
Summary of activities in
Concurrency Forum
Linear Collider Software Meeting, 1st February 2013
B. Hegner, P. Mato, D. Piparo

Friday, February 1, 13

The ‘concurrency’ Forum
✤ HEP software needs a paradigm shift

✤ Hardware architectures (since years) more and more suited to support
parallel programs

✤ Assist scientists to express parallelism in their applications
✤ New programming models
✤ Specialized software frameworks
✤ Most recent software technologies

✤ Forum on Concurrent Program-
ming Models and Frameworks
✤ Meeting every two weeks
✤ Boost knowledge sharing process
✤ Find common minimal set of technologies

✤ Code sharing, result comparisons
2http://concurrency.web.cern.ch

Topics of the Forum for today:
• Parallelism in detector simulation
• Heterogeneous computing
• Memory and parallelism
• Parallelism in algorithms and frameworks
• Whiteboard prototype in Gaudi

Friday, February 1, 13

http://concurrency.web.cern.ch
http://concurrency.web.cern.ch

Parallelism in Detector Simulation

Friday, February 1, 13

Geant4 MT
✤ Simulation computationally expensive for the experiments

✤ Big weight in a Monte Carlo samples generation campaign
✤ What is Gean4-MT?

✤ 1 event per thread (Posix threads)
✤ Requested to accommodate parallelism of CMS and ATLAS frameworks:

✤ Unit of work: event or single track (ATLAS ISF)
✤ Geant4-MT will be included in Geant4 10 (end 2013)
✤ Good scaling achieved up to 40+ workers

✤ Hardware Threading: +25% !
✤ 1 worker case w.r.t. serial version: 18% penalty

✤ Validation of results is an interesting challenge!

4
J. Apostolakis et al.

Example of a large
codebase written by
physicists going
parallel !!

Friday, February 1, 13

Geant4 Vector Prototype
✤ Longer term and ambitious project

✤ GPU, accelerators exploited?
✤ Data locality and vectorized algorithms

✤ Idea: lump particles from different events in baskets
✤ Within the same volume (same material), transport them together
✤ New design of data structures needed

✤ Non blocking – No communications among threads
✤ A lot of intelligence in the design of

the scheduler
✤ Plans:

✤ Introduce hits, digitisation and I/O
✤ Introduce realistic EM physics
✤ Investigate GPUs

5
A. Geatha et al.

• Input collection across events
• Multidimensional Parallelism in the

design:
• Within the core (vectorisation)
• Among cores (multithreaded)

Friday, February 1, 13

Heterogeneous Computing

Friday, February 1, 13

Real-Time GPU usage in NA62
✤ Idea: use GPU as L0 RICH trigger

✤ Ring finder - Crawford algorithm
✤ Nvidia hardware and CUDA

✤ Pilot project (FPGAs online now)
✤ Very promising R&D

✤ Memory transfer is an issue:
✤ Use CUDA streams to build a pipeline

✤ Necessary throughput achieved:
✤ At least 2x the max achievable by detector!

✤ Latency completely under control
✤ Ready to be tested during Technical Run in November!

7

Max$Th.$Throughput:0.5GB/s!$

A real (very specialized) system
driven by GPU computations
ready to be tested in production
conditions

F. Pantaleo

Friday, February 1, 13

GPUs for CMS Tracking
✤ Technology: OpenCL

✤ Compared with TBB and OpenMP
✤ Real-life tracking algorithms and inputs

✤ Trajectory alteration by multiple scattering
✤ Track seeding (simplified geometry)

✤ Bottom line:
✤ Fast code and good scaling

✤ Many platforms (Intel,AMD)x(nvidia,AMD)
✤ Code is portable

✤ Same kernel on all platforms (extrapolate on MIC,..)
✤ Design/Development effort required if decide to port CMSSW components
✤ Data transfer overhead is an issue:

✤ Send to devices input from several events
✤ Integration with today’s CMSSW not easy

8

Track&seeding&

T. Hauth et al.

•Real algorithms ported:
precious experience gained,
good performance, portability.

•Transfer and offload are still
open question

Friday, February 1, 13

Memory and Parallelism

Friday, February 1, 13

Memory Saving Techniques
✤ Large memory footprint of our applications

✤ Available and purchased resources idle, e.g. HT
✤ Idea: compress (part of) memory to drain

performance
✤ Swap to “compressed block device” whenever possible
✤ Trade-off

✤ Example AliRoot:
✤ Reconstruction of pp events
✤ Limit RSS from 2.2 GB to 1.2 GB
✤ ~8% performance CPU penalty

✤ Unexpected: large amount of contiguous 0-pages found!
✤ Present in CMSSW, AliRoot, DaVinci – Athena?

✤ Advanced tool developed to track down culprits:
✤ Trap all memory allocations
✤ Investigation on-going

10

Track&seeding&

J. Blomer et al.

•Useful for farm management
•Progress in understanding

memory allocations

Friday, February 1, 13

KSM Studies with GaudiMP
✤ KSM kernel module tries to merge identical (virtual) memory pages

into a single (physical) one across processes
✤ Nice memory savings in

realistic LHCb
applications

✤ Caveats
✤ Merging rate must be

adapted otherwise high
CPU consumption by KSM-thread

✤ KSM does not work on the level of virtual memory
✤ pages_volatile (changes too fast) becomes likely a bottleneck
✤ madvise-call inside application

11N. Rauschmayr

Memory savings in absolute (percentage w.r.t no KSM)

Friday, February 1, 13

Transactional Memory (TM)
✤ TM tries to address ‘locks’ pathologies: deadlocks,

convoying , priority inversion, do not compose…
✤ Supported by GCC 4.7

✤ Idea: promote code sections to transactions. If
state of variables changes during transaction
(~collision), roll-back and retry

✤ Concurrent queue implementations studied:
✤ Home made using TM (by a summer student)
✤ Intel TBB

✤ Out of the box performance:
✤ Already comparable!

12

CPU0

transac,on{$
$$++x;$
$$commit{$
$$x$version$isv
$$x$version$wasv
$$updatex
$$}$
}$
$
...$
$
$
$

Commit$
successful$

CPU1

$
…$
$
transac,on{$
$$++x;$
$$commit{$
$$x$version$is$v’$
$$x$version$wasv
$$repeat$
$$}$
$
$++x;$
$$commit{$
$$x$version$is$v’$
$$x$version$was$v’$
$$updatex
$$}$
}$
…$
$
$
$

Commitnow
successful$

Commit$$failed:xvalue$changed$
inthemean,me$

void%f(){%
__transac1on_atomic{%++a;}%
}%

A. Pakalniskis et al.
Atomics + transactions + scheduler:
Locks usage need greatly reduced

Friday, February 1, 13

Algorithms and Framework
Parallelism

Friday, February 1, 13

CMS Parallel Track Seeding
✤ Track seeding: from hits pairs, find triplets

✤ Start then track building
✤ Cost: 10% of reco time with 40 pile-up evts
✤ Within algorithm

✤ Parallelize for loop on pairs
✤ Preserve ordering
✤ Threading Building Blocks (TBB) technology

✤ Changes needed in the Framework:
✤ Add simple TBB service to hold thread pool
✤ Atomic reference counting

✤ Ready for production: fully validated
✤ Good scaling for speedup
✤ Almost no memory footprint increase
✤ Way to get back unused resources
✤ Shrink runtime of long-running algorithm

14
T. Hauth et al.

•Production ready parallel algorithm
•No cost in RSS
•Few ‘framework’ changes needed

Friday, February 1, 13

‘Concurrent’ Frameworks
✤ Three products:

✤ SuperB FW
✤ CMSSW
✤ GaudiHive (‘Whiteboard’ prototype integrated in Gaudi)

✤ Common denominator:
✤ TBB technology
✤ Event level parallelism

✤ Multiple events processed simultaneously
✤ Algorithm level parallelism

✤ Multiple algorithms running concurrently
✤ “Task-oriented” programming model

✤ Central scheduler managing algorithm execution
✤ Allows transparent execution of parallelized algorithms
✤ Adopted by CMS and GaudiHive

15

TBB#

Friday, February 1, 13

Concurrent Frameworks: SuperB
✤ Prototype built on top of serial BaBar framework
✤ Fastsim worflow considered

✤ 10% of time spent in modules concurrently runnable
✤ No scheduler

✤ Use a priori computed flow graph
✤ Protect modules with locks
✤ Bottom line:

✤ Real simulation code ran
✤ Speedup achieved

✤ Limited parallelism
✤ Locks
✤ Nature of the workflow

✤ Leave prototype
✤ Move to natively parallel framework

16
M. Corvo

Friday, February 1, 13

Concurrent Frameworks: CMS
✤ Toy framework

✤ No real algorithms but CPU crunchers
✤ Timing of real workflows reproduced

✤ Data on demand driven scheduling:
✤ Input needed by algorithm triggers

algorithm scheduling
✤ Large portions do not allow parallelism among modules:

✤ Shorten them with parallelism within modules!
✤ Campaign to make CMS code thread

safe already started
✤ Clang static analysis
✤ Spot thread unsafe constructs

17

•CMS is moving towards a
parallel framework

•Forking is not enough C. Jones

Friday, February 1, 13

Concurrent Frameworks: Gaudi
✤ Toy framework

✤ No real algorithms but CPU crunchers
✤ Timing of real workflows reproduced

✤ Schedule algorithm when its inputs are available
✤ Need to declare Algorithms’ inputs

✤ Multiple events managed simultaneously
✤ Bigger probability to schedule an algorithm
✤ Whiteboard integrated in the DataSvc
✤ Which was made thread safe

✤ Several copies of the same algorithms can coexist
✤ Running on different events
✤ Responsibility of AlgoPool

✤ Data specific to execution stored in the execution context
✤ Used TBBMessageSvc for logging

18

Whiteboard
(TES)

Algorithm

Event NEvent NEvent NExecutioExecution
Context

Algorithm
Algorithm

Scheduler

Algorithm tbb::task'

EventLoopMgr

Friday, February 1, 13

Test On Brunel Workflow

✤ DAG of Brunel (214 Algorithms)
✤ Obtained from the existing code

instrumented with ‘Auditors’
✤ Probably still missing ‘hidden or

indirect’ dependencies (e.g. Tools)
✤ Can give an idea of potential

for ‘concurrency’
✤ Assuming no changes in current

reconstruction algorithms
19

Friday, February 1, 13

Test On Brunel Workflow
✤ 214 Algorithms, real data

dependencies, (average) real
timing
✤ Maximum speedup depends

strongly on the workflow
chosen

✤ Adding more simultaneous
events moves the maximum
concurrency from 3 to 4 with
single Algorithm instances

✤ Increased parallelism when
cloning algorithms
✤ Even with a moderate number

of events in flight

20

Test system with 12 physical cores x 2
hardware threads (HT)

Friday, February 1, 13

Clones vs. Runtime
✤ Tested strategy

✤ Cloning an Algorithm each time
can be scheduled and all instances
busy on other events

✤ Long running algorithms end
having multiple clones
✤ Easy solution but we need to worry

about statistical outputs (counters,
histograms, etc.)

✤ Alternatively, these are candidate algorithms to be parallelized
✤ A high number of short algorithms have 2 copies

✤ Probably we should forbid multiple copies for those

21

~110$algorithms$

Friday, February 1, 13

Event Backlog
✤ Event backlog: difference between latest event put in flight and oldest

event being processed
✤ Cloning helps maintaining a little event backlog.

22

Number'of'events'
in'flight'

Friday, February 1, 13

Concurrent Gaudi: Status
✤ A prototype of a concurrent Gaudi (GaudiHive) has been developed

as an evolution (new branch in the git repository)
✤ Able to schedule and run algorithms concurrently
✤ Able to run multiple events simultaneously
✤ Friendly with sub-event parallelism if using TBB (not really tested yet)

✤ So far has been tested with `fake’ BRUNEL reconstruction workflow:
✤ Important speedup already been obtained, not yet the optimal
✤ Algorithm cloning increase parallelism, keeps events backlog low

✤ Test bench to exercise timings and dependencies for other
applications:
✤ CMSSW reconstruction workflow (already there)
✤ ATLAS (waiting for inputs)

23

Friday, February 1, 13

Concurrent Gaudi: Plans
✤ Continue the investigation on problematic Gaudi elements

✤ For example Services, public Tools, Incidents, etc.
✤ Provide options for their upgrade to be thread-safe

✤ Multiple copies+merge?
✤ Locked-gateway?
✤ Synchronizing queues?

✤ Strategy: start running real ‘physics’ algorithms
✤ Start with subset of LHCb reconstruction (~30 algorithms)
✤ Understand and find solutions to the problems
✤ Validate results
✤ Extend to full workflow later

24

Friday, February 1, 13

Conclusions
✤ The Concurrency Forum:

✤ Stimulated big enthusiasm of the community!
✤ Infrastructure started to deliver

✤ Important results achieved and knowledge shared in the field of:
✤ Parallel simulation

✤ Present: Geant4-MT, future Geant Vector Prototype
✤ Heterogeneous computing

✤ “Different” multicore systems
✤ Studies of memory in the field of multicore applications

✤ Potential of TM, various memory saving techniques investigated
✤ Common technologies

✤ TBB is an example, tools and procedures (not shown here for brevity!)
✤ A clear trend emerged for the future of HEP data processing

✤ Parallelism within the algorithms
✤ Parallelism among algorithms
✤ Parallelism among events

✤ CMSSW and Gaudi already evolving in this direction
25

Friday, February 1, 13

