{c}_{TT}^w}_{m_{i,\text{eff}}} \right) v^2 - gz \left(\underbrace{m + N^w m^w \overline{c}_{TT}^w + 2\alpha N^w (\overline{a}_{\text{eff}})_T^w}_{m_{g,\text{eff}}} \right)$$

CPT odd

- differing gravitational response for matter and antimatter

a toy-model limit of SME for antimatter gravity $L = \frac{1}{2} \underbrace{(m + \frac{5}{3}N^w m^w \overline{c}_{TT}^w) v^2 - gz(m + N^w m^w \overline{c}_{TT}^w + 2\alpha N^w (\overline{a}_{eff})_T^w)}_{m_{i,eff}}$ • Isotropic 'Parachute' Model (IPM)¹ $\frac{1}{3}m^w \overline{c}_{TT}^w = \alpha (\overline{a}_{eff})_T^w$

 $\frac{1}{Matter} = \alpha \left(u_{eff} \right) T$

Antimatter

 $\begin{array}{ll} m_{\rm i,eff} = m_{\rm g,eff} & m_{\rm i,eff} \neq m_{\rm g,eff} \\ {\rm a} = g & \bar{\rm a} = g (1 - \frac{4m^w N^w}{3m} \overline{c}_{TT}^w) \end{array}$

"Rather than a serious effort at realistic theory, the IPM is constructed as a simplistic playground within which to explore field-theoretic limitations on unconventional properties of antimatter..."¹

1) Kostelecký, JT PRD '11

• particle antiparticle pair vs. photon

concern

energy conservation

Morrison, Am. J. Phys. '58

• particle antiparticle pair vs. photon

 $E = 2m + m(g_b + g_{\bar{b}} - 2g_{\gamma})h E'' = 2m + m(g_b + g_{\bar{b}} - 2g_{\gamma})h$ IPM – nonissue conserved energy-momentum tensor How does it work in detail? photons are normal (no a or c effects) the a coefficient is CPT odd – effect cancels for the pair E' = • at the newtonian level, c results in the following energy relation for a (anti)particle

conce
$$E = m_{\text{eff}} + \frac{1}{2}m_{\text{eff}}(1 + \frac{2}{3}\overline{c}_{00})v^2 + m_{\text{eff}}gh$$

• same energy exchange with gravitational field, but acceleration is modified

- vacuum polarization, binding energy, and equivalence-principle tests
 - atomic masses are composed of:
 - leptons
 - valence quarks
 - gauge bosons
 - particle-antiparticle pairs
 - in varying amounts from atom to atom
 - simplistically, quarks in hydrogen contain ~10% of mass remainder is comparable for hydrogen and antihydrogen. Thus the gravitational response can't differ by more than 10%
 - place limits on anomalous gravitational response of antimatter using limits from conventional EP tests
 - Schiff PRL '58
 - Nieto, Goldman Phys. Rep. '91
 - And others

- vacuum polarization, binding energy, and equivalence-principle tests
 - atomic masses are composed of:
 - leptons
 - valence quarks
 - ^{ga} IPM
 - binding forces are largely conventional
 - anomalous gravitational effects associated with flavor content
 - apply the IPM conditions after renormalization
 implications?
 - place limits on anomalous gravitational response of antimatter using limits from conventional EP tests
 - Schiff PRL '58
 - Nieto, Goldman Phys. Rep. '91
 - And others

• The K^0 system $K^0 = d\bar{s}$

$$|K_L\rangle = \frac{(1+\epsilon)|K^0\rangle - (1-\epsilon)|\overline{K^0}\rangle}{\sqrt{2(1+\epsilon^2)}}$$
$$|K_S\rangle = \frac{(1+\epsilon)|K^0\rangle + (1-\epsilon)|\overline{K^0}\rangle}{\sqrt{2(1+\epsilon^2)}}$$

gravitational difference for matter/antimatter could imply $K_L - K_S$ oscillations¹

• The K^0 system $K^0 = d\bar{s}$

$$|K_L\rangle = \frac{(1+\epsilon)|K^0\rangle - (1-\epsilon)|\overline{K^0}\rangle}{\sqrt{2(1+\epsilon^2)}}$$
$$|K_S\rangle = \frac{(1+\epsilon)|K^0\rangle + (1-\epsilon)|\overline{K^0}\rangle}{\sqrt{2(1+\epsilon^2)}}$$

gravitational difference for matter/antimatter could imply $K_L - K_S$ oscillations¹

nonissue for IPM

 differences in SME coefficients for quarks have been bounded²

- does not limit anomalous gravitational effects on antibaryons and antileptons
- 1) Good PR '61
- 2) Kostelecky PRL '98 (theory);

Data Tables for Lorentz and CPT Violation, Rev. Mod. Phys. '11 (experimental summary)

anomalous redshift of cyclotron frequency¹

likely nonissue for IPM

- redshifts typically involve the CPT even coefficient only
- example: redshift of Bohr levels involves

$$\xi_{\rm H,Bohr} = -\frac{2}{3(m^p + m^e)} (m^p (\overline{c}^e)_{00} + m^e (\overline{c}^p)_{00})$$

• the effect is the same for particle and antiparticle

key method of constraining the IPM

- index structure implies CPT properties and hence permits the construction of the model
- however, index structure also implies that studies involving higher powers of velocity can limit it¹
 - redshift tests with matter²
 - consideration of bound kinetic energy in matter equivalence-principle tests³

$$\frac{1}{3}m^w \overline{c}_{TT}^w = \alpha (\overline{a}_{\text{eff}})_T^w < 10^{-6} \text{ GeV}$$

- 1) Kostelecky & JT PRD '11
- 2) Hohensee etal PRL '11
- 3) Hohensee etal PRL '13

IPM model:

- field-theory based
- incorporates known physics
- appears to evade many usual arguments against antimatter gravity

Ordinary matter constraints

double boost suppressed effects

Bottom line?

- the IPM is an interesting toy model that highlights interesting features of antimatter-gravity constraints
- higher order SME terms??? 'Isotropic Hang-glider Model'?

Summary

- Lorentz & CPT violation searches have potential to detect Planck-scale physics with existing technology
- Much work has been done in Minkowski spacetime, but much remains unexplored
- Lorentz violation in matter-gravity couplings introduces qualitatively new signals in experiments, offers models that appear to avoid many of the antimatter gravity constraints
- Gravitational tests with atypical may provide access to coefficients that are challenging to measure in conventional tests