slic: Status and Plans

Norman Graf, jeremy McCormick (SLAC)

Common Software Working Meeting CERN, January 31, 2013

LC Detector Full Simulation

slic

- Simulator for the Llnear Collider
- Full detector simulation
 - 4π collider detectors
 - test beams
 - other custom detector setups
- Integration
 - Geant4
 - GDML / LCDD
 - HEP PDT
 - LCIO
 - StdHep
- Minimal runtime dependencies
 - No database
 - No user code for geometry description

Recent Features

- Full 3D magnetic field map support
 Grid => (x, y, z, Bx, By, Bz)
- Option to store step information for all energy depositions in CalorimeterHits.
 - □ Turn on via macro option.
 - Useful for detailed analysis of detector reponse
- Z smearing of generated event vertices
 - Gaussian smearing
- Geant4 version was updated to 9.5.1

SimDist

- Since compiling SLIC from scratch is complicated, a build kit is provided.
- Based on well-worn and understood GNU tools
 Autoconf, Make, GCC, etc.
- Works on many flavors of Linux, OSX
 - Windows support is deprecated.
- Options for different run modes
 - visualization
 - debugging
 - batch
- Binaries distributed on Icsim.org

lcdd and GDML

- XML geometry description
 - avoid completely user-defined geometry in code
- GDML
 - constants and definitions
 - materials
 - shapes
 - volumes
 - hierarchical geometry structure
- LCDD
 - sensitive detectors
 - identifiers
 - magnetic fields
 - visualization
 - physics limits
 - regions

GeomConverter

- LCDD is too low-level for most users to hand code.
- Compact description provided for writing a high-level description of the geometry.
 - detector names, number of layers, layer thicknesses/materials, readout identifiers, B-fields
- Java program converts from compact to different formats.
 - LCDD
 - HepRep
 - Runtime Geometry (Java objects)
 - XML for Pandora
 - HTML
 - SVG (experimental)
- Focus on data formats as different applications have different required levels of detail
 - Data interchange

Short-term Plans

- Implement "position sensitive" Sensitive Detector for calorimeter cells
 - handle charge-sharing, cross-talk in RPC
 - handle non-uniformity of response for scintillators
- Implement "black hole" (in)sensitive detector to kill tracking of particles outside of timing window or leaving detector.
- Dual-readout calorimetry
 - $\hfill\square$ implement optical properties within compact \rightarrow lcdd
 - implement optical readout (scintillation & cherenkov) sensitive detectors
 - implement fast dual readout calorimeter simulation
- Additional Sensitive Detector types as needed.

Longer-term

- Support compact → lcdd pathway for additional detector types.
 - e.g. recently implemented pointing crystal calorimeter array for HPS Ecal and scintillator hodoscope array for HPS muon system.
 - implemented tapered endcap calorimeters to support MuC detectors with tungsten shielding cone
- Implement "parallel geometry" to model complicated detector regions
 - e.g. cryo chimney in flux-return iron
- Implement improved handling of magnetic fields
 - caching or results with region of validity
 - polynomial decomposition of field values

Detector Description

- Icdd completely encapsulates the detector description.
- Currently provide a compact.xml description from which one can build the full Geant4 environment
- Can generate lcdd however you want, but it is complicated, prone to errors and does not connect to reconstruction, etc.
- Can also be augmented by inclusion of ~arbitrary gdml snippets e.g. for complex geometry
 mesh2gdml provides access to CAD geometries
- However, this breaks binding to reconstruction, visualization, etc.
- Do not want to give up single point of geometry!

slic going forward

- Believe that slic + GeomConverter provide a viable solution for LC full detector simulations
- System was designed to be flexible to support detector optimizations via easy construction of many detectors.
- Current detector types are somewhat simplified
 - due to lack of support manpower, not to any intrinsic limitations in the system
- Support for the level of detail in the Mokka model of ILD would require significant effort, but believe it would be worthwhile to explore.

ILC Detector Concepts

SiD

GLD

